ACS 1l

M. Helmert,
A. Karwath

Theoretical Computer Science Il (ACS II)

3. First-order logic

Malte Helmert Andreas Karwath

Albert-Ludwigs-Universitat Freiburg

November 11th, 2009

Motivation

Propositional logic does not allow talking about Introduction
structured objects.

A famous syllogism

@ All men are mortal.
@ Socrates is a man.

@ Therefore, Socrates is mortal.

It is impossible to formulate this in propositional logic.
~ first-order logic (predicate logic)

Elements of logic (recap)

Introduction

The same questions as before:
@ Which elements are well-formed? ~ syntax
@ What does it mean for a formula to be true? ~» semantics
@ When does one formula follow from another? ~- inference

We will now discuss these questions for first-order logic
(but only touching the topic of inference briefly).

Building blocks of first-order logic

In propositional logic, we can only talk about formulae R .
(propositions). A Kanwath
An interpretation tells us which formulae are true (or false). Introduction

In first-order logic, there are two different kinds of elements
under discussion:

@ terms identify the object under discussion

e “Socrates”
e ‘“the square root of 5"

o formulae state properties of the objects under discussion

e "All men are mortal.”
e "“The square root of 5 is greater than 2."

An interpretation tells us which object is denoted by a term,
and which formulae are true (or false).

Syntax of first-order logic: signatures

Definition (signature)

A (first-order) signature is a 4-tuple S = (V,C, F, R)
consisting of the following four (disjoint) parts:
@ a finite or countable set V of variable symbols,
@ a finite or countable set C of constant symbols,
@ a finite or countable set F of function symbols,
@ a finite or countable set R of relation symbols

(also called predicate symbols)

Each function symbol f € F and relation symbol R € R has an
associated arity (number of arguments) arity(f), arity(R) € Nj.

Terminology: A k-ary (function or relation) symbol
is a symbol s with arity(s) = k.
Also: unary, binary, ternary

ACS 1l

M. Helmert,
A. Karwath

Syntax

Signatures: examples

Example: arithmetic M. Helmert,

o V={xy,z2,11,22,%3,...}
o C = {zero,one} .
e F = {sum, product}
e R = {Positive, PerfectSquare}
arity(sum) = arity(product) = 2,
arity(Positive) = arity(PerfectSquare) = 1

Conventions:
@ variable symbols are typeset in italics,
other symbols in an upright typeface

@ relation symbols begin with upper-case letters,
other symbols with lower-case letters

Signatures: examples

Example: genealogy

o V={xy,z212,22,23,...}

o C = {queen-elizabeth, donald-duck} Syntax
o F=1
o R = {Female, Male, Parent}

arity(Female) = arity(Male) = 1, arity(Parent) = 2

Conventions:

@ variable symbols are typeset in italics,
other symbols in an upright typeface

@ relation symbols begin with upper-case letters,
other symbols with lower-case letters

Syntax of first-order logic: terms

Definition (term)

Let S = (V,C, F,R) be a signature.
A term (over S) is inductively constructed
according to the following rules:
@ Each variable symbol v € V is a term.
@ Each constant symbol c € C is a term.

@ If ty,...,t; are terms and f € F is a function symbol
with arity k, then f(¢1,.... ;) is a term.

Examples:
@ Iy
@ donald-duck

@ sum(xs, product(one, x5))

ACS 1l

M. Helmert,
A. Karwath

Syntax

Syntax of first-order logic: formulae

Definition (formula)

Let S = (V,C, F,R) be a signature.
A formula (over S) is inductively constructed as follows:

R(t1,...,tx) (atomic formula; atom)

where R € R is a k-ary relation symbol

and ti,...,t are terms (over S)

t1 =t (equality; also an atomic formula)
where t; and to are terms (over S)

Vz o (universal quantification)

dz (existential quantification)

where € V is a variable symbol and ¢ is a formula over S

v

ACS 1l

M. Helmert,
A. Karwath

Syntax

Syntax of first-order logic: formulae

Definition (formula)

°
o T (truth)
o | (falseness)
@ —p (negation)
where ¢ is a formula over S
e (pAY) (conjunction)
® (pV) (disjunction)
o (p— 1) (material conditional)
@ (v 1) (biconditional)

where ¢ and v are formulae over &

ACS 1l

M. Helmert,
A. Karwath

Syntax

Syntax: examples

ACS 1l

Example: arithmetic and genealogy M. Helmert,

o Positive(zs) ce
@ Vz PerfectSquare(x) — Positive(x) Synton
o Jzj3 PerfectSquare(zs) A —Positive(xs)
° Vz (z =y)

@ Vz (sum(z,x) = product(z, one))

o VaIy (sum(z,y) = zero)

e Vz3y Parent(y, x) A Female(y)

Conventions: When we omit parentheses, V and 3
bind less tightly than anything else.
~ Vo P(x) — Q(x) is read as Vz (P(z) — Q(x)),
not as (Vx P(z)) — Q(x).

