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Overview
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#* Deterministic finite automata

* Regular languages

#* Nondeterministic finite automata
#* Closure operations

#* Regular expressions

* Nonregular languages

#* The pumping lemma
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Finite Automata

#* An intuitive example : supermarket door controller
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A finite automaton
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door

Top view of an automatic door
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State diagram for the automatic door controler

* Probabilistic counterparts exist
#*Markov chains, Bayesian nets, etc.

#*Not in this course

| neither

Transition table for the automatic door controler:

front

closed closed

open closed

open

open
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* Figure 1.4 #* Formally

) )
—’ : A finite automaton is a 5-tuple (Q,%,5,q,, F)
0,1

1. Qis afinite set of states

2. X is afinite set, the alphabet

3. 0:QxX — Qs the transition function
4.q, € Q is the start state

5. F < Q is the set of accept states

States :q,,0,,0;
Startstate q,
Acceptstate q,
Transitions
Output : accept or reject
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Ais the language of machine M
we write L(M) = A
A={w]|w contains at least one 1 and an

even number of Os follows the last 1 }

Describe M,

Q:{%aqz:qs}

> ={0,1}

o defined by
G | O
0 |G O
J; 19, Q

Q, start state

F :{qz}

JAPEND
™
©_©
State diagram of the two-state finite automaton M,
JNPEND
@,
0

State diagram of the two-state finite automaton M,
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Other examples
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Another example

* 7,89

FIGURE 1.8
Finite automaton M,

0, (RESET)

FIGURE 1.9

Finite automaton Al

A generalisation : A is the language of all strings where the sum of the numbers
is a multiple of i except that the sum is reset to 0 whenever the symbol <reset) appears

Automaton B, =

1.Q ={do,- G}
2.3 ={0,1,2,(reset )}
3'§(qj10):qj

6(d;,1) =q,where k = (j +1) modi
6(d;,2) = g,where k = (j+2)modi

5(q;.(reset)) =q,
4. q, €Q is start and accept state
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Formal definition of computation

Let M be a finite automaton (Q,X,J,q,, F)
Letw=w,...w, beastring over £

M accepts wif a sequence of states r,,..., r, exists in Q such that
lr=0
2.9(r,w,,)=r,, foralli=0,..,n-1
3.reF

M recognizes language A if A={w|M accepts w}

A language is regular if some finite automaton recognizes it.
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Designing finite automata

#* Design automaton for language consisting of binary
strings with an odd number of 1s

#* Design first states . ;0
* Then transitions m m

* Start state and accept states

Informatik Theorie Il (A) WS2009/10 9
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Another example
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Another example

% Design an automaton to recognize the language of binary strings
containing the string 001 as substring
#* We have four possibilities:
1. we haven‘t seen any symbol of the pattern yet, or
2. wehaveseenao, or
3. we have seen a 00, or
4. we have seen the pattern 001

#* Design an automaton to recognize the language of binary strings
containing the string 001 as substring
#*  We have four possibilities:
1. we haven‘t seen any symbol of the pattern yet, or
2. we have seena0, or
3. we have seen a 00, or
4. we have seen the pattern 001

1

SR S I
T o 1
() () () ()
'\_/
1
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The Regular Operations

Let A and B be languages

We define :

Union: AuB={x|xe AorxeB}

Concatenation : AcB={xy|xe Aandy eB}

Star: A" ={xX,..x, |[n>0and each x, € A}
note: always & € A’

Example
A={good,bad}
B ={boy, girl}
Au B ={good,bad,boy, girl}
Ao B ={goodboy, goodgirl,badboy, badgirl}
A" ={¢,good,bad, goodgood, goodbad,
badgood, badbad, goodgoodgood, goodgoodbad, ...}
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Regular languages are closed under ...
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A set S is closed under an operation o if applying o on
elements of S yields elements of S.
Example: multiplication on natural numbers
Counterexample division of natural numbers

Theorem 1.12
The class of the regular languages is closed under the union operation.
In other words, if A and A, are regular languages, so is A U A,

Informatik Theorie Il (A) WS2009/10 15
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Proof 1.12 (by construction)

Let M, recognize A, where M, = (Q,,2,5,,0,,F, ), and
M, recognize A,, where M, = (Q,,X,5,,0,,F, ).

