Theoretical Computer Science II (ACS II)
 3. First-order logic

Malte Helmert Andreas Karwath

Albert-Ludwigs-Universität Freiburg
November 11th, 2009

Theoretical Computer Science II (ACS II)

November 11th, 2009 - 3. First-order logic

Introduction

Syntax

Semantics

Further topics

Wrap-up

Motivation

Propositional logic does not allow talking about structured objects.

A famous syllogism

- All men are mortal.
- Socrates is a man.
- Therefore, Socrates is mortal.

It is impossible to formulate this in propositional logic.
\rightsquigarrow first-order logic (predicate logic)

Elements of logic (recap)

The same questions as before:

- Which elements are well-formed? \rightsquigarrow syntax
- What does it mean for a formula to be true? \rightsquigarrow semantics
- When does one formula follow from another? \rightsquigarrow inference We will now discuss these questions for first-order logic (but only touching the topic of inference briefly).

Building blocks of first-order logic

In propositional logic, we can only talk about formulae (propositions). An interpretation tells us which formulae are true (or false).

In first-order logic, there are two different kinds of elements under discussion:

- terms identify the object under discussion
- "Socrates"
- "the square root of 5 "
- formulae state properties of the objects under discussion
- "All men are mortal."
- "The square root of 5 is greater than 2."

An interpretation tells us which object is denoted by a term, and which formulae are true (or false).

Syntax of first-order logic: signatures

Definition (signature)
A (first-order) signature is a 4-tuple $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{R}\rangle$ consisting of the following four (disjoint) parts:

- a finite or countable set \mathcal{V} of variable symbols,
- a finite or countable set \mathcal{C} of constant symbols,
- a finite or countable set \mathcal{F} of function symbols,
- a finite or countable set \mathcal{R} of relation symbols (also called predicate symbols)

Each function symbol $\mathrm{f} \in \mathcal{F}$ and relation symbol $\mathrm{R} \in \mathcal{R}$ has an associated arity (number of arguments) $\operatorname{arity}(\mathrm{f})$, $\operatorname{arity}(\mathrm{R}) \in \mathbb{N}_{1}$.
Terminology: A k-ary (function or relation) symbol is a symbol s with $\operatorname{arity}(\mathrm{s})=k$.
Also: unary, binary, ternary

Signatures: examples

Example: arithmetic

- $\mathcal{V}=\left\{x, y, z, x_{1}, x_{2}, x_{3}, \ldots\right\}$
- $\mathcal{C}=\{$ zero, one $\}$
- $\mathcal{F}=\{$ sum, product $\}$
- $\mathcal{R}=\{$ Positive, PerfectSquare $\}$
$\operatorname{arity}($ sum $)=\operatorname{arity}($ product $)=2, \operatorname{arity}($ Positive $)=\operatorname{arity}($ PerfectSquare $)=1$
Conventions:
- variable symbols are typeset in italics, other symbols in an upright typeface
- relation symbols begin with upper-case letters, other symbols with lower-case letters

Signatures: examples

Example: genealogy

- $\mathcal{V}=\left\{x, y, z, x_{1}, x_{2}, x_{3}, \ldots\right\}$
- $\mathcal{C}=$ \{queen-elizabeth, donald-duck $\}$
- $\mathcal{F}=\emptyset$
- $\mathcal{R}=\{$ Female, Male, Parent $\}$
$\operatorname{arity}($ Female $)=\operatorname{arity}($ Male $)=1, \operatorname{arity}($ Parent $)=2$
Conventions:
- variable symbols are typeset in italics, other symbols in an upright typeface
- relation symbols begin with upper-case letters, other symbols with lower-case letters

Syntax of first-order logic: terms

Definition (term)

Let $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{R}\rangle$ be a signature.
A term (over \mathcal{S}) is inductively constructed according to the following rules:

- Each variable symbol $v \in \mathcal{V}$ is a term.
- Each constant symbol $\mathrm{c} \in \mathcal{C}$ is a term.
- If t_{1}, \ldots, t_{k} are terms and $\mathrm{f} \in \mathcal{F}$ is a function symbol with arity k, then $f\left(t_{1}, \ldots, t_{k}\right)$ is a term.

