Theoretical Computer Science II (ACS II)
2. Propositional logic

Malte Helmert Andreas Karwath

Albert-Ludwigs-Universität Freiburg

October 22th, 2009
Why logic?

- formalizing valid reasoning
- used throughout mathematics, computer science
- the basis of many tools in computer science
Examples of reasoning

Which are valid?

- If it is Sunday, then I don’t need to work.
 It is Sunday.
 Therefore I don’t need to work.
Examples of reasoning

Which are valid?

- If it is Sunday, then I don’t need to work.
 It is Sunday.
 Therefore I don’t need to work.

- It will rain or snow.
 It is too warm for snow.
 Therefore it will rain.
Examples of reasoning

Which are valid?

- If it is Sunday, then I don’t need to work.
 It is Sunday.
 Therefore I don’t need to work.

- It will rain or snow.
 It is too warm for snow.
 Therefore it will rain.

- The butler is guilty or the maid is guilty.
 The maid is guilty or the cook is guilty.
 Therefore either the butler is guilty or the cook is guilty.
Elements of logic

- Which elements are well-formed? \(
ightarrow\) syntax
- What does it mean for a formula to be true? \(\rightarrow\) semantics
- When does one formula follow from another? \(\rightarrow\) inference
Elements of logic

- Which elements are well-formed? \(\leadsto \text{syntax} \)
- What does it mean for a formula to be true? \(\leadsto \text{semantics} \)
- When does one formula follow from another? \(\leadsto \text{inference} \)

Two logics:
- propositional logic
- first-order logic (aka predicate logic)
Building blocks of propositional logic:
- atomic propositions (atoms)
- connectives

Atomic propositions

indivisible statements

Examples:
- “The cook is guilty.”
- “It rains.”
- “The girl has red hair.”

Connectives

operators to build composite *formulae* out of atoms

Examples:
- “and”, “or”, “not”, …
We are interested in knowing the following:

- When is a formula true?
We are interested in knowing the following:

- When is a formula **true**?

- When does one formula **logically follow from** (= is **logically entailed by**) a knowledge base (a set of formulae)?
 - symbolically: $KB \models \varphi$ if KB entails φ
Logic: basic questions

We are interested in knowing the following:

- When is a formula \textbf{true}?
- When does one formula \textit{logically follow from} (= is \textit{logically entailed by}) a knowledge base (a set of formulae)?
 - symbolically: $\text{KB} \models \varphi$ if KB entails φ
- How can we define an \textit{inference mechanism} (\approx proof procedure) that allows us to systematically derive consequences of a knowledge base?
 - symbolically: $\text{KB} \vdash \varphi$ if φ can be derived from KB
We are interested in knowing the following:

- When is a formula true?
- When does one formula logically follow from (= is logically entailed by) a knowledge base (a set of formulae)?
 - symbolically: $\text{KB} \models \varphi$ if KB entails φ
- How can we define an inference mechanism (\approx proof procedure) that allows us to systematically derive consequences of a knowledge base?
 - symbolically: $\text{KB} \vdash \varphi$ if φ can be derived from KB
- Can we find an inference mechanism in such a way that $\text{KB} \models \varphi$ iff $\text{KB} \vdash \varphi$?
Syntax of propositional logic

Given: finite or countable set Σ of atoms p, q, r, \ldots

Propositional formulae: inductively defined as

- $p \in \Sigma$ atomic formulae
- \top truth
- \bot falseness
- $\neg \varphi$ negation
- $(\varphi \land \psi)$ conjunction
- $(\varphi \lor \psi)$ disjunction
- $(\varphi \rightarrow \psi)$ material conditional
- $(\varphi \leftrightarrow \psi)$ biconditional

where φ and ψ are constructed in the same way
Logic terminology and notations

- **atom/atomic formula** (p)
- **literal**: atom or negated atom (p, $\neg p$)
- **clause**: disjunction of literals ($p \lor \neg q$, $p \lor q \lor r$, p)