Construct M to recognize A U A,, where M =(Q,%,3,0,,F ).

1.Q={(r.n)IreQ andr, €Q,}.
This set is the Cartesian product of sets Q, and Q, (written Q, xQ,).
It is the set of all pairs of states, the first from Q, and the second from Q,.
2. 2, the alphabet, is the same as in M; and M,. The theorem remains true if they have
different alphabets, 2, and 2,. We would then modify the proof to let
2= 0%,

acs-04: Regular Languages
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3. 9, the transition function, is defined as follows. For each (r,,r,) € Q and
eachae 2, let
5(("1"’2 )va):(51('1'a)1§2(r21a))-
Hence o gets a state of M (which actually is a pair of states from M, and M,),
together with an input symbol, and returns M's next state.
4. q, is the pair (q,,q9, ).
5. F is the set of pairs in which either member is an accept state of M, and M,.
We can write it as
F={(n.n)IneForneFR}
This expression is the same as F =(F, xQ, )u(Q, xF,).

Note that it is not the same as F = F, x F,. What would that give us?

Informatik Theorie Il (A) WS2009/10 1




M =(Q,%,6,q,F)
constructed from M, = (Q, ,%,,6,,q,,F) and M, =(Q, ,%,,6,,0,,F,)
Define
L. Q={(r,r,)[neQandr,Q,}
Example

30((1,1,),8) = (6,(1,,a), 5,(r;, ))
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4.9=(,0,)
SF={(rnr)lneRorn ek}

M, with L(M,) = {w|w contains a 1} M, with L(M,) = {w|w contains at least two 0s}
. 01 ﬂ ‘m 1m o,1m
;
~o @ -6 @)

®
©
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Theorem 1.13
The class of the regular languages is closed under the concatenation operation.
In other words, if A and A, are regular languages, sois A o A,

Informatik Theorie Il (A) WS2009/10 18 Informatik Theorie Il (A) WS2009/10 19
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e . Deterministic versus non deterministic
Non deterministic finite automata .
compu tation
#* Deterministic
* One successor state Deterministic Nondeterministic
CO]llput;\ti(m computation
* ¢ transitions not allowed )
e Start .
#* Non deterministic ﬁ. [ \v .
* Several successor states possible ﬁ_ { l\, '\Y‘
* ¢ transitions possible ﬁ : [ )
0,1 g reject [ 1
0,1 : .
1 0,8 1 .
. ’J(‘CC})K or I'Ci(’.l‘f . ﬂC(‘CPf
g, a3
FIGURE 1.15
Deterministic and nondeterministic computations with an accepting
branch
20 21
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0,1
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Another NFA

0
B OLORES

1 o <
Input: w=010110 0 @
v
1

2\

@/
Q/
@
e
@)

@
K@

Pos=e

OO

FIGURE 1.19
The NFA Ny
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Nondeterministic finite automaton Example
1. Q:{q11q21q3’q4}
A nondeterministic finite automaton is a 5-tuple (Q,%,5,q,, F) ﬂ o m 2.% ={0,1}
0,1 ' ' !
1.Qis a finite set of states 1 0¢ . 3. 5is qi .
: given as:
2. 2 is a finite set, the alphabet H%% 0 1 .
3. 0:QxX_ — P(Q)is the transition function 0 [0 {00t ¢
4.q, € Q is the start state ' q l} {}l’ ? @)
5. F Qs the set of accept states % | % %
% {3 {aut O
¥, includes & 4, {.q4} {a.}
P(Q) the powerset of Q 4. q, is the start state
5. F :{CI4}
Informatik Theorie Il (A) WS2009/10 24 Informatik Theorie Il (A) WS2009/10 25
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Formal definition of computation

LetM bea finite automaton (Q,%,5,q,, F)
Let w=w,...w, be a string over X

M accepts w if a sequence of states r,,...,r, exists in Q such that

1.6, =0
2.1, <o(r,w,,)foralli=0,..,n-1

i+1

3r eF
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Every NFA has an equivalent DFA

ROSEOSROSR0

FiIGUure 1.17
The NFA N, recognizing A

FIGURE 1.18
A DFA recognizing A
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Equivalence NFA and DFA Proof: Theorem 1.19
LetN =(Q,X,3,.q,,F ) be the NFA recognizing some language A.
Two machines are equivalent if they recognize the same language Constructa DFA M recognizing A
First we consider the easier case wherein N has no ¢ arrows. The &
arrows are taken into account later.
Theorem 1.19
Every nondeterministic finite automaton has an equivalent finite automaton
Corollary 1.20
A language is regular if and only if some nondeterministic finite
automaton recognizes it.
29
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Proof: Theorem 1.19 (cont.)

