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Introduction

Motivation

Propositional logic does not allow talking about
structured objects.

A famous syllogism

I All men are mortal.

I Socrates is a man.

I Therefore, Socrates is mortal.

It is impossible to formulate this in propositional logic.
 first-order logic (predicate logic)
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Introduction

Elements of logic (recap)

The same questions as before:

I Which elements are well-formed?  syntax

I What does it mean for a formula to be true?  semantics

I When does one formula follow from another?  inference

We will now discuss these questions for first-order logic
(but only touching the topic of inference briefly).
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Introduction

Building blocks of first-order logic

In propositional logic, we can only talk about formulae (propositions).
An interpretation tells us which formulae are true (or false).

In first-order logic, there are two different kinds of elements under
discussion:

I terms identify the object under discussion
I “Socrates”
I “the square root of 5”

I formulae state properties of the objects under discussion
I “All men are mortal.”
I “The square root of 5 is greater than 2.”

An interpretation tells us which object is denoted by a term, and which
formulae are true (or false).
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Syntax

Syntax of first-order logic: signatures

Definition (signature)

A (first-order) signature is a 4-tuple S = 〈V, C,F ,R〉
consisting of the following four (disjoint) parts:

I a finite or countable set V of variable symbols,

I a finite or countable set C of constant symbols,

I a finite or countable set F of function symbols,

I a finite or countable set R of relation symbols
(also called predicate symbols)

Each function symbol f ∈ F and relation symbol R ∈ R has an associated
arity (number of arguments) arity(f), arity(R) ∈ N1.

Terminology: A k-ary (function or relation) symbol
Terminology: is a symbol s with arity(s) = k.
Also: unary, binary, ternary
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Syntax

Signatures: examples

Example: arithmetic

I V = {x , y , z , x1, x2, x3, . . . }
I C = {zero, one}
I F = {sum, product}
I R = {Positive,PerfectSquare}

arity(sum) = arity(product) = 2, arity(Positive) = arity(PerfectSquare) = 1

Conventions:

I variable symbols are typeset in italics,
other symbols in an upright typeface

I relation symbols begin with upper-case letters,
other symbols with lower-case letters
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Syntax

Signatures: examples

Example: genealogy

I V = {x , y , z , x1, x2, x3, . . . }
I C = {queen-elizabeth, donald-duck}
I F = ∅
I R = {Female,Male,Parent}

arity(Female) = arity(Male) = 1, arity(Parent) = 2

Conventions:

I variable symbols are typeset in italics,
other symbols in an upright typeface

I relation symbols begin with upper-case letters,
other symbols with lower-case letters
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Syntax

Syntax of first-order logic: terms

Definition (term)

Let S = 〈V, C,F ,R〉 be a signature.
A term (over S) is inductively constructed
according to the following rules:

I Each variable symbol v ∈ V is a term.

I Each constant symbol c ∈ C is a term.

I If t1, . . . , tk are terms and f ∈ F is a function symbol
with arity k, then f(t1, . . . , tk) is a term.

Examples:

I x4

I donald-duck

I sum(x3, product(one, x5))
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Syntax

Syntax of first-order logic: formulae

Definition (formula)

Let S = 〈V, C,F ,R〉 be a signature.
A formula (over S) is inductively constructed as follows:

I R(t1, . . . , tk) (atomic formula; atom)
where R ∈ R is a k-ary relation symbol
and t1, . . . , tk are terms (over S)

I t1 = t2 (equality; also an atomic formula)
where t1 and t2 are terms (over S)

I ∀x ϕ (universal quantification)

I ∃x ϕ (existential quantification)
where x ∈ V is a variable symbol and ϕ is a formula over S

I . . .
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Syntax

Syntax of first-order logic: formulae

Definition (formula)

I . . .