Terminology and notation

@ ground term: term that contains no variable symbol
examples: zero, sum(one, one), donald-duck A Karwath
counterexamples: x4, product(zx, zero)

@ similarly: ground atom, ground formula Syntax
example: PerfectSquare(zero) V one = zero
counterexample: dxone =z

Abbreviation:
sequences of quantifiers of the same kind can be collapsed

° VaVyVz p ~» Vayz p

@ Va3Vai3xodxs ¢ ~» Vasxdaroxs ¢
Sometimes commas and/or colons are used:

o Vx,y, zip

@ V3, w13x2,T5 0

Semantics of first-order logic: motivation

@ In propositional logic, an interpretation was given by
assigning to the atomic propositions.

Semantics

@ In first-order logic, there are no proposition variables;
instead we need to interpret the meaning of constant,
function and relation symbols.

@ Variable symbols also need to be given meaning.

@ However, this is not done through the interpretation itself,
but through a separate variable assignment.

Interpretations and variable assignments

Let S = (V,C, F,R) be a signature.

Definition (interpretation, variable assignment)

An interpretation (for) is a pair Z = (D, %) consisting of
@ a nonempty set D called the domain (or universe) and
@ a function -Z that assigns a meaning to constant, function
and relation symbols:
o ¢ € D for constant symbols c € C
o £ : DF — D for k-ary function symbols f € F
o RT C DF for k-ary relation symbols R € R
A variable assignment (for S and domain D)
is a function o : V — D.

Idea: extend Z and « to general terms, then to atoms,
then to arbitrary formulae

Semantics

Semantics of first-order logic: informally

ACS 1l

Example: (VaBlock(xz) — Red(z)) A Block(a) S
“For all objects z: if x is a block, then z is red. A. Karwath
Also, the object denoted by a is a block.”

@ Terms are interpreted as objects.
Semantics

@ Unary predicates denote properties of objects
(being a block, being red, ...)
@ General predicates denote relations between objects
(being the child of someone, having a common multiple,
e Universally quantified formulae (“V") are true
if they hold for all objects in the domain.

e Existentially quantified formulae (“3") are true
if they hold for at least one object in the domain.

Interpreting terms in first-order logic

Let S = (V,C,F,R) be a signature.

Definition (interpretation of a term)

Let Z = (D,) be an interpretation for S,
and let « be a variable assignment for S and domain D.

Let ¢ be a term over S.
The interpretation of ¢ under Z and «, in symbols 12 is an
element of the domain D defined as follows:

o If t =z with z € V (t is a variable term):
21 = a(x)

o If t = c with c € C (¢ is a constant term):
Lo =

o If t =f(t1,...,tx) (tis a function term):
(F(t1, ..)T = (%,)

ACS 1l

M. Helmert,
A. Karwath

Semantics

Interpreting terms: example

Example

Signature: S = (V,C, F,R)

with V = {z,y, 2z}, C = {zero,one} F = {sum, product},
arity(sum) = arity(product) = 2

ACS 1l

M. Helmert,
A. Karwath

Semantics

Interpreting terms: example

Example

Signature: S = (V,C, F,R)
with V = {z,y, 2z}, C = {zero,one} F = {sum, product},
arity(sum) = arity(product) = 2

T = (D,-T) with

o D ={dy,d1,ds,ds,dys,ds,ds}

e zerol = d

e one? =d;

o sum?(d;, d;) = d(i+j) moa 7 for all i,5 € {0,...,6}

product? (d;, d;) = d(;.) mod 7 for all 4, j € {0,...,6}

a:{x»—>d5,y'—>d5,2i—>d0}

ACS 1l

M. Helmert,
A. Karwath

Semantics

Interpreting terms: example (ctd.)

Example (ctd.)

o zerol:® =

Semantics
T,
] y) =

o sum(z,y)t* =

o product(one, sum(z, zero))>® =

Satisfaction/truth in first-order logic

Let S = (V,C, F,R) be a signature.