Construct M =(Q",2,5,,q,,F").

1.Q'=P(Q).
Every state of M is a set of states of N. (Recall that P(Q) is the power set
of Q).

2.ForReQ'andaeX let5'(R,a)={qeQ|qed(r,a)forsomereR}.
If R is a state of M, it is also a set of states of N. When M reads a symbol
a in state R, it shows where a takes each state in R. Because each state leads to
to a set of states, we take the union of all these sets. Alternativly we write:

8'(R,a)=Jd(r.a).

reR
3.0, ={q}.
M starts in the state corresponding to the collection containing just the start state of N.
4. F'={R eQ'|R contains an accept state of N }.
The machine M accepts if one of the possible states that N could be in at this point is an
accept state.
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Proof: Theorem 1.19 (cont.)

Now for the & arrows one needs to set up an extra bit of notation.

For any state R of M we define E(R) to be the collection of states that

can be reached from R by going only along ¢ arrows, including the members of

R themselves. Formally, for R < Q let
E(R)={q]q can be reached from R by traveling along 0 or more ¢ arrows}.

The transition function of M is then modified to take into account all

states that can be reached by going along & arrows after every step.

Replacing 3(r,a) by E(8(r,a)) achieves this. Thus
8'(R,a)={qeQ|qeE(3(r,a)) forsomereR}.

Additionally the start state of M has to be modified to cater for all possible states

that can be reached from the start state of N along the & arrows.

Changing g, to be E({q, }) achieves this effect.

We have now completed the construction of the DFA M that simulates the NFA N.

Informatik Theorie Il (A) WS2009/10 30 Informatik Theorie Il (A) WS2009/10 31
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An example An example
The resulting DFA
32 33
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Closure under the regular operations

Theorem 1.12/1.22
The class of the regular languages is closed under the union operation.
In other words, if A and A, are regular languages, so is A U A,

Theorem 1.23
The class of the regular languages is closed under the
concatenation operation.

Theorem 1.24
The class of the regular languages is closed under the star operation.

acs-04: Regular Languages

Proof idea

Informatik Theorie Il (A) WS2009/10 34

Theorem 1.12/1.22
The class of the regular languages is closed under the union operation.
In other words, if A and A, are regular languages, so is A U A,

N Y
Nl P % r—‘\
o -0 o
0@ ‘I o0 ©@
s st

S . SIS
N e\
00 -0 O
(0] o)

% %0
S SR
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Proof 1.12/1.22

LetN, =(Q,,%,8,,q,,F ) recognize A, and
N, =(Q,.X,3,,d,,F, ) recognize A,.

Construct N =(Q,X,3,q,,F ) to recognize A U A,.

1.Q ={q0}UQ1UQ2'
The states of N are all the states of N, and N,, with the addition of a new start state q.
2. The state q, is the start state of N.
3. The accept states F = F, U F,.
The accept states of N are all the accept states of N, and N,. That way N accepts
if either N, accepts or N, accepts.
4. Define § so that foranyqeQ andanyaeX,

8(g.a) qeQ
8,(9.a) qeQ,
{q1rqz} a=aq, anda=¢
(%) g=g,anda=¢

3(q.a)=

acs-04: Regular Languages

Proof idea

Informatik Theorie Il (A) WS2009/10 36

Theorem 1.23
The class of the regular languages is closed under the concatenation operation.

Informatik Theorie Il (A) WS2009/10 37
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Proof 1.23

LetN, =(Q,X,5,,q,,F, ) recognize A, and
N, =(Q,,2.,3,,d,,F,) recognize A,.

Construct N =(Q,X,3,q,,F, ) to recognize A o A,.

1.Q=QuQ,.

acs-04: Regular Languages

Proof idea

Theorem 1.24
The class of the regular languages is closed under the star operation.