Parentheses may be omitted according to the following rules:

- \neg binds more tightly than \land
- \land binds more tightly than \lor
- \lor binds more tightly than \Rightarrow and \Leftrightarrow

$p \land q \land r \land s \ldots$ is read as $(\ldots (((p \land q) \land r) \land s) \land \ldots)$

$p \lor q \lor r \lor s \ldots$ is read as $(\ldots (((p \lor q) \lor r) \lor s) \lor \ldots)$

Outermost parentheses can always be omitted.
Alternative notations

<table>
<thead>
<tr>
<th>our notation</th>
<th>alternative notations</th>
</tr>
</thead>
<tbody>
<tr>
<td>¬φ</td>
<td>~φ, ¬φ</td>
</tr>
<tr>
<td>φ ∧ ψ</td>
<td>φ & ψ, φ, ψ</td>
</tr>
<tr>
<td>φ ∨ ψ</td>
<td>φ</td>
</tr>
<tr>
<td>φ → ψ</td>
<td>φ ⇒ ψ</td>
</tr>
<tr>
<td>φ ↔ ψ</td>
<td>φ ⇔ ψ</td>
</tr>
</tbody>
</table>
Definition (truth assignment)

A truth assignment of the atoms in Σ, or interpretation over Σ, is a function $I : \Sigma \rightarrow \{T, F\}$

Idea: extend from atoms to arbitrary formulae
Semantics of propositional logic (ctd.)

Definition (satisfaction/truth)

I satisfies φ (alternatively: φ is true under I), in symbols $I \models \varphi$, according to the following inductive rules:

- $I \models p$ iff $I(p) = T$ for $p \in \Sigma$
- $I \models \top$ always (i.e., for all I)
- $I \models \bot$ never (i.e., for no I)
- $I \models \neg \varphi$ iff $I \not\models \varphi$
- $I \models \varphi \land \psi$ iff $I \models \varphi$ and $I \models \psi$
- $I \models \varphi \lor \psi$ iff $I \models \varphi$ or $I \models \psi$
- $I \models \varphi \rightarrow \psi$ iff $I \not\models \varphi$ or $I \models \psi$
- $I \models \varphi \leftrightarrow \psi$ iff $(I \models \varphi$ and $I \models \psi)$ or $(I \not\models \varphi$ and $I \not\models \psi)$
Semantics of propositional logic: example

Example

\[\Sigma = \{p, q, r, s\}\]
\[I = \{p \mapsto \text{T}, q \mapsto \text{F}, r \mapsto \text{F}, s \mapsto \text{T}\}\]
\[\varphi = ((p \lor q) \leftrightarrow (r \lor s)) \land (\neg(p \land q) \lor (r \land \neg s))\]

Question: \(I \models \varphi?\)
More logic terminology

Definition (model)

An interpretation \(I \) is called a **model** of a formula \(\varphi \) if \(I \models \varphi \).

An interpretation \(I \) is called a **model** of a set of formula \(\text{KB} \) if it is a model of all formulae \(\varphi \in \text{KB} \).

Definition (properties of formulae)

A formula \(\varphi \) is called

- **satisfiable** if there exists a model of \(\varphi \)
- **unsatisfiable** if it is not satisfiable
- **valid/a tautology** if all interpretations are models of \(\varphi \)
- **falsifiable** if it is not a tautology

Note: All valid formulae are satisfiable.
All unsatisfiable formulae are falsifiable.
More logic terminology (ctd.)

Definition (logical equivalence)

Two formulae φ and ψ are logically equivalent, written $\varphi \equiv \psi$, if they have the same set of models.