Definition (satisfaction/truth of a formula)

Let Z = (D,) be an interpretation for S,

and let o be a variable assignment for S and domain D.
We say that 7 and « satisfy a first-order logic formula ¢
(also: ¢ is true under Z and «), in symbols: Z, o = o,
according to the following inductive rules:

T,a =Rt ... t) iff 1%, 0% e RE
Ta b=t =ty iffth* ="

ACS 1l

M. Helmert,
A. Karwath

Semantics

Satisfaction/truth in first-order logic

Let S = (V,C, F,R) be a signature.

Definition (satisfaction/truth of a formula)

I,a =Vzp iff Z,alx:=d| = ¢ forallde D
Z,a = Jze iff Z,afx :=d] = ¢ for at least one d € D

where afz := d] is the variable assignment
which is the same as «a except for x, where it assigns d.
Formally:

d if z=ux
(a[x =d)(=) = {a(z) if z#4x

ACS 1l

M. Helmert,
A. Karwath

Semantics

Satisfaction/truth in first-order logic

Let S = (V,C, F,R) be a signature.

Definition (satisfaction/truth of a formula)

Z,aET
Z,aE L
T,aE -y
Z,aE oAy
T,aE eV
TaEp—
TaEpey

always (i.e., for all Z, «)

never (i.e., for no Z,)

iff Z,a = o

iff ,aEpandZ,a =9

iff ZalEporZ,a =1

iff Z,alEporZ,a =1

iff (Z,a=pandZ,a k1) or
(Z,aEpand Z,a =)

ACS 1l

M. Helmert,
A. Karwath

Semantics

Semantics of first-order logic: example

Example

Signature: S = (V,C, F,R)

with V = {z,y, 2z}, C = {a,b}, F =0, R = {Block, Red},
arity(Block) = arity(Red) = 1.

ACS 1l

M. Helmert,
A. Karwath

Semantics

Semantics of first-order logic: example

Example

Signature: S = (V,C, F,R)
with V = {z,y, 2z}, C = {a,b}, F =0, R = {Block, Red},
arity(Block) = arity(Red) = 1.

7 = (D,-T) with
o D ={dy,ds,d3,dy,ds5}
0 af=d;

o b =dj

o Block? = {dy,dy}

o Red? = {dy,dy,ds,ds}

a={zx—d,y—de,z+—di}

ACS 1l

M. Helmert,
A. Karwath

Semantics

Semantics of first-order logic: example (ctd.)

ACS 1l

M. Helmert,
A. Karwath

Example (ctd.)
Questions: Semantics
e Z,a |= Block(b) V —=Block(b)?
e Z,a |= Block(z) — (Block(z) V —Block(y))?
e Z,a |= Block(a) A Block(b)?
e 7, = Vx(Block(z) — Red(x))?

Semantics of first-order logic: example (ctd.)

ACS 1l

M. Helmert,
A. Karwath

Semantics

Example (ctd.)

Questions:
e Z,a |= Block(b) V —Block(b)?

Semantics of first-order logic: example (ctd.)

ACS 1l

M. Helmert,
A. Karwath

Semantics

Example (ctd.)

Questions:
e Z,a [= Block(z) — (Block(z) V —Block(y))?

Semantics of first-order logic: example (ctd.)

ACS 1l

M. Helmert,
A. Karwath

Semantics

Example (ctd.)

Questions:
e Z,a [= Block(a) A Block(b)?

Semantics of first-order logic: example (ctd.)

ACS 1l

M. Helmert,
A. Karwath

Semantics

Example (ctd.)

Questions:
e 7, = Vx(Block(z) — Red(x))?

Satisfaction/truth of sets of formulae

Definition (satisfaction/truth of a set of formulae)

Consider a signature S, a set of formulae ® over S,
an interpretation Z for S, and a variable assignment « for &
and the domain of 7.

We say that Z and « satisfy ® (also: ® is true under Z and «),
in symbols: 7, v = @, if Z, a0 = ¢p for all p € O.

ACS 1l

M. Helmert,
A. Karwath

Semantics

Free and bound variables: motivation

ACS Il
H . M. Helmert,
QueStIOn. A. Karwath
o Consider a signature with variable symbols
{x1,x9,x3,...}, and consider any interpretation 7.
@ To decide if Semantics

I,a = (Vea(R(zg, x2) V f(23) = x4)) V F23S(23, 2),
which parts of the definition of o matter?