The states of N are all the states of N, and N,,. L
2. The state g, is the same as the start state of N,. Ay
© O @)
3. The accept states F, are the same as the accept states of N,,. -,O o) @
4. Define & so that foranyqeQ andanyaeZX_, o ©
8,(9.a) geQandqeF,
8,(qg,a) geF anda=g
3(q.a)=1 ' 2 i
8(gq.a)v{d,} g=FRanda=¢
8,(q.a) qeQ,
Informatik Theorie Il (A) WS2009/10 38 Informatik Theorie Il (A) WS2009/10 39
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Proof 1.24 Regular expressions
LetN, =(Q,.2,5,,0,,F ) recognize A, o
Construct N =(Q,2,8,q,,F ) recognize A . Definition
Say that R is a regular expression if R is
1.Q :{qo}UQl'
The states of N are the states of N, plus a new start state.
2. The state g, is the new start state. 1. a for some a in the a|phabet 2,
3. F={q,}uF 2 ¢
The accept states are the old accept states plus the new start state. e
4. Define ¢ so that foranyge Q andanyaeX,_, 3. @,
a(a.2) GeQandqef, 4. (R, UR,), where R, and R, are regular expressions,
8,(q,a) geF anda=e )
8(g.a)=18,(q,.a)u{q} gqeFanda=¢ 5. (R,°R,), where R, and R, are regular expressions, or
{a} q=0, anda=¢ * . .
o G- andaxe 6. R, where R, is a regular expression.
Informatik Theorie Il (A) WS2009/10 40 Informatik Theorie Il (A) WS2009/10 41
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RE Examples

In the following examples we assume that the alphabet X is {0,1}.

1.0°10" ={w/|w has exactly a single 1}.

2.3713" ={w|w has at least one 1}.

3. 270012 ={w|w contains the string 001 as a substring }.

4. ()" ={w]|w is astring of even length }.

5. (2X2) ={w]the length of w is a multiple of three}.
6.01010={01,10}.

7.0Z°0uU 1" 1u0uUl={w]|w starts and ends with the same symbol }.

acs-04: Regular Languages

RE Examples (cont.)

Informatik Theorie Il (A) WS2009/10 42

8.(0ue)(lug)=01"UT. RuY
The expression 0 U ¢ describes the language {0,e}, so the concatenation Ro <
operation adds either 0 or & before every string in 1.

9.(0ue)(lue)={¢0,1,01}. Rue
10.10=02.

Concatenating the empty set to any set yields the empty set. R © @
11. & ={e}.

The star operation puts together any number of strings from the language
to get a string in the result. If the language is empty, the star operation can
put together 0 string, giving only the empty string.

Informatik Theorie Il (A) WS2009/10 43
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Applications

#* Design of compilers

{+, -, (DD UDD".DUD".DD")
where D ={0,...,9}

* awk, grep, vi ... in unix (search for strings)
* Perl, Python, or Java programming languages

* Bioinformatics
* So called motifs (patterns occurring in sequences, e.g. proteins)

Informatik Theorie I (A) WS2009/10 44
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Equivalence RE and NFA

Theorem 1.28
A language is regular if and only if some regular expression describes it
Proof through :

Lemma 1.29
If a language is described by some regular expression, then it is regular

Lemma 1.32
If a language is regular, then it is described by some regular expression

Informatik Theorie Il (A) WS2009/10 45
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Proof for Lemma 1.29 (cont.)

2.R=e.
Then L(R)={¢}, and the following NFA recognizes L(R).

O

Formally, N =({q, }.Z,8,q,.{a, }),
where 8(r,b) = forany r and b.

Informatik Theorie Il (A) WS2009/10 47
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Proof for Lemma 1.29 (cont.)

3.R=0.Then L(R) =, and the following NFA recognizes L(R).

.

Formally, N =({q},%,6,9,9), where 5(r,b) = for any r and b.

Informatik Theorie Il (A) WS2009/10 48
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Proof for Lemma 1.29 (cont.)

4.R=R, UR,.
5.R=R,oR,.
6.R=R..

For the last three cases we use the constructions given in the proofs that the
class of regular languages is closed under the regular operations. In other words,
we construct the NFA for R from the NFAs for R, and R, (or just R, in case 6)
and the appropriate closure construction.

Informatik Theorie Il (A) WS2009/10 49
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Example 1.30

We convert the regular expression (abuwa) to an NFA in a sequence of stages.
We build up from the smallest subexpressions to larger subexpressions until we
have an NFA for the original expression, as shown in the following diagram. Note
that this procedure generally doesn't give the NFA with the fewest states!