Examples:

- x_{4}
- donald-duck
- $\operatorname{sum}\left(x_{3}, \operatorname{product}\left(\right.\right.$ one,$\left.\left.x_{5}\right)\right)$

Syntax of first-order logic: formulae

Definition (formula)
Let $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{R}\rangle$ be a signature.
A formula (over \mathcal{S}) is inductively constructed as follows:

- $\mathrm{R}\left(t_{1}, \ldots, t_{k}\right)$ (atomic formula; atom) where $R \in \mathcal{R}$ is a k-ary relation symbol and t_{1}, \ldots, t_{k} are terms (over \mathcal{S})
- $t_{1}=t_{2} \quad$ (equality; also an atomic formula) where t_{1} and t_{2} are terms (over \mathcal{S})
- $\forall \times \varphi$
(universal quantification)
- $\exists x \varphi$
(existential quantification) where $x \in \mathcal{V}$ is a variable symbol and φ is a formula over \mathcal{S}

Syntax of first-order logic: formulae

Definition (formula)

- T
(truth)
- \perp
(falseness)
- $\neg \varphi$
(negation)
where φ is a formula over \mathcal{S}
- $(\varphi \wedge \psi)$
(conjunction)
- $(\varphi \vee \psi)$
(disjunction)
- $(\varphi \rightarrow \psi)$
(material conditional)
- $(\varphi \leftrightarrow \psi) \quad$ (biconditional) where φ and ψ are formulae over \mathcal{S}

Syntax: examples

Example: arithmetic and genealogy

- Positive $\left(x_{2}\right)$
- $\forall x$ PerfectSquare $(x) \rightarrow$ Positive (x)
- $\exists x_{3} \operatorname{PerfectSquare~}\left(x_{3}\right) \wedge \neg$ Positive $\left(x_{3}\right)$
- $\forall x(x=y)$
- $\forall x(\operatorname{sum}(x, x)=\operatorname{product}(x$, one $))$
- $\forall x \exists y(\operatorname{sum}(x, y)=$ zero $)$
- $\forall x \exists y \operatorname{Parent}(y, x) \wedge$ Female (y)

Conventions: When we omit parentheses, \forall and \exists bind less tightly than anything else. $\rightsquigarrow \forall x P(x) \rightarrow Q(x)$ is read as $\forall x(P(x) \rightarrow Q(x))$, not as $(\forall x P(x)) \rightarrow Q(x)$.

Terminology and notation

- ground term: term that contains no variable symbol examples: zero, sum(one, one), donald-duck counterexamples: x_{4}, product $(x, z e r o)$
- similarly: ground atom, ground formula example: PerfectSquare(zero) \vee one $=$ zero counterexample: $\exists x$ one $=x$

Abbreviation:
sequences of quantifiers of the same kind can be collapsed

- $\forall x \forall y \forall z \varphi \rightsquigarrow \forall x y z \varphi$
- $\forall x_{3} \forall x_{1} \exists x_{2} \exists x_{5} \varphi \rightsquigarrow \forall x_{3} x_{1} \exists x_{2} x_{5} \varphi$

Sometimes commas and/or colons are used:

- $\forall x, y, z: \varphi$
- $\forall x_{3}, x_{1} \exists x_{2}, x_{5} \varphi$

Semantics of first-order logic: motivation

- In propositional logic, an interpretation was given by assigning to the atomic propositions.
- In first-order logic, there are no proposition variables; instead we need to interpret the meaning of constant, function and relation symbols.
- Variable symbols also need to be given meaning.
- However, this is not done through the interpretation itself, but through a separate variable assignment.

