
Theoretical Computer Science II (ACS II)
3. First-order logic

Malte Helmert Andreas Karwath

Albert-Ludwigs-Universität Freiburg

November 11th, 2009

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 1 / 38

Theoretical Computer Science II (ACS II)
November 11th, 2009 — 3. First-order logic

Introduction

Syntax

Semantics

Further topics

Wrap-up

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 2 / 38

Introduction

Motivation

Propositional logic does not allow talking about
structured objects.

A famous syllogism

I All men are mortal.

I Socrates is a man.

I Therefore, Socrates is mortal.

It is impossible to formulate this in propositional logic.
 first-order logic (predicate logic)

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 3 / 38

Introduction

Elements of logic (recap)

The same questions as before:

I Which elements are well-formed? syntax

I What does it mean for a formula to be true? semantics

I When does one formula follow from another? inference

We will now discuss these questions for first-order logic
(but only touching the topic of inference briefly).

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 4 / 38

Introduction

Building blocks of first-order logic

In propositional logic, we can only talk about formulae (propositions).
An interpretation tells us which formulae are true (or false).

In first-order logic, there are two different kinds of elements under
discussion:

I terms identify the object under discussion
I “Socrates”
I “the square root of 5”

I formulae state properties of the objects under discussion
I “All men are mortal.”
I “The square root of 5 is greater than 2.”

An interpretation tells us which object is denoted by a term, and which
formulae are true (or false).

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 5 / 38

Syntax

Syntax of first-order logic: signatures

Definition (signature)

A (first-order) signature is a 4-tuple S = 〈V, C,F ,R〉
consisting of the following four (disjoint) parts:

I a finite or countable set V of variable symbols,

I a finite or countable set C of constant symbols,

I a finite or countable set F of function symbols,

I a finite or countable set R of relation symbols
(also called predicate symbols)

Each function symbol f ∈ F and relation symbol R ∈ R has an associated
arity (number of arguments) arity(f), arity(R) ∈ N1.

Terminology: A k-ary (function or relation) symbol
Terminology: is a symbol s with arity(s) = k.
Also: unary, binary, ternary

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 6 / 38

Syntax

Signatures: examples

Example: arithmetic

I V = {x , y , z , x1, x2, x3, . . . }
I C = {zero, one}
I F = {sum, product}
I R = {Positive,PerfectSquare}

arity(sum) = arity(product) = 2, arity(Positive) = arity(PerfectSquare) = 1

Conventions:

I variable symbols are typeset in italics,
other symbols in an upright typeface

I relation symbols begin with upper-case letters,
other symbols with lower-case letters

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 7 / 38

Syntax

Signatures: examples

Example: genealogy

I V = {x , y , z , x1, x2, x3, . . . }
I C = {queen-elizabeth, donald-duck}
I F = ∅
I R = {Female,Male,Parent}

arity(Female) = arity(Male) = 1, arity(Parent) = 2

Conventions:

I variable symbols are typeset in italics,
other symbols in an upright typeface

I relation symbols begin with upper-case letters,
other symbols with lower-case letters

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 8 / 38

Syntax

Syntax of first-order logic: terms

Definition (term)

Let S = 〈V, C,F ,R〉 be a signature.
A term (over S) is inductively constructed
according to the following rules:

I Each variable symbol v ∈ V is a term.

I Each constant symbol c ∈ C is a term.

I If t1, . . . , tk are terms and f ∈ F is a function symbol
with arity k, then f(t1, . . . , tk) is a term.

Examples:

I x4

I donald-duck

I sum(x3, product(one, x5))

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 9 / 38

Syntax

Syntax of first-order logic: formulae

Definition (formula)

Let S = 〈V, C,F ,R〉 be a signature.
A formula (over S) is inductively constructed as follows:

I R(t1, . . . , tk) (atomic formula; atom)
where R ∈ R is a k-ary relation symbol
and t1, . . . , tk are terms (over S)

I t1 = t2 (equality; also an atomic formula)
where t1 and t2 are terms (over S)

I ∀x ϕ (universal quantification)

I ∃x ϕ (existential quantification)
where x ∈ V is a variable symbol and ϕ is a formula over S

I . . .