Informatik Theorie Il (A) WS2009/10 50
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Example: NFA for: (ab U a)*

* a: - @@
* Db —~@ @
* ab: -0 @@
*abua .;\,‘.ﬁ..i..—b@

acs-04: Regular Languages

Exercise: NFA for: (a u b)*aba

Informatik Theorie Il (A) WS2009/10 51

* a: - @@
* b: —~@>@

*¥aub
o ®®
b
£ ._,O
* (a U b)* )
o8
£
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Example: NFA for: (a u b)*aba (cont.)

#* aba:

_..ﬁ..Jﬂ.Jz..Ja.ﬁ.@

* (a U b)*aba:
o 0@
‘L‘i'/
¢ 0-0-0->0-0@

&

acs-04: Regular Languages
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Lemma 1.32
If a language is regular, then it is described by some regular expression

* Two steps
* DFA into GNFA (generalized nondeterministic finite automaton)
* Convert GNFA into regular expression

Informatik Theorie Il (A) WS2009/10 54
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GNFAs

* Labels are regular
expressions

* Two states g and r are
connected in both
directions (fully
connected)

#* Exception :
* One direction only

* Start state (exiting
transition arrows)

* Accept state (only one!)
(only incoming transition
arrows)

acs-04: Regular Languages

Formally

Informatik Theorie Il (A) WS2009/10
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A generalized nondeterministic finite automaton is a 5-tuple (Q,Z, 5, Uyt s aceept)
1.Qis afinite set of states
2. X is a finite set, the alphabet
3. 01 (Q ~{Uaeeepe }) * (Q —{0gar }) — N is the transition function
4. 0y, € Q is the start state
5. Qe € Q the accept state
A GNFA accepts w=W,...w, where eachw, e =~
if a sequence of states 1y, ..., r, exists in Q such that
1.1y = Oggare
2'rk = qaccepl
3.foralli=0,..,n-1, we have that w, € L(R;)
where R, =46(r,,,1,)

Informatik Theorie Il (A) WS2009/10 56
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Convert DFA into GNFA

Add new start state, with & arrow to old start state
Add new accept state, withe arrows from old accept states

If any arrows have multiple labels a and b, replace by aub

Add arrows with label & between states where necessary”
(*:between states that had no arrows before)

acs-04: Regular Languages

Convert GNFA into regular expression

Informatik Theorie Il (A) WS2009/10
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3 state DFA =>| 5state GNFA = | 4 state GNFA

}

~ | 2state GNFA | €= 3 state GNFA

Regular
Expression

Informatik Theorie Il (A) WS2009/10 58
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Ripping of states

Replace one state by the corresponding RE

acs-04: Regular Languages

Convert(G)

Convert(G):
1. Let k be the number of states of G.
2. If k =2, then G must consist of a start state, an accept state, and a single

/Fi\ arrow connectiong them and labeled with a regular expression R.
. R)R)* (R U R, Return the expression R.
. . 3. Ifk > 2, we select any state q,;, € Q different from g, and g, and let G’
R R, be the GNFA (Q",Z,8",Ogart 1Gaceepr )» Where
O Q':Q_{qrip}l
R, and for any qi € Ql_{ qaccept } and any qj € Q'_{ qstart } let
8'(qivq]‘ ):(Rl )( R1 )*(R3)U( R4 )a
for Ry = 8(0,0yip ):R, = 8(0ip 1 Gip ).Rs = 8(0p 0 ), @and R, = 8(0;.,9; ).
4. Compute Convert(G") and return this value.
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Example Another Example
b mb
e DFA: _a m GNFA: _a.
(i w PYLELSIIELIPS H&?,//‘O T/:ﬁf//‘.\f
b R
1 R, b a b a
G ". . /'O

Informatik Theorie Il (A) WS2009/10 61

Rip 1: ' Rip 2:

a(aa v b)*
/ —>.

_'. ab&baua'o \
\ a(@aa v b)yabub (ba U a) (aa U b)*

O bb (ba U a) (aa L b)*ab U bb O

Rl_p’ 3. (a(aa U b)*ab U b)((ba U a) (aa L b)*ab L bb)*((ba U a) (aa U b)* U £) U a(aa L b)* O

Informatik Theorie Il (A) WS2009/10 63
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Induction Proof

acs-04: Regular Languages

Induction Proof (cont.)