I > (truth)

I ⊥ (falseness)

I ¬ϕ (negation)
where ϕ is a formula over S

I (ϕ ∧ ψ) (conjunction)

I (ϕ ∨ ψ) (disjunction)

I (ϕ→ ψ) (material conditional)

I (ϕ↔ ψ) (biconditional)
where ϕ and ψ are formulae over S
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Syntax

Syntax: examples

Example: arithmetic and genealogy

I Positive(x2)

I ∀x PerfectSquare(x)→ Positive(x)

I ∃x3 PerfectSquare(x3) ∧ ¬Positive(x3)

I ∀x (x = y)

I ∀x (sum(x , x) = product(x , one))

I ∀x∃y (sum(x , y) = zero)

I ∀x∃y Parent(y , x) ∧ Female(y)

Conventions: When we omit parentheses, ∀ and ∃
Conventions: bind less tightly than anything else.

 ∀x P(x)→ Q(x) is read as ∀x (P(x)→ Q(x)),
 not as (∀x P(x))→ Q(x).
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Syntax

Terminology and notation

I ground term: term that contains no variable symbol
examples: zero, sum(one, one), donald-duck
counterexamples: x4, product(x , zero)

I similarly: ground atom, ground formula
example: PerfectSquare(zero) ∨ one = zero
counterexample: ∃x one = x

Abbreviation:
sequences of quantifiers of the same kind can be collapsed

I ∀x∀y∀z ϕ  ∀xyz ϕ
I ∀x3∀x1∃x2∃x5 ϕ  ∀x3x1∃x2x5 ϕ

Sometimes commas and/or colons are used:

I ∀x , y , z :ϕ

I ∀x3, x1∃x2, x5 ϕ
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Semantics

Semantics of first-order logic: motivation

I In propositional logic, an interpretation was given by assigning to the
atomic propositions.

I In first-order logic, there are no proposition variables; instead we need
to interpret the meaning of constant, function and relation symbols.

I Variable symbols also need to be given meaning.

I However, this is not done through the interpretation itself,
but through a separate variable assignment.
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Semantics

Interpretations and variable assignments

Let S = 〈V, C,F ,R〉 be a signature.

Definition (interpretation, variable assignment)

An interpretation (for S) is a pair I = 〈D, ·I〉 consisting of

I a nonempty set D called the domain (or universe) and

I a function ·I that assigns a meaning to constant, function and
relation symbols:

I cI ∈ D for constant symbols c ∈ C
I fI : Dk → D for k-ary function symbols f ∈ F
I RI ⊆ Dk for k-ary relation symbols R ∈ R

A variable assignment (for S and domain D)
is a function α : V → D.

Idea: extend I and α to general terms, then to atoms,
Idea: then to arbitrary formulae
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Semantics

Semantics of first-order logic: informally

Example: (∀xBlock(x)→ Red(x)) ∧ Block(a)
“For all objects x : if x is a block, then x is red.
Also, the object denoted by a is a block.”

I Terms are interpreted as objects.

I Unary predicates denote properties of objects
(being a block, being red, . . . )

I General predicates denote relations between objects
(being the child of someone, having a common multiple, . . . )

I Universally quantified formulae (“∀”) are true
if they hold for all objects in the domain.

I Existentially quantified formulae (“∃”) are true
if they hold for at least one object in the domain.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 16 / 38



Semantics

Interpreting terms in first-order logic

Let S = 〈V, C,F ,R〉 be a signature.

Definition (interpretation of a term)

Let I = 〈D, ·I〉 be an interpretation for S,
and let α be a variable assignment for S and domain D.