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 10 / 38

Syntax

Syntax of first-order logic: formulae

Definition (formula)

I . . .

I > (truth)

I ⊥ (falseness)

I ¬ϕ (negation)
where ϕ is a formula over S

I (ϕ ∧ ψ) (conjunction)

I (ϕ ∨ ψ) (disjunction)

I (ϕ→ ψ) (material conditional)

I (ϕ↔ ψ) (biconditional)
where ϕ and ψ are formulae over S

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 11 / 38

Syntax

Syntax: examples

Example: arithmetic and genealogy

I Positive(x2)

I ∀x PerfectSquare(x)→ Positive(x)

I ∃x3 PerfectSquare(x3) ∧ ¬Positive(x3)

I ∀x (x = y)

I ∀x (sum(x , x) = product(x , one))

I ∀x∃y (sum(x , y) = zero)

I ∀x∃y Parent(y , x) ∧ Female(y)

Conventions: When we omit parentheses, ∀ and ∃
Conventions: bind less tightly than anything else.

 ∀x P(x)→ Q(x) is read as ∀x (P(x)→ Q(x)),
 not as (∀x P(x))→ Q(x).

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 12 / 38

Syntax

Terminology and notation

I ground term: term that contains no variable symbol
examples: zero, sum(one, one), donald-duck
counterexamples: x4, product(x , zero)

I similarly: ground atom, ground formula
example: PerfectSquare(zero) ∨ one = zero
counterexample: ∃x one = x

Abbreviation:
sequences of quantifiers of the same kind can be collapsed

I ∀x∀y∀z ϕ ∀xyz ϕ
I ∀x3∀x1∃x2∃x5 ϕ ∀x3x1∃x2x5 ϕ

Sometimes commas and/or colons are used:

I ∀x , y , z :ϕ

I ∀x3, x1∃x2, x5 ϕ

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 13 / 38

Semantics

Semantics of first-order logic: motivation

I In propositional logic, an interpretation was given by assigning to the
atomic propositions.

I In first-order logic, there are no proposition variables; instead we need
to interpret the meaning of constant, function and relation symbols.

I Variable symbols also need to be given meaning.

I However, this is not done through the interpretation itself,
but through a separate variable assignment.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 14 / 38

Semantics

Interpretations and variable assignments

Let S = 〈V, C,F ,R〉 be a signature.

Definition (interpretation, variable assignment)

An interpretation (for S) is a pair I = 〈D, ·I〉 consisting of

I a nonempty set D called the domain (or universe) and

I a function ·I that assigns a meaning to constant, function and
relation symbols:

I cI ∈ D for constant symbols c ∈ C
I fI : Dk → D for k-ary function symbols f ∈ F
I RI ⊆ Dk for k-ary relation symbols R ∈ R

A variable assignment (for S and domain D)
is a function α : V → D.

Idea: extend I and α to general terms, then to atoms,
Idea: then to arbitrary formulae

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 15 / 38

Semantics

Semantics of first-order logic: informally

Example: (∀xBlock(x)→ Red(x)) ∧ Block(a)
“For all objects x : if x is a block, then x is red.
Also, the object denoted by a is a block.”

I Terms are interpreted as objects.

I Unary predicates denote properties of objects
(being a block, being red, . . .)

I General predicates denote relations between objects
(being the child of someone, having a common multiple, . . .)

I Universally quantified formulae (“∀”) are true
if they hold for all objects in the domain.

I Existentially quantified formulae (“∃”) are true
if they hold for at least one object in the domain.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 16 / 38

Semantics

Interpreting terms in first-order logic

Let S = 〈V, C,F ,R〉 be a signature.

Definition (interpretation of a term)

Let I = 〈D, ·I〉 be an interpretation for S,
and let α be a variable assignment for S and domain D.