Claim
For any GNFA G, Convert(G) is equivalent to G.

. We prove this claim by induction on k, the number of states
. (R)R)" (Rg) W R, .
=3 of the GNFA.

Basis: Prove the claim true for k = 2 states. If G has only two
states, it can have only a single arrow, which goes from the start
state to the accept state. The regular expression label on this
arrow describes all the strings that allow G to get to the accept
state. Hence this expression is equivalent to G.

Induction step: Assume that the claim is true for k — 1 states and
use this assumption to prove that the claim is true for k states.
First we show that G and G' recognize the same language.
Suppose that G accepts an input w. Then in an accepting branch
of the computation G enters a sequence of states

Ostart »%1 102103 -+ Daceept -
If none of them is the removed state q,;,, clearly G' also accepts w.
The reason is that each of the new regular expressions labeling the
arrows of G' contains the old regular expression as part of a union.

R If q,;, does appear, removing each run of consecutive g, states
/\. forms an accepting computation for G'. The states g; and q; bracketing
. BB R Ry arun have a new regular expression on the arrow between them that
describes all strings taking ¢; to g; viag,, on G.So G' accepts w.
For the other direction, suppose that G' accepts an input w. As each
R, arrow between any two states ¢ and q; in G' describes the collection
of strings taking ¢; to q; in G, either directly or via g;,,G must also
accept w thus G and G' are equivalent.

The induction hypothesis states that when the alorithm calls itself
recursively on input G', the result is a regular expression that is equivalent
to G' because G' has k —1 states. Hence the regular expression also is
equivalent to G, and the algorithm is proved correct.

This concludes the proof of Claim 1.34, Lemma 1.32, and theorem 1.28.
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Nonregular Languages

acs-04: Regular Languages

The pumping lemma

#* Finite Automata have a finite memory
#* Are the following languages regular ?
B={0""|n>0}
C ={w|w has an equal number of Os and 1s}
D ={w|w has an equal number of occurences of 01 and 10}

#* Mathematical proof necessary

If A is regular language, then there is a number p (the pumping length),
where, if s is any string in A of length at least p then s may be
divided into three pieces s = xyz
such that
1. foreachi>0, xy'ze A
2. |y|>0
3. [xylsp

Note from 2:y # ¢
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Proof Idea

Let M be a DFA recognizing A. Assign p to be the number of states in M.
Show that string s, with length at least p, can be broken into xyz.

5= 35 TSg SSTS4T$51861‘ TSET

2\ @ 9t @ 9 15 913

Now prove that all three conditions are met

acs-04: Regular Languages

Proof: Pumping Lemma

* Let M =(Q, 3, 6, q,, F) be a DFA recognizing A and |Q| = p.
* lLets=s,s,..s, beastringin A, with [s|=n,and n>p

* Letr=r, ..,r . be the sequence of states that M enters for s,

SOl =or,,s)with1< i <n.|r,..r.g =ntl, nt1 > p+1.

Amoung the first p+1 elements in r, there must be a r;and a r, being the
same state q,, with 5 = 1.

As r,occurs in the first p+17 states: 1 < p+1.

* Letx=s,.8.4,y=Ss..§ 4,andz=s,.5;;

* as x takes M from r, to r;, y from r. to r,, and z from r, to r, ., being an accept
state, M must accept xy?z for i >

* with j=1,[y|>0
* with 1 < p+1,|xy|<p
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Pumping Lemma (cont.)
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Nonregular languages examples

Use pumping lemma to prove that a language A is not
regular:

1. Assume that A is regular (Proof by contradiction)

2. use the lemma to guarantee the existence of p, such
that strings of length p or greater can be pumped

3. find string s of A, with |s| > p that cannot be pumped

4. demonstrate that s cannot be pumped using all
different ways of dividing s into x,y, and z (using
condition 3. is here very useful )

5. the existence of s contradicts the assumption, therefore
A is not a regular language

nan for |s|> p:
B :{O 1 | n Z O} 1. foreachi>0, xy'ze A
2. |y>0

3 xylsp

Choose s =0°1°

If would now only consider condition2,
then we would have that:

1.string y consists only of Os

2. string y consists only of 1s

3.string y consists of both Os and 1s
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C={w

w has an equal number of Os and 1s}

Choose s =0P1P

acs-04: Regular Languages

Example language B again

for [s|> p:

1. foreachi>0, xy'ze A

B ={0""|n>0}

for |s|> p:
1. foreachi>0, xy'ze A

Would seem possible without condition 3! 2 |yp0 2 1yp0
... ' Yy
However, condition 3 of lemma states |xy|<p [BIvEp 3, |xy< p
Thus y consists of 0s only
Thenxyyz ¢ C - Choose s = 0°1°
. . . condition 3 of lemma states | xy <
Choice of s crucial. Consider s = (01)" ) Ixyl<p
Alternative proof : Thus y consists of Os only
B is nonregular Then xyyz ¢ B
If C were regular, then C ~01" = B regular
Regular languages closed under intersection
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. D={1"|n>0}
F={ww|w €{0,1} }
for [s| > p: Choose s =1" for [s|>p:
1.foreachi>0, xy'ze A 12 o] ea%h R
2. |y>0 Consider xy'z and xy'*'z g leyyllz o

Choose s =0"10"1
Condition 3 of lemma states | xy |< p
Thus y consists of Os only

Then xyyz ¢ F

3. xylsp

0P0" would not work, as it can be pumped !
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i+l

Prove that for large i: xy'z and xy'*'z cannot both be perfect squares,

which should be true according to pumping lemma. Therefore, D is not a regular language

Proof:

Letm=n? = xy'z|

Then: (N+1)?—n? =2n+1=2Jm +1
Choose |y« 2Jm+1= ZM+1
Indeed, observe

|y|<|s|= p?; leti= p* then:

Iyt = ot <2pf 1

<24Ixy'z|+1
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E={w|0'1) wherei> j}

for |s| > p:
1. foreachi>0, xy'ze A
2. |y[>0
3. [xylsp

Choose s = 0""1°
Condition 3 of lemma states | xy [< p
Thus y consists of 0s only

Then xy°z ¢ F 0
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for [s|> p:

acs-04: Regular Languages A
9 guag 1. foreachi>0, xy'ze A

2.|yl>0

Example Exam Question 3. |xyl< p

Use the pumping lemma to prove that
L={0“1:kj=>0andk > 2j}is notregular.

Assume that L = {01/ : k,j 2 0 and k = 2j} is regular. Let p be the pumping

length of L. The pumping lemma states that for any string s [1 L of at least
length p, there exist string x,y, and z such that s = xyz, |xy|<p, |y| > 0, and

for all j 20: xyiz (] L.

Choose s = 0?r1r. Because s [1 L and |s|=3p = p, we obtain from the
pumping lemma the strings x,y, and z with the above properties. As s = xyz,
|xy|<p, and s begins with 2p zeros, one can see that xy can only consist of
zeros. If we pump s down, i.e. select i = 0, the string xy%z = xz = 0%-I111p.

As xz has p ones, and |y| > 0, xz has fewer than 2p zeros.
Hence xz ¢L  CONTRADICTION.
Therfore L is not regular!
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for |s|> p:

acs-04: Regular Languages . i
9 9uag 1. foreachi>0, xy'ze A

2. lyl0

Example Exam Question 3. |xykp

Use the pumping lemma to prove that
L ={01i: kj>0andk > 2j}is not regular.

Assume that L = {01/ : k,j > 0 and k = 2j} is regular. Let p be the pumping

length of L. The pumping lemma states that for any string s [ L of at least
length p, there exist string x,y, and z such that s = xyz, |xy|<p, |y| > 0, and

for all i 20: xy'z (] L.

Choose s = 0017, Because s [] L and |s|=3p = p, we obtain from the
pumping lemma the strings x,y, and z with the above properties. As s = xyz,
|xylsp, and s begins with 2p zeros, one can see that xy can only consist of
zeros. If we pump s down, i.e. select i = 0, the string xyz = xz = 02r-¥1p,

As xz has p ones, and |y| > 0, xz has fewer than 2p zeros.
Hence xz ¢L  CONTRADICTION.
Therfore L is not regular!
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Summary

#* Deterministic finite automata

#* Regular languages

#* Nondeterministic finite automata
#* Closure operations

#* Regular expressions

* Nonregular languages

#* The pumping lemma
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