Let t be a term over S.
The interpretation of t under I and α, in symbols tI,α is an element of
the domain D defined as follows:

I If t = x with x ∈ V (t is a variable term):
xI,α = α(x)

I If t = c with c ∈ C (t is a constant term):
cI,α = cI

I If t = f(t1, . . . , tk) (t is a function term):
(f(t1, . . . , tk))I,α = fI(tI,α1 , . . . , tI,αk )
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Semantics

Interpreting terms: example

Example

Signature: S = 〈V, C,F ,R〉
with V = {x , y , z}, C = {zero, one} F = {sum, product},
arity(sum) = arity(product) = 2

I = 〈D, ·I〉 with

I D = {d0, d1, d2, d3, d4, d5, d6}
I zeroI = d0

I oneI = d1

I sumI(di , dj) = d(i+j) mod 7 for all i , j ∈ {0, . . . , 6}
I productI(di , dj) = d(i ·j) mod 7 for all i , j ∈ {0, . . . , 6}

α = {x 7→ d5, y 7→ d5, z 7→ d0}
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Semantics

Interpreting terms: example (ctd.)

Example (ctd.)

I zeroI,α =

I yI,α =

I sum(x , y)I,α =

I product(one, sum(x , zero))I,α =
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Semantics

Satisfaction/truth in first-order logic

Let S = 〈V, C,F ,R〉 be a signature.

Definition (satisfaction/truth of a formula)

Let I = 〈D, ·I〉 be an interpretation for S,
and let α be a variable assignment for S and domain D.
We say that I and α satisfy a first-order logic formula ϕ
(also: ϕ is true under I and α), in symbols: I, α |= ϕ,
according to the following inductive rules:

I, α |= R(t1, . . . , tk) iff 〈tI,α1 , . . . , tI,αk 〉 ∈ RI

I, α |= t1 = t2 iff tI,α1 = tI,α2

. . .
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Semantics

Satisfaction/truth in first-order logic

Let S = 〈V, C,F ,R〉 be a signature.

Definition (satisfaction/truth of a formula)

. . .

I, α |= ∀xϕ iff I, α[x := d ] |= ϕ for all d ∈ D

I, α |= ∃xϕ iff I, α[x := d ] |= ϕ for at least one d ∈ D

where α[x := d ] is the variable assignment
which is the same as α except for x , where it assigns d . Formally:

(α[x := d ])(z) =

{
d if z = x

α(z) if z 6= x
. . .
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Semantics

Satisfaction/truth in first-order logic

Let S = 〈V, C,F ,R〉 be a signature.

Definition (satisfaction/truth of a formula)

. . .

I, α |= > always (i. e., for all I, α)

I, α |= ⊥ never (i. e., for no I, α)

I, α |= ¬ϕ iff I, α 6|= ϕ

I, α |= ϕ ∧ ψ iff I, α |= ϕ and I, α |= ψ

I, α |= ϕ ∨ ψ iff I, α |= ϕ or I, α |= ψ

I, α |= ϕ→ ψ iff I, α 6|= ϕ or I, α |= ψ

I, α |= ϕ↔ ψ iff (I, α |= ϕ and I, α |= ψ) or

(I, α 6|= ϕ and I, α 6|= ψ)
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Semantics

Semantics of first-order logic: example

Example

Signature: S = 〈V, C,F ,R〉
with V = {x , y , z}, C = {a, b}, F = ∅, R = {Block,Red},
arity(Block) = arity(Red) = 1.

I = 〈D, ·I〉 with

I D = {d1, d2, d3, d4, d5}
I aI = d1

I bI = d3

I BlockI = {d1, d2}
I RedI = {d1, d2, d3, d5}

α = {x 7→ d1, y 7→ d2, z 7→ d1}
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Semantics

Semantics of first-order logic: example (ctd.)

Example (ctd.)

Questions:

I I, α |= Block(b) ∨ ¬Block(b)?

I I, α |= Block(x)→ (Block(x) ∨ ¬Block(y))?

I I, α |= Block(a) ∧ Block(b)?

I I, α |= ∀x(Block(x)→ Red(x))?
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Semantics

Satisfaction/truth of sets of formulae

Definition (satisfaction/truth of a set of formulae)

Consider a signature S, a set of formulae Φ over S,
an interpretation I for S, and a variable assignment α for S and the
domain of I.