Let t be a term over S.
The interpretation of t under I and α, in symbols tI,α is an element of
the domain D defined as follows:

I If t = x with x ∈ V (t is a variable term):
xI,α = α(x)

I If t = c with c ∈ C (t is a constant term):
cI,α = cI

I If t = f(t1, . . . , tk) (t is a function term):
(f(t1, . . . , tk))I,α = fI(tI,α1 , . . . , tI,αk)

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 17 / 38

Semantics

Interpreting terms: example

Example

Signature: S = 〈V, C,F ,R〉
with V = {x , y , z}, C = {zero, one} F = {sum, product},
arity(sum) = arity(product) = 2

I = 〈D, ·I〉 with

I D = {d0, d1, d2, d3, d4, d5, d6}
I zeroI = d0

I oneI = d1

I sumI(di , dj) = d(i+j) mod 7 for all i , j ∈ {0, . . . , 6}
I productI(di , dj) = d(i ·j) mod 7 for all i , j ∈ {0, . . . , 6}

α = {x 7→ d5, y 7→ d5, z 7→ d0}

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 18 / 38

Semantics

Interpreting terms: example (ctd.)

Example (ctd.)

I zeroI,α =

I yI,α =

I sum(x , y)I,α =

I product(one, sum(x , zero))I,α =

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 19 / 38

Semantics

Satisfaction/truth in first-order logic

Let S = 〈V, C,F ,R〉 be a signature.

Definition (satisfaction/truth of a formula)

Let I = 〈D, ·I〉 be an interpretation for S,
and let α be a variable assignment for S and domain D.
We say that I and α satisfy a first-order logic formula ϕ
(also: ϕ is true under I and α), in symbols: I, α |= ϕ,
according to the following inductive rules:

I, α |= R(t1, . . . , tk) iff 〈tI,α1 , . . . , tI,αk 〉 ∈ RI

I, α |= t1 = t2 iff tI,α1 = tI,α2

. . .

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 20 / 38

Semantics

Satisfaction/truth in first-order logic

Let S = 〈V, C,F ,R〉 be a signature.

Definition (satisfaction/truth of a formula)

. . .

I, α |= ∀xϕ iff I, α[x := d] |= ϕ for all d ∈ D

I, α |= ∃xϕ iff I, α[x := d] |= ϕ for at least one d ∈ D

where α[x := d] is the variable assignment
which is the same as α except for x , where it assigns d . Formally:

(α[x := d])(z) =

{
d if z = x

α(z) if z 6= x
. . .

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 21 / 38

Semantics

Satisfaction/truth in first-order logic

Let S = 〈V, C,F ,R〉 be a signature.

Definition (satisfaction/truth of a formula)

. . .

I, α |= > always (i. e., for all I, α)

I, α |= ⊥ never (i. e., for no I, α)

I, α |= ¬ϕ iff I, α 6|= ϕ

I, α |= ϕ ∧ ψ iff I, α |= ϕ and I, α |= ψ

I, α |= ϕ ∨ ψ iff I, α |= ϕ or I, α |= ψ

I, α |= ϕ→ ψ iff I, α 6|= ϕ or I, α |= ψ

I, α |= ϕ↔ ψ iff (I, α |= ϕ and I, α |= ψ) or

(I, α 6|= ϕ and I, α 6|= ψ)

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 22 / 38

Semantics

Semantics of first-order logic: example

Example

Signature: S = 〈V, C,F ,R〉
with V = {x , y , z}, C = {a, b}, F = ∅, R = {Block,Red},
arity(Block) = arity(Red) = 1.

I = 〈D, ·I〉 with

I D = {d1, d2, d3, d4, d5}
I aI = d1

I bI = d3

I BlockI = {d1, d2}
I RedI = {d1, d2, d3, d5}

α = {x 7→ d1, y 7→ d2, z 7→ d1}

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 23 / 38

Semantics

Semantics of first-order logic: example (ctd.)

Example (ctd.)

Questions:

I I, α |= Block(b) ∨ ¬Block(b)?

I I, α |= Block(x)→ (Block(x) ∨ ¬Block(y))?

I I, α |= Block(a) ∧ Block(b)?

I I, α |= ∀x(Block(x)→ Red(x))?

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 24 / 38

Semantics

Satisfaction/truth of sets of formulae

Definition (satisfaction/truth of a set of formulae)

Consider a signature S, a set of formulae Φ over S,
an interpretation I for S, and a variable assignment α for S and the
domain of I.