Free and bound variables: motivation

ACS Il
H . M. Helmert,
QueStIOn. A. Karwath
o Consider a signature with variable symbols
{x1,x9,x3,...}, and consider any interpretation 7.
@ To decide if Semantics

I,a = (Vea(R(zg, x2) V f(23) = x4)) V F23S(23, 2),
which parts of the definition of o matter?

e a(x1), a(xs), a(wzs), a(x7), ... do not matter because
these variable symbols do not occur in the formula

Free and bound variables: motivation

Question:

o Consider a signature with variable symbols
{x1,x9,x3,...}, and consider any interpretation 7.

@ To decide if Semantics
I,a = (Vea(R(zg, x2) V f(23) = x4)) V F23S(23, 2),
which parts of the definition of o matter?

e a(x1), a(xs), a(wzs), a(x7), ... do not matter because
these variable symbols do not occur in the formula

@ «(xz4) does not matter either: it occurs in the formula, but
all its occurrences are bound by a surrounding quantifier

Free and bound variables: motivation

Question: 1A, (AU,

Consider a signature with variable symbols

{x1,x9,x3,...}, and consider any interpretation 7.

To decide if Semantics
I,a = (Vea(R(zg, x2) V f(23) = x4)) V F23S(23, 2),

which parts of the definition of o matter?

a(zy), a(xs), a(ze), alxr), ... do not matter because

these variable symbols do not occur in the formula

a(z4) does not matter either: it occurs in the formula, but

all its occurrences are bound by a surrounding quantifier

~> only the assignments to the free variables x5 and x3
matter

Variables of a term

Definition (variables of a term)

Let t be a term. The set of variables occurring in ¢,
written vars(t), is defined as follows:

Semantics
o vars(x) = {z} for variable symbols z
@ vars(c) =0 for constant symbols c

o vars(f(ty,...,tx)) = vars(ty) U--- U vars(ty)
for function terms

Example: vars(product(z,sum(c,y))) =

Free and bound variables of a formula

Definition (free variables)

Let be a logical formula. The set of free variables of ¢,
written free(«), is defined as follows:

o free(R(t1,...,t;)) = vars(ty) U--- U vars(ty)
o free(ty =) = vars(t1) U vars(ta)

o free(T) = free(L) =0

o free(—yp) = free()

o free(p A1) = free(p V ¢) = free(p — 1)

(
free(ap — 1)) = free(p) U free(v))
ree(Vx) = free(Ix p) = free(p) \ {z}

Example: free((Vra(R(zyq,z2) V f(x3) = z4)) V Jx3S(x3, 22))

ACS 1l

M. Helmert,
A. Karwath

Semantics

Closed formulae/sentences

ACS Il
Remark: Let ¢ be a formula, and let a and (3 be variable W Helmert.

assignments such that a(x) = ((z) for all free variables of . A Karvath
Then Z,a E ¢ iff Z,8 E .

Semantics

Closed formulae/sentences

ACS Il
Remark: Let ¢ be a formula, and let a and (3 be variable W Helmert.
assignments such that a(x) = ((z) for all free variables of . A Karvath

Then Z,a E ¢ iff Z,8 E .

In particular, if free(p) = (), then o does not matter at all. Semantics

Closed formulae/sentences

Remark: Let ¢ be a formula, and let o and 3 be variable "
assignments such that a(x) = §(x) for all free variables of . A Karwath

Then Z,a E ¢ iff Z,8 E .
In particular, if free(y) = @, then o does not matter at all. Semantics

Definition (closed formulae/sentences)

A formula ¢ with no free variables (i. e., free(¢) = 0)
is called a closed formula or sentence.

If ¢ is a sentence, we often use the notation 7 |= ¢
instead of Z, o = ¢ because the definition of «
does not affect whether or not ¢ is true under Z and a.

Formulae with at least one free variable are called open.

Closed formulae: examples

ACS 1l

M. Helmert,
A. Karwath

Question: Which of the following formulae are sentences?

@ Block(b) v —Block(b)

@ Block(z) — (Block(z) V —Block(y))
@ Block(a) A Block(b)

e Vz(Block(x) — Red(x))

Semantics

Omitting signatures and domains

For convenience, from now on we implicitly assume that we use A (ke
matching signatures and that variable assignments are defined
for the correct domain.

Semantics

Example: Instead of

Consider a signature S, a set of formulae ® over S,
an interpretation I for S, and a variable assignment
« for S and the domain of I.

we write:
Consider a set of formulae ®, an interpretation T
and a variable assignment o.