In other words, $\varphi \equiv \psi$ holds if for all interpretations I, we have that $I \models \varphi$ iff $I \models \psi$.
The truth table method

How can we decide if a formula is satisfiable, valid, etc.?
⇝ one simple idea: generate a **truth table**
The truth table method

How can we decide if a formula is satisfiable, valid, etc.?
⇝ one simple idea: generate a truth table

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>¬p</th>
<th>p \land q</th>
<th>p \lor q</th>
<th>p \rightarrow q</th>
<th>p \leftrightarrow q</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Truth table method: example

Question: Is \(((p \lor q) \land \neg q) \rightarrow p\) valid?

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(p \lor q)</th>
<th>((p \lor q) \land \neg q)</th>
<th>(((p \lor q) \land \neg q) \rightarrow p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
</tbody>
</table>
Truth table method: example

Question: Is \(((p \lor q) \land \neg q) \rightarrow p\) valid?

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>(p \lor q)</th>
<th>((p \lor q) \land \neg q)</th>
<th>((p \lor q) \land \neg q) (\rightarrow) p</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Truth table method: example

Question: Is \(((p \lor q) \land \neg q) \rightarrow p\) valid?

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>(q)</td>
<td>(p \lor q)</td>
<td>((p \lor q) \land \neg q)</td>
<td>(((p \lor q) \land \neg q) \rightarrow p)</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td></td>
</tr>
</tbody>
</table>

- \(\phi\) is true for all possible combinations of truth values
 - \(\Rightarrow\) all interpretations are models
 - \(\Rightarrow\) \(\phi\) is valid
- satisfiability, unsatisfiability, falsifiability likewise
- logical equivalence likewise
Some well known equivalences

Idempotence
- $\varphi \land \varphi \equiv \varphi$
- $\varphi \lor \varphi \equiv \varphi$

Commutativity
- $\varphi \land \psi \equiv \psi \land \varphi$
- $\varphi \lor \psi \equiv \psi \lor \varphi$

Associativity
- $(\varphi \land \psi) \land \chi \equiv \varphi \land (\psi \land \chi)$
- $(\varphi \lor \psi) \lor \chi \equiv \varphi \lor (\psi \lor \chi)$

Absorption
- $\varphi \land (\varphi \lor \psi) \equiv \varphi$
- $\varphi \lor (\varphi \land \psi) \equiv \varphi$

Distributivity
- $\varphi \land (\psi \lor \chi) \equiv (\varphi \land \psi) \lor (\varphi \land \chi)$
- $\varphi \lor (\psi \land \chi) \equiv (\varphi \lor \psi) \land (\varphi \lor \chi)$

De Morgan
- $\neg (\varphi \land \psi) \equiv \neg \varphi \lor \neg \psi$
- $\neg (\varphi \lor \psi) \equiv \neg \varphi \land \neg \psi$

Double negation
- $\neg\neg \varphi \equiv \varphi$

(\to)-Elimination
- $\varphi \to \psi \equiv \neg \varphi \lor \psi$

(\leftrightarrow)-Elimination
- $\varphi \leftrightarrow \psi \equiv (\varphi \to \psi) \land (\psi \to \varphi)$
Substitutability

Theorem (Substitutability)

Let φ and ψ be two equivalent formulae, i.e., $\varphi \equiv \psi$.

Let χ be a formula in which φ occurs as a subformula, and let χ' be the formula obtained from χ by substituting ψ for φ.

Then $\chi \equiv \chi'$.

Example: $p \lor \neg (q \lor r) \equiv p \lor (\neg q \land \neg r)$

by De Morgan’s law and substitutability.
Applying equivalences: examples (1)

\[p \land (\neg q \lor p) \]
Applying equivalences: examples (1)

\[p \land (\neg q \lor p) \]
\[\equiv (p \land \neg q) \lor (p \land p) \] \hspace{1cm} \text{(Distributivity)}
Applying equivalences: examples (1)

\[p \land (\neg q \lor p) \]
\[\equiv (p \land \neg q) \lor (p \land p) \quad \text{(Distributivity)} \]
\[\equiv (p \land \neg q) \lor p \quad \text{(Idempotence)} \]
Applying equivalences: examples (1)