Interpretations and variable assignments

Let $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{R}\rangle$ be a signature.
Definition (interpretation, variable assignment)
An interpretation (for \mathcal{S}) is a pair $\mathcal{I}=\left\langle D,{ }^{\mathcal{I}}\right\rangle$ consisting of

- a nonempty set D called the domain (or universe) and
- a function.I that assigns a meaning to constant, function and relation symbols:
- $c^{\mathcal{I}} \in D$ for constant symbols $c \in \mathcal{C}$
- $\mathrm{f}^{\mathcal{I}}: D^{k} \rightarrow D$ for k-ary function symbols $\mathrm{f} \in \mathcal{F}$
- $\mathrm{R}^{\mathcal{I}} \subseteq D^{k}$ for k-ary relation symbols $\mathrm{R} \in \mathcal{R}$

A variable assignment (for \mathcal{S} and domain D)
is a function $\alpha: \mathcal{V} \rightarrow D$.
Idea: extend \mathcal{I} and α to general terms, then to atoms, then to arbitrary formulae

Semantics of first-order logic: informally

Example: $(\forall x \operatorname{Block}(x) \rightarrow \operatorname{Red}(x)) \wedge \operatorname{Block}(a)$
"For all objects x : if x is a block, then x is red.
Also, the object denoted by a is a block."

- Terms are interpreted as objects.
- Unary predicates denote properties of objects (being a block, being red, ...)
- General predicates denote relations between objects (being the child of someone, having a common multiple, ...)
- Universally quantified formulae (" \forall ") are true if they hold for all objects in the domain.
- Existentially quantified formulae (" \exists ") are true if they hold for at least one object in the domain.

Interpreting terms in first-order logic

Let $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{R}\rangle$ be a signature.
Definition (interpretation of a term)
Let $\mathcal{I}=\left\langle D,{ }^{\mathcal{I}}\right\rangle$ be an interpretation for \mathcal{S}, and let α be a variable assignment for \mathcal{S} and domain D.

Let t be a term over \mathcal{S}.
The interpretation of t under \mathcal{I} and α, in symbols $t^{\mathcal{I}, \alpha}$ is an element of the domain D defined as follows:

- If $t=x$ with $x \in \mathcal{V}$ (t is a variable term $)$:

$$
x^{\mathcal{I}, \alpha}=\alpha(x)
$$

- If $t=\mathrm{c}$ with $\mathrm{c} \in \mathcal{C}$ (t is a constant term):
$c^{\mathcal{I}, \alpha}=c^{\mathcal{I}}$
- If $t=\mathrm{f}\left(t_{1}, \ldots, t_{k}\right)$ (t is a function term):
$\left(\mathrm{f}\left(t_{1}, \ldots, t_{k}\right)\right)^{\mathcal{I}, \alpha}=\mathrm{f}^{\mathcal{I}}\left(t_{1}^{\mathcal{I}, \alpha}, \ldots, t_{k}^{\mathcal{I}, \alpha}\right)$

Interpreting terms: example

```
Example
Signature: \(\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{R}\rangle\)
with \(\mathcal{V}=\{x, y, z\}, \mathcal{C}=\{\) zero, one \(\} \mathcal{F}=\{\) sum, product \(\}\),
\(\operatorname{arity}(\) sum \()=\operatorname{arity}(\) product \()=2\)
\(\mathcal{I}=\left\langle D,{ }^{\mathcal{I}}\right\rangle\) with
    - \(D=\left\{d_{0}, d_{1}, d_{2}, d_{3}, d_{4}, d_{5}, d_{6}\right\}\)
    - zero \(^{\mathcal{I}}=d_{0}\)
    - one \(^{\mathcal{I}}=d_{1}\)
    - \(\operatorname{sum}^{\mathcal{I}}\left(d_{i}, d_{j}\right)=d_{(i+j) \bmod 7}\) for all \(i, j \in\{0, \ldots, 6\}\)
    - product \({ }^{\mathcal{I}}\left(d_{i}, d_{j}\right)=d_{(i, j) \bmod 7}\) for all \(i, j \in\{0, \ldots, 6\}\)
\(\alpha=\left\{x \mapsto d_{5}, y \mapsto d_{5}, z \mapsto d_{0}\right\}\)
```


Interpreting terms: example (ctd.)

Example (ctd.)