More logic terminology

The terminology we introduced for propositional logic can be AG I

reused for first-order logic: M. Helmert,

A. Karwath
@ interpretation Z and variable assignment «
form a model of formula ¢ if Z,a = .
e formula ¢ is satisfiable if Z, « |= ¢ for at least one 7, « ER—

(i.e., if it has a model)
e formula ¢ is falsifiable if Z, v [~ ¢ for at least one Z,
e formula ¢ is valid if Z,a |= ¢ for all Z, «
e formula ¢ is unsatisfiable if Z, o [~ ¢ for all Z, «

e formula ¢ entails (also: implies) formula %,
written ¢ = 1), if all models of ¢ are models of ¥

e formulae ¢ and 9 are logically equivalent,
written ¢ = ¢, if they have the same models

(equivalently: if ¢ =1 and ¥ =)

Terminology for formula sets and sentences

@ All concepts from the previous slide also apply to sets of A. Karwath

formulae instead of single formulae.
Examples:

o formula set ® is satisfiable if Z, a |= ® for at least one Z, o
o formula set ® entails formula 9, written ® |= v,

if all models of ® are models of
o formula set ® entails formula set ¥, written ® = U,

if all models of ® are models of ¥

Semantics

@ All concepts apply to sentences (or sets of sentences) as a
special case. In this case, we usually omit a.
Examples:

e interpretation Z is a model of a sentence ¢ if Z |= ¢
e sentence ¢ is unsatisfiable if Z }& ¢ for all 7

Going further

Using these definitions, we could discuss the same topics as for
propositional logic, such as:

@ important logical equivalences

@ normal forms ALY G
@ entailment theorems (deduction theorem etc.)
@ proof calculi
o (first-order) resolution

We will mention a few basic results on these topics, but we do
not cover them in detail.

Logical equivalences

ACS 1l

@ All propositional logic equivalences also apply to first-order

logic (e.g., p VY =1V).

M. Helmert,
A. Karwath

o Additionally, here are some equivalences and entailments

involving quantifiers:

(Vo) A (Vap) = Va(p A1)
(Vop) V (Vo)) = Va(e V)
(Vo) N = V(e AY)
(Vo) VY = V(e V)
—Vzp = Jz-p
Jz(p Vi) = (3zp) V (Fr1))
Jz(p AY) E (Bzp) A (3z9)
(3zp) VY = Fz(p V)
(Bzp) A = Fz(p AY)
-Jxp = Ve

Further topics

but not vice versa

if z ¢ free(v))
if © ¢ free(v)

but not vice versa

if = ¢ free(v))
if © ¢ free(v)

Normal forms

Similar to DNF and CNF for propositional logic, there are some M. Helmert,
important normal forms for first-order logic, such as: f e
@ negation normal form (NNF):
negation symbols may only occur in front of atoms
@ prenex normal form: Further topics

quantifiers must be the outermost parts of the formula

@ Skolem normal form:
prenex normal form with no existential quantifiers

Polynomial-time procedures transform formula ¢
@ into an equivalent formula in negation normal form,
@ into an equivalent formula in prenex normal form, or

@ into an equisatisfiable formula in Skolem normal form.

Entailment, proof systems, resolution. . .

@ The deduction theorem, contraposition theorem and
contradiction theorem also hold for first-order logic.

(The same proofs can be used.)
@ Sound and complete proof systems (calculi) exist for
first-order logic (just like for propositional logic).

Further topics

@ Resolution can be generalized to first-order logic by using
the concept of unification.

@ This first-order resolution is refutation-complete, and
hence with the contradiction theorem gives a general
reasoning algorithm for first-order logic.

@ However, the algorithm does not terminate on all inputs.

Summary

o First-order logic is a richer logic than propositional logic M. Helmert,
and allows us to reason about objects and their properties. '

@ Objects are denoted by terms built from variables,
constants and function symbols.

@ Properties are denoted by formulae built from predicates,
quantification, and the usual logical operators such as
negation, disjunction and conjunction.

Wrap-up

@ As with all logics, we analyze

e syntax: what is a formula?

e semantics: how do we interpret a formula?

e reasoning methods: how can we prove logical
consequences of a knowledge base?

We only scratched the surface. Further topics are discussed in
the courses mentioned at the end of the previous chapter.

	Introduction
	Syntax
	Semantics
	Further topics
	Wrap-up