We say that I and α satisfy Φ (also: Φ is true under I and α), in
symbols: I, α |= Φ, if I, α |= ϕ for all ϕ ∈ Φ.
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Semantics

Free and bound variables: motivation

Question:

I Consider a signature with variable symbols {x1, x2, x3, . . . }, and
consider any interpretation I.

I To decide if I, α |= (∀x4(R(x4, x2) ∨ f(x3) = x4)) ∨ ∃x3S(x3, x2),
which parts of the definition of α matter?

I α(x1), α(x5), α(x6), α(x7), . . . do not matter because these variable
symbols do not occur in the formula

I α(x4) does not matter either: it occurs in the formula, but all its
occurrences are bound by a surrounding quantifier

I  only the assignments to the free variables x2 and x3 matter
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Semantics

Variables of a term

Definition (variables of a term)

Let t be a term. The set of variables occurring in t,
written vars(t), is defined as follows:

I vars(x) = {x} for variable symbols x

I vars(c) = ∅ for constant symbols c

I vars(f(t1, . . . , tk)) = vars(t1) ∪ · · · ∪ vars(tk)
for function terms

Example: vars(product(x , sum(c, y))) =
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Semantics

Free and bound variables of a formula

Definition (free variables)

Let ϕ be a logical formula. The set of free variables of ϕ, written free(α),
is defined as follows:

I free(R(t1, . . . , tk)) = vars(t1) ∪ · · · ∪ vars(tk)

I free(t1 = t2) = vars(t1) ∪ vars(t2)

I free(>) = free(⊥) = ∅
I free(¬ϕ) = free(ϕ)

I free(ϕ ∧ ψ) = free(ϕ ∨ ψ) = free(ϕ→ ψ)
= free(ϕ↔ ψ) = free(ϕ) ∪ free(ψ)

I free(∀x ϕ) = free(∃x ϕ) = free(ϕ) \ {x}

Example: free((∀x4(R(x4, x2) ∨ f(x3) = x4)) ∨ ∃x3S(x3, x2))
=
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Semantics

Closed formulae/sentences

Remark: Let ϕ be a formula, and let α and β be variable assignments such
that α(x) = β(x) for all free variables of ϕ.

Then I, α |= ϕ iff I, β |= ϕ.

In particular, if free(ϕ) = ∅, then α does not matter at all.

Definition (closed formulae/sentences)

A formula ϕ with no free variables (i. e., free(ϕ) = ∅)
is called a closed formula or sentence.

If ϕ is a sentence, we often use the notation I |= ϕ
instead of I, α |= ϕ because the definition of α
does not affect whether or not ϕ is true under I and α.

Formulae with at least one free variable are called open.
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Semantics

Closed formulae: examples

Question: Which of the following formulae are sentences?

I Block(b) ∨ ¬Block(b)

I Block(x)→ (Block(x) ∨ ¬Block(y))

I Block(a) ∧ Block(b)

I ∀x(Block(x)→ Red(x))
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Semantics

Omitting signatures and domains

For convenience, from now on we implicitly assume that we use matching
signatures and that variable assignments are defined for the correct
domain.

Example: Instead of

Consider a signature S, a set of formulae Φ over S, an
interpretation I for S, and a variable assignment α for S and the
domain of I.

we write:

Consider a set of formulae Φ, an interpretation I
and a variable assignment α.
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Semantics

More logic terminology

The terminology we introduced for propositional logic can be reused for
first-order logic:

I interpretation I and variable assignment α
form a model of formula ϕ if I, α |= ϕ.