We say that I and α satisfy Φ (also: Φ is true under I and α), in
symbols: I, α |= Φ, if I, α |= ϕ for all ϕ ∈ Φ.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 25 / 38

Semantics

Free and bound variables: motivation

Question:

I Consider a signature with variable symbols {x1, x2, x3, . . . }, and
consider any interpretation I.

I To decide if I, α |= (∀x4(R(x4, x2) ∨ f(x3) = x4)) ∨ ∃x3S(x3, x2),
which parts of the definition of α matter?

I α(x1), α(x5), α(x6), α(x7), . . . do not matter because these variable
symbols do not occur in the formula

I α(x4) does not matter either: it occurs in the formula, but all its
occurrences are bound by a surrounding quantifier

I only the assignments to the free variables x2 and x3 matter

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 26 / 38

Semantics

Variables of a term

Definition (variables of a term)

Let t be a term. The set of variables occurring in t,
written vars(t), is defined as follows:

I vars(x) = {x} for variable symbols x

I vars(c) = ∅ for constant symbols c

I vars(f(t1, . . . , tk)) = vars(t1) ∪ · · · ∪ vars(tk)
for function terms

Example: vars(product(x , sum(c, y))) =

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 27 / 38

Semantics

Free and bound variables of a formula

Definition (free variables)

Let ϕ be a logical formula. The set of free variables of ϕ, written free(α),
is defined as follows:

I free(R(t1, . . . , tk)) = vars(t1) ∪ · · · ∪ vars(tk)

I free(t1 = t2) = vars(t1) ∪ vars(t2)

I free(>) = free(⊥) = ∅
I free(¬ϕ) = free(ϕ)

I free(ϕ ∧ ψ) = free(ϕ ∨ ψ) = free(ϕ→ ψ)
= free(ϕ↔ ψ) = free(ϕ) ∪ free(ψ)

I free(∀x ϕ) = free(∃x ϕ) = free(ϕ) \ {x}

Example: free((∀x4(R(x4, x2) ∨ f(x3) = x4)) ∨ ∃x3S(x3, x2))
=

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 28 / 38

Semantics

Closed formulae/sentences

Remark: Let ϕ be a formula, and let α and β be variable assignments such
that α(x) = β(x) for all free variables of ϕ.

Then I, α |= ϕ iff I, β |= ϕ.

In particular, if free(ϕ) = ∅, then α does not matter at all.

Definition (closed formulae/sentences)

A formula ϕ with no free variables (i. e., free(ϕ) = ∅)
is called a closed formula or sentence.

If ϕ is a sentence, we often use the notation I |= ϕ
instead of I, α |= ϕ because the definition of α
does not affect whether or not ϕ is true under I and α.

Formulae with at least one free variable are called open.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 29 / 38

Semantics

Closed formulae: examples

Question: Which of the following formulae are sentences?

I Block(b) ∨ ¬Block(b)

I Block(x)→ (Block(x) ∨ ¬Block(y))

I Block(a) ∧ Block(b)

I ∀x(Block(x)→ Red(x))

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 30 / 38

Semantics

Omitting signatures and domains

For convenience, from now on we implicitly assume that we use matching
signatures and that variable assignments are defined for the correct
domain.

Example: Instead of

Consider a signature S, a set of formulae Φ over S, an
interpretation I for S, and a variable assignment α for S and the
domain of I.

we write:

Consider a set of formulae Φ, an interpretation I
and a variable assignment α.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 31 / 38

Semantics

More logic terminology

The terminology we introduced for propositional logic can be reused for
first-order logic:

I interpretation I and variable assignment α
form a model of formula ϕ if I, α |= ϕ.