\[
p \land (\neg q \lor p)
\equiv (p \land \neg q) \lor (p \land p) \quad \text{(Distributivity)}
\equiv (p \land \neg q) \lor p \quad \text{(Idempotence)}
\equiv p \lor (p \land \neg q) \quad \text{(Commutativity)}
\]
Applying equivalences: examples (1)

\[p \land (\neg q \lor p) \]
\[\equiv (p \land \neg q) \lor (p \land p) \quad \text{(Distributivity)} \]
\[\equiv (p \land \neg q) \lor p \quad \text{(Idempotence)} \]
\[\equiv p \lor (p \land \neg q) \quad \text{(Commutativity)} \]
\[\equiv p \quad \text{(Absorption)} \]
Applying equivalences: examples (2)

\[p \leftrightarrow q \]
Applying equivalences: examples (2)

\[p \leftrightarrow q \]
\[\equiv (p \rightarrow q) \land (q \rightarrow p) \]

\((\leftrightarrow)\)-Elimination
Applying equivalences: examples (2)

\[p \leftrightarrow q \]
\[\equiv (p \rightarrow q) \land (q \rightarrow p) \] \hspace{1cm} ((\leftrightarrow)-Elimination)
\[\equiv (\neg p \lor q) \land (\neg q \lor p) \] \hspace{1cm} ((\rightarrow)-Elimination)
Applying equivalences: examples (2)

\[p \leftrightarrow q \]
\[\equiv (p \rightarrow q) \land (q \rightarrow p) \quad \text{((\leftrightarrow)-Elimination)} \]
\[\equiv (\neg p \lor q) \land (\neg q \lor p) \quad \text{((\rightarrow)-Elimination)} \]
\[\equiv ((\neg p \lor q) \land \neg q) \lor ((\neg p \lor q) \land p) \quad \text{(Distributivity)} \]
\[p \leftrightarrow q \]
\[\equiv (p \rightarrow q) \land (q \rightarrow p) \] \[((\leftrightarrow)\text{-Elimination}) \]
\[\equiv (\neg p \lor q) \land (\neg q \lor p) \] \[((\rightarrow)\text{-Elimination}) \]
\[\equiv ((\neg p \lor q) \land \neg q) \lor ((\neg p \lor q) \land p) \] \[\text{(Distributivity)} \]
\[\equiv (\neg q \land (\neg p \lor q)) \lor (p \land (\neg p \lor q)) \] \[\text{(Commutativity)} \]
Applying equivalences: examples (2)

\[p \leftrightarrow q \]
\[\equiv (p \rightarrow q) \land (q \rightarrow p) \] ((\(\leftrightarrow\))-Elimination)
\[\equiv (\neg p \lor q) \land (\neg q \lor p) \] ((\(\rightarrow\))-Elimination)
\[\equiv ((\neg p \lor q) \land \neg q) \lor ((\neg p \lor q) \land p) \] (Distributivity)
\[\equiv (\neg q \land (\neg p \lor q)) \lor (p \land (\neg p \lor q)) \] (Commutativity)
\[\equiv ((\neg q \land \neg p) \lor (\neg q \land q)) \lor \]
Applying equivalences: examples (2)

\[p \leftrightarrow q \]

\[\equiv (p \rightarrow q) \land (q \rightarrow p) \]

\[\equiv (\neg p \lor q) \land (\neg q \lor p) \]

\[\equiv ((\neg p \lor q) \land \neg q) \lor ((\neg p \lor q) \land p) \]

\[\equiv (\neg q \land (\neg p \lor q)) \lor (p \land (\neg p \lor q)) \]

\[\equiv ((\neg q \land \neg p) \lor (\neg q \land q)) \lor ((p \land \neg p) \lor (p \land q)) \]

\[\equiv (\neg q \land \neg p) \lor (p \land q) \]