I formula ϕ is satisfiable if I, α |= ϕ for at least one I, α
(i. e., if it has a model)

I formula ϕ is falsifiable if I, α 6|= ϕ for at least one I, α
I formula ϕ is valid if I, α |= ϕ for all I, α
I formula ϕ is unsatisfiable if I, α 6|= ϕ for all I, α
I formula ϕ entails (also: implies) formula ψ,

written ϕ |= ψ, if all models of ϕ are models of ψ

I formulae ϕ and ψ are logically equivalent,
written ϕ ≡ ψ, if they have the same models
(equivalently: if ϕ |= ψ and ψ |= ϕ)
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Semantics

Terminology for formula sets and sentences

I All concepts from the previous slide also apply to sets of formulae
instead of single formulae.
Examples:

I formula set Φ is satisfiable if I, α |= Φ for at least one I, α
I formula set Φ entails formula ψ, written Φ |= ψ,

if all models of Φ are models of ψ
I formula set Φ entails formula set Ψ, written Φ |= Ψ,

if all models of Φ are models of Ψ

I All concepts apply to sentences (or sets of sentences) as a special
case. In this case, we usually omit α.
Examples:

I interpretation I is a model of a sentence ϕ if I |= ϕ
I sentence ϕ is unsatisfiable if I 6|= ϕ for all I

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 33 / 38



Further topics

Going further

Using these definitions, we could discuss the same topics as for
propositional logic, such as:

I important logical equivalences

I normal forms

I entailment theorems (deduction theorem etc.)

I proof calculi

I (first-order) resolution

We will mention a few basic results on these topics, but we do not cover
them in detail.
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Further topics

Logical equivalences

I All propositional logic equivalences also apply to first-order logic
(e. g., ϕ ∨ ψ ≡ ψ ∨ ϕ).

I Additionally, here are some equivalences and entailments involving
quantifiers:

(∀xϕ) ∧ (∀xψ) ≡ ∀x(ϕ ∧ ψ)
(∀xϕ) ∨ (∀xψ) |= ∀x(ϕ ∨ ψ) but not vice versa

(∀xϕ) ∧ ψ ≡ ∀x(ϕ ∧ ψ) if x /∈ free(ψ)
(∀xϕ) ∨ ψ ≡ ∀x(ϕ ∨ ψ) if x /∈ free(ψ)
¬∀xϕ ≡ ∃x¬ϕ

∃x(ϕ ∨ ψ) ≡ (∃xϕ) ∨ (∃xψ)
∃x(ϕ ∧ ψ) |= (∃xϕ) ∧ (∃xψ) but not vice versa
(∃xϕ) ∨ ψ ≡ ∃x(ϕ ∨ ψ) if x /∈ free(ψ)
(∃xϕ) ∧ ψ ≡ ∃x(ϕ ∧ ψ) if x /∈ free(ψ)
¬∃xϕ ≡ ∀x¬ϕ
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Further topics

Normal forms

Similar to DNF and CNF for propositional logic, there are some important
normal forms for first-order logic, such as:

I negation normal form (NNF):
negation symbols may only occur in front of atoms

I prenex normal form:
quantifiers must be the outermost parts of the formula

I Skolem normal form:
prenex normal form with no existential quantifiers

Polynomial-time procedures transform formula ϕ

I into an equivalent formula in negation normal form,

I into an equivalent formula in prenex normal form, or

I into an equisatisfiable formula in Skolem normal form.
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Further topics

Entailment, proof systems, resolution. . .

I The deduction theorem, contraposition theorem and contradiction
theorem also hold for first-order logic.
(The same proofs can be used.)

I Sound and complete proof systems (calculi) exist for first-order logic
(just like for propositional logic).

I Resolution can be generalized to first-order logic by using the concept
of unification.

I This first-order resolution is refutation-complete, and hence with the
contradiction theorem gives a general reasoning algorithm for
first-order logic.

I However, the algorithm does not terminate on all inputs.
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Wrap-up

Summary

I First-order logic is a richer logic than propositional logic and allows us
to reason about objects and their properties.

I Objects are denoted by terms built from variables, constants and
function symbols.

I Properties are denoted by formulae built from predicates,
quantification, and the usual logical operators such as negation,
disjunction and conjunction.

I As with all logics, we analyze
I syntax: what is a formula?
I semantics: how do we interpret a formula?
I reasoning methods: how can we prove logical consequences of a

knowledge base?

We only scratched the surface. Further topics are discussed in the courses
mentioned at the end of the previous chapter.
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