I formula ϕ is satisfiable if I, α |= ϕ for at least one I, α
(i. e., if it has a model)

I formula ϕ is falsifiable if I, α 6|= ϕ for at least one I, α
I formula ϕ is valid if I, α |= ϕ for all I, α
I formula ϕ is unsatisfiable if I, α 6|= ϕ for all I, α
I formula ϕ entails (also: implies) formula ψ,

written ϕ |= ψ, if all models of ϕ are models of ψ

I formulae ϕ and ψ are logically equivalent,
written ϕ ≡ ψ, if they have the same models
(equivalently: if ϕ |= ψ and ψ |= ϕ)

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 32 / 38

Semantics

Terminology for formula sets and sentences

I All concepts from the previous slide also apply to sets of formulae
instead of single formulae.
Examples:

I formula set Φ is satisfiable if I, α |= Φ for at least one I, α
I formula set Φ entails formula ψ, written Φ |= ψ,

if all models of Φ are models of ψ
I formula set Φ entails formula set Ψ, written Φ |= Ψ,

if all models of Φ are models of Ψ

I All concepts apply to sentences (or sets of sentences) as a special
case. In this case, we usually omit α.
Examples:

I interpretation I is a model of a sentence ϕ if I |= ϕ
I sentence ϕ is unsatisfiable if I 6|= ϕ for all I

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 33 / 38

Further topics

Going further

Using these definitions, we could discuss the same topics as for
propositional logic, such as:

I important logical equivalences

I normal forms

I entailment theorems (deduction theorem etc.)

I proof calculi

I (first-order) resolution

We will mention a few basic results on these topics, but we do not cover
them in detail.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 34 / 38

Further topics

Logical equivalences

I All propositional logic equivalences also apply to first-order logic
(e. g., ϕ ∨ ψ ≡ ψ ∨ ϕ).

I Additionally, here are some equivalences and entailments involving
quantifiers:

(∀xϕ) ∧ (∀xψ) ≡ ∀x(ϕ ∧ ψ)
(∀xϕ) ∨ (∀xψ) |= ∀x(ϕ ∨ ψ) but not vice versa

(∀xϕ) ∧ ψ ≡ ∀x(ϕ ∧ ψ) if x /∈ free(ψ)
(∀xϕ) ∨ ψ ≡ ∀x(ϕ ∨ ψ) if x /∈ free(ψ)
¬∀xϕ ≡ ∃x¬ϕ

∃x(ϕ ∨ ψ) ≡ (∃xϕ) ∨ (∃xψ)
∃x(ϕ ∧ ψ) |= (∃xϕ) ∧ (∃xψ) but not vice versa
(∃xϕ) ∨ ψ ≡ ∃x(ϕ ∨ ψ) if x /∈ free(ψ)
(∃xϕ) ∧ ψ ≡ ∃x(ϕ ∧ ψ) if x /∈ free(ψ)
¬∃xϕ ≡ ∀x¬ϕ

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 35 / 38

Further topics

Normal forms

Similar to DNF and CNF for propositional logic, there are some important
normal forms for first-order logic, such as:

I negation normal form (NNF):
negation symbols may only occur in front of atoms

I prenex normal form:
quantifiers must be the outermost parts of the formula

I Skolem normal form:
prenex normal form with no existential quantifiers

Polynomial-time procedures transform formula ϕ

I into an equivalent formula in negation normal form,

I into an equivalent formula in prenex normal form, or

I into an equisatisfiable formula in Skolem normal form.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 36 / 38

Further topics

Entailment, proof systems, resolution. . .

I The deduction theorem, contraposition theorem and contradiction
theorem also hold for first-order logic.
(The same proofs can be used.)

I Sound and complete proof systems (calculi) exist for first-order logic
(just like for propositional logic).

I Resolution can be generalized to first-order logic by using the concept
of unification.

I This first-order resolution is refutation-complete, and hence with the
contradiction theorem gives a general reasoning algorithm for
first-order logic.

I However, the algorithm does not terminate on all inputs.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 37 / 38

Wrap-up

Summary

I First-order logic is a richer logic than propositional logic and allows us
to reason about objects and their properties.

I Objects are denoted by terms built from variables, constants and
function symbols.

I Properties are denoted by formulae built from predicates,
quantification, and the usual logical operators such as negation,
disjunction and conjunction.

I As with all logics, we analyze
I syntax: what is a formula?
I semantics: how do we interpret a formula?
I reasoning methods: how can we prove logical consequences of a

knowledge base?

We only scratched the surface. Further topics are discussed in the courses
mentioned at the end of the previous chapter.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II November 11th, 2009 38 / 38

	Introduction
	Syntax
	Semantics
	Further topics
	Wrap-up