- zero $^{\mathcal{I}, \alpha}=$
- $y^{\mathcal{I}, \alpha}=$
- $\operatorname{sum}(x, y)^{\mathcal{I}, \alpha}=$
- $\operatorname{product}(\text { one }, \operatorname{sum}(x, \text { zero }))^{\mathcal{I}, \alpha}=$

Satisfaction/truth in first-order logic

Let $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{R}\rangle$ be a signature.
Definition (satisfaction/truth of a formula)
Let $\mathcal{I}=\left\langle D,{ }^{\mathcal{I}}\right\rangle$ be an interpretation for \mathcal{S}, and let α be a variable assignment for \mathcal{S} and domain D. We say that \mathcal{I} and α satisfy a first-order logic formula φ (also: φ is true under \mathcal{I} and α), in symbols: $\mathcal{I}, \alpha \models \varphi$, according to the following inductive rules:

$$
\begin{aligned}
\mathcal{I}, \alpha \models \mathrm{R}\left(t_{1}, \ldots, t_{k}\right) & \text { iff }\left\langle t_{1}^{\mathcal{I}, \alpha}, \ldots, t_{k}^{\mathcal{I}, \alpha}\right\rangle \in \mathrm{R}^{\mathcal{I}} \\
\mathcal{I}, \alpha \models t_{1}=t_{2} & \text { iff } t_{1}^{\mathcal{I}, \alpha}=t_{2}^{\mathcal{I}, \alpha}
\end{aligned}
$$

Satisfaction/truth in first-order logic

Let $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{R}\rangle$ be a signature.
Definition (satisfaction/truth of a formula)

$$
\begin{array}{ll}
\mathcal{I}, \alpha \models \forall x \varphi & \text { iff } \mathcal{I}, \alpha[x:=d] \models \varphi \text { for all } d \in D \\
\mathcal{I}, \alpha \models \exists x \varphi & \text { iff } \mathcal{I}, \alpha[x:=d] \models \varphi \text { for at least one } d \in D
\end{array}
$$

where $\alpha[x:=d]$ is the variable assignment which is the same as α except for x, where it assigns d. Formally:

$$
\begin{aligned}
& (\alpha[x:=d])(z)= \begin{cases}d & \text { if } z=x \\
\alpha(z) & \text { if } z \neq x\end{cases} \\
& \ldots
\end{aligned}
$$

Satisfaction/truth in first-order logic

Let $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{R}\rangle$ be a signature.
Definition (satisfaction/truth of a formula)

$$
\begin{array}{cl}
\mathcal{I}, \alpha \models \top & \text { always (i. e., for all } \mathcal{I}, \alpha) \\
\mathcal{I}, \alpha \models \perp & \text { never (i. e., for no } \mathcal{I}, \alpha) \\
\mathcal{I}, \alpha \models \neg \varphi & \text { iff } \mathcal{I}, \alpha \not \models \varphi \\
\mathcal{I}, \alpha \models \varphi \wedge \psi & \text { iff } \mathcal{I}, \alpha \models \varphi \text { and } \mathcal{I}, \alpha \models \psi \\
\mathcal{I}, \alpha \models \varphi \vee \psi & \text { iff } \mathcal{I}, \alpha \models \varphi \text { or } \mathcal{I}, \alpha \models \psi \\
\mathcal{I}, \alpha \models \varphi \rightarrow \psi & \text { iff } \mathcal{I}, \alpha \neq \varphi \text { or } \mathcal{I}, \alpha \models \psi \\
\mathcal{I}, \alpha \models \varphi \leftrightarrow \psi & \text { iff }(\mathcal{I}, \alpha \models \varphi \text { and } \mathcal{I}, \alpha \models \psi) \text { or } \\
& (\mathcal{I}, \alpha \not \models \varphi \text { and } \mathcal{I}, \alpha \not \models \psi)
\end{array}
$$

Semantics of first-order logic: example

```
Example
Signature: \(\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{R}\rangle\)
with \(\mathcal{V}=\{x, y, z\}, \mathcal{C}=\{\mathrm{a}, \mathrm{b}\}, \mathcal{F}=\emptyset, \mathcal{R}=\{\) Block, Red \(\}\),
\(\operatorname{arity}(\) Block \()=\operatorname{arity}(\) Red \()=1\).
\(\mathcal{I}=\left\langle D,{ }^{\mathcal{I}}\right\rangle\) with
    - \(D=\left\{d_{1}, d_{2}, d_{3}, d_{4}, d_{5}\right\}\)
    - \(\mathrm{a}^{\mathcal{T}}=d_{1}\)
    - \(\mathrm{b}^{\mathcal{I}}=d_{3}\)
    - Block \(^{\mathcal{I}}=\left\{d_{1}, d_{2}\right\}\)
    - \(\operatorname{Red}^{\mathcal{I}}=\left\{d_{1}, d_{2}, d_{3}, d_{5}\right\}\)
\(\alpha=\left\{x \mapsto d_{1}, y \mapsto d_{2}, z \mapsto d_{1}\right\}\)
```


Semantics of first-order logic: example (ctd.)

Example (ctd.)
Questions:

- $\mathcal{I}, \alpha \vDash \operatorname{Block}(\mathrm{b}) \vee \neg \operatorname{Block}(\mathrm{b})$?
$-\mathcal{I}, \alpha \equiv \operatorname{Block}(x) \rightarrow(\operatorname{Block}(x) \vee \neg \operatorname{Block}(y))$?
- $\mathcal{I}, \alpha=\operatorname{Block}(\mathrm{a}) \wedge \operatorname{Block}(\mathrm{b})$?
- $\mathcal{I}, \alpha \equiv \forall x(\operatorname{Block}(x) \rightarrow \operatorname{Red}(x))$?

Satisfaction/truth of sets of formulae

Definition (satisfaction/truth of a set of formulae)
Consider a signature \mathcal{S}, a set of formulae Φ over \mathcal{S}, an interpretation \mathcal{I} for \mathcal{S}, and a variable assignment α for \mathcal{S} and the domain of \mathcal{I}.

We say that \mathcal{I} and α satisfy Φ (also: Φ is true under \mathcal{I} and α), in symbols: $\mathcal{I}, \alpha \models \Phi$, if $\mathcal{I}, \alpha \models \varphi$ for all $\varphi \in \Phi$.

Free and bound variables: motivation

Question:

- Consider a signature with variable symbols $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$, and consider any interpretation \mathcal{I}.
- To decide if $\mathcal{I}, \alpha \models\left(\forall x_{4}\left(R\left(x_{4}, x_{2}\right) \vee f\left(x_{3}\right)=x_{4}\right)\right) \vee \exists x_{3} S\left(x_{3}, x_{2}\right)$, which parts of the definition of α matter?
- $\alpha\left(x_{1}\right), \alpha\left(x_{5}\right), \alpha\left(x_{6}\right), \alpha\left(x_{7}\right), \ldots$ do not matter because these variable symbols do not occur in the formula
- $\alpha\left(x_{4}\right)$ does not matter either: it occurs in the formula, but all its occurrences are bound by a surrounding quantifier
$-\rightsquigarrow$ only the assignments to the free variables x_{2} and x_{3} matter

Variables of a term

Definition (variables of a term)

Let t be a term. The set of variables occurring in t, written vars (t), is defined as follows:

- $\operatorname{vars}(x)=\{x\} \quad$ for variable symbols x
- $\operatorname{vars}(\mathrm{c})=\emptyset \quad$ for constant symbols c
- $\operatorname{vars}\left(f\left(t_{1}, \ldots, t_{k}\right)\right)=\operatorname{vars}\left(t_{1}\right) \cup \cdots \cup \operatorname{vars}\left(t_{k}\right)$ for function terms

Example: $\operatorname{vars}(\operatorname{product}(x, \operatorname{sum}(c, y)))=$

Free and bound variables of a formula

Definition (free variables)
Let φ be a logical formula. The set of free variables of φ, written free (α), is defined as follows:

- $\operatorname{free}\left(\mathrm{R}\left(t_{1}, \ldots, t_{k}\right)\right)=\operatorname{vars}\left(t_{1}\right) \cup \cdots \cup \operatorname{vars}\left(t_{k}\right)$
- $\operatorname{free}\left(t_{1}=t_{2}\right)=\operatorname{vars}\left(t_{1}\right) \cup \operatorname{vars}\left(t_{2}\right)$
- free $(T)=\operatorname{free}(\perp)=\emptyset$
- $\operatorname{free}(\neg \varphi)=\operatorname{free}(\varphi)$
- $\operatorname{free}(\varphi \wedge \psi)=\operatorname{free}(\varphi \vee \psi)=\operatorname{free}(\varphi \rightarrow \psi)$
$=\operatorname{free}(\varphi \leftrightarrow \psi)=\operatorname{free}(\varphi) \cup \operatorname{free}(\psi)$
- $\operatorname{free}(\forall x \varphi)=\operatorname{free}(\exists x \varphi)=\operatorname{free}(\varphi) \backslash\{x\}$

Example: $\operatorname{free}\left(\left(\forall x_{4}\left(R\left(x_{4}, x_{2}\right) \vee f\left(x_{3}\right)=x_{4}\right)\right) \vee \exists x_{3} S\left(x_{3}, x_{2}\right)\right)$

Closed formulae/sentences

Remark: Let φ be a formula, and let α and β be variable assignments such that $\alpha(x)=\beta(x)$ for all free variables of φ.
Then $\mathcal{I}, \alpha \models \varphi$ iff $\mathcal{I}, \beta \models \varphi$.
In particular, if $\operatorname{free}(\varphi)=\emptyset$, then α does not matter at all.
Definition (closed formulae/sentences)
A formula φ with no free variables (i. e., free $(\varphi)=\emptyset$) is called a closed formula or sentence.

If φ is a sentence, we often use the notation $\mathcal{I} \models \varphi$ instead of $\mathcal{I}, \alpha \models \varphi$ because the definition of α does not affect whether or not φ is true under \mathcal{I} and α.

Formulae with at least one free variable are called open.

Closed formulae: examples

Question: Which of the following formulae are sentences?

- Block(b) $\vee \neg$ Block(b)
- $\operatorname{Block}(x) \rightarrow(\operatorname{Block}(x) \vee \neg \operatorname{Block}(y))$
- Block(a) $\wedge \operatorname{Block}(b)$
- $\forall x(\operatorname{Block}(x) \rightarrow \operatorname{Red}(x))$

Omitting signatures and domains

For convenience, from now on we implicitly assume that we use matching signatures and that variable assignments are defined for the correct domain.

Example: Instead of
Consider a signature \mathcal{S}, a set of formulae Φ over \mathcal{S}, an interpretation \mathcal{I} for \mathcal{S}, and a variable assignment α for \mathcal{S} and the domain of \mathcal{I}.
we write:
Consider a set of formulae Φ, an interpretation \mathcal{I} and a variable assignment α.

More logic terminology

The terminology we introduced for propositional logic can be reused for first-order logic:

- interpretation \mathcal{I} and variable assignment α form a model of formula φ if $\mathcal{I}, \alpha=\varphi$.
- formula φ is satisfiable if $\mathcal{I}, \alpha \models \varphi$ for at least one \mathcal{I}, α (i. e., if it has a model)
- formula φ is falsifiable if $\mathcal{I}, \alpha \not \vDash \varphi$ for at least one \mathcal{I}, α
- formula φ is valid if $\mathcal{I}, \alpha=\varphi$ for all \mathcal{I}, α
- formula φ is unsatisfiable if $\mathcal{I}, \alpha \not \vDash \varphi$ for all \mathcal{I}, α
- formula φ entails (also: implies) formula ψ, written $\varphi \models \psi$, if all models of φ are models of ψ
- formulae φ and ψ are logically equivalent, written $\varphi \equiv \psi$, if they have the same models (equivalently: if $\varphi \models \psi$ and $\psi \models \varphi$)

Terminology for formula sets and sentences

- All concepts from the previous slide also apply to sets of formulae instead of single formulae.

Examples:

- formula set Φ is satisfiable if $\mathcal{I}, \alpha \models \Phi$ for at least one \mathcal{I}, α
- formula set Φ entails formula ψ, written $\Phi \models \psi$, if all models of Φ are models of ψ
- formula set Φ entails formula set Ψ, written $\Phi \models \Psi$, if all models of Φ are models of Ψ
- All concepts apply to sentences (or sets of sentences) as a special case. In this case, we usually omit α. Examples:
- interpretation \mathcal{I} is a model of a sentence φ if $\mathcal{I} \models \varphi$
- sentence φ is unsatisfiable if $\mathcal{I} \not \models \varphi$ for all \mathcal{I}

Going further

Using these definitions, we could discuss the same topics as for propositional logic, such as:

- important logical equivalences
- normal forms
- entailment theorems (deduction theorem etc.)
- proof calculi
- (first-order) resolution

We will mention a few basic results on these topics, but we do not cover them in detail.

Logical equivalences

- All propositional logic equivalences also apply to first-order logic (e. g., $\varphi \vee \psi \equiv \psi \vee \varphi$).
- Additionally, here are some equivalences and entailments involving quantifiers:

$$
\begin{aligned}
(\forall x \varphi) \wedge(\forall x \psi) & \equiv \forall x(\varphi \wedge \psi) & & \\
(\forall x \varphi) \vee(\forall x \psi) & \equiv \forall x(\varphi \vee \psi) & & \text { but not vice versa } \\
(\forall x \varphi) \wedge \psi & \equiv \forall x(\varphi \wedge \psi) & & \text { if } x \notin \operatorname{free}(\psi) \\
(\forall x \varphi) \vee \psi & \equiv \forall x(\varphi \vee \psi) & & \text { if } x \notin \operatorname{free}(\psi) \\
\neg \forall x \varphi & \equiv \exists x \neg \varphi & & \\
\exists x(\varphi \vee \psi) & \equiv(\exists x \varphi) \vee(\exists x \psi) & & \\
\exists x(\varphi \wedge \psi) & \equiv(\exists x \varphi) \wedge(\exists x \psi) & & \text { but not vice versa } \\
(\exists x \varphi) \vee \psi & \equiv \exists x(\varphi \vee \psi) & & \text { if } x \notin \operatorname{free}(\psi) \\
(\exists x \varphi) \wedge \psi & \equiv \exists x(\varphi \wedge \psi) & & \text { if } x \notin \operatorname{free}(\psi) \\
\neg \exists x \varphi & \equiv \forall x \neg \varphi & &
\end{aligned}
$$

Normal forms

Similar to DNF and CNF for propositional logic, there are some important normal forms for first-order logic, such as:

- negation normal form (NNF): negation symbols may only occur in front of atoms
- prenex normal form: quantifiers must be the outermost parts of the formula
- Skolem normal form: prenex normal form with no existential quantifiers Polynomial-time procedures transform formula φ
- into an equivalent formula in negation normal form,
- into an equivalent formula in prenex normal form, or
- into an equisatisfiable formula in Skolem normal form.

Entailment, proof systems, resolution...

- The deduction theorem, contraposition theorem and contradiction theorem also hold for first-order logic.
(The same proofs can be used.)
- Sound and complete proof systems (calculi) exist for first-order logic (just like for propositional logic).
- Resolution can be generalized to first-order logic by using the concept of unification.
- This first-order resolution is refutation-complete, and hence with the contradiction theorem gives a general reasoning algorithm for first-order logic.
- However, the algorithm does not terminate on all inputs.

Summary

- First-order logic is a richer logic than propositional logic and allows us to reason about objects and their properties.
- Objects are denoted by terms built from variables, constants and function symbols.
- Properties are denoted by formulae built from predicates, quantification, and the usual logical operators such as negation, disjunction and conjunction.
- As with all logics, we analyze
- syntax: what is a formula?
- semantics: how do we interpret a formula?
- reasoning methods: how can we prove logical consequences of a knowledge base?

We only scratched the surface. Further topics are discussed in the courses mentioned at the end of the previous chapter.