\[\equiv (\neg q \land \neg p) \lor (p \land q) \]

\[\equiv (\neg q \land \neg p) \lor (p \land q) \]

\[(\phi \land \neg \phi \equiv \bot) \]

\[\equiv (\neg q \land \neg p) \lor (p \land q) \]

\[\equiv (\phi \lor \bot \equiv \phi) \]

\[\equiv (\phi \lor \bot \equiv \phi) \]
Applying equivalences: examples (2)

\[p \leftrightarrow q \]

\[\equiv (p \rightarrow q) \land (q \rightarrow p) \quad ((\leftrightarrow)-Elimination) \]

\[\equiv (\neg p \lor q) \land (\neg q \lor p) \quad ((\rightarrow)-Elimination) \]

\[\equiv ((\neg p \lor q) \land \neg q) \lor ((\neg p \lor q) \land p) \quad \text{(Distributivity)} \]

\[\equiv (\neg q \land (\neg p \lor q)) \lor (p \land (\neg p \lor q)) \quad \text{(Commutativity)} \]

\[\equiv ((\neg q \land \neg p) \lor (\neg q \land q)) \lor \]

\[\quad ((p \land \neg p) \lor (p \land q)) \quad \text{(Distributivity)} \]

\[\equiv ((\neg q \land \neg p) \lor \bot) \lor (\bot \lor (p \land q)) \quad (\varphi \land \neg \varphi \equiv \bot) \]
Applying equivalences: examples (2)

\[p \leftrightarrow q \]
\[\equiv (p \rightarrow q) \land (q \rightarrow p) \] \hspace{10em} (\leftrightarrow\text{-Elimination})
\[\equiv (\neg p \lor q) \land (\neg q \lor p) \] \hspace{10em} (\rightarrow\text{-Elimination})
\[\equiv ((\neg p \lor q) \land \neg q) \lor ((\neg p \lor q) \land p) \] \hspace{10em} (Distributivity)
\[\equiv (\neg q \land (\neg p \lor q)) \lor (p \land (\neg p \lor q)) \] \hspace{10em} (Commutativity)
\[\equiv (((\neg q \land \neg p) \lor (\neg q \land q)) \lor \]
\[(p \land \neg p) \lor (p \land q)) \] \hspace{10em} (Distributivity)
\[\equiv ((\neg q \land \neg p) \lor \bot) \lor (\bot \lor (p \land q)) \] \hspace{10em} (\varphi \land \neg \varphi \equiv \bot)
\[\equiv (\neg q \land \neg p) \lor (p \land q) \] \hspace{10em} (\varphi \lor \bot \equiv \varphi \equiv \bot \lor \varphi)
Conjunctive normal form

Definition (conjunctive normal form)
A formula is in conjunctive normal form (CNF) if it consists of a conjunction of clauses, i.e., if it has the form

$$\bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{m_i} l_{ij} \right) ,$$

where the l_{ij} are literals.

Theorem: For each formula φ, there exists a logically equivalent formula in CNF.

Note: A CNF formula is valid iff every clause is valid.
Disjunctive normal form

Definition (disjunctive normal form)
A formula is in disjunctive normal form (DNF) if it consists of a disjunction of conjunctions of literals, i.e., if it has the form

\[\bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{m_i} l_{ij} \right) , \]

where the \(l_{ij} \) are literals.

Theorem: For each formula \(\varphi \), there exists a logically equivalent formula in DNF.

Note: A DNF formula is satisfiable iff at least one disjunct is satisfiable.
CNF and DNF examples

Examples

- $(p \lor \neg q) \land p$
- $(r \lor q) \land p \land (r \lor s)$
- $p \lor (\neg q \land r)$
- $p \lor \neg q \rightarrow p$
- p
CNF and DNF examples

Examples

- $(p \lor \neg q) \land p$ is in CNF
- $(r \lor q) \land p \land (r \lor s)$
- $p \lor (\neg q \land r)$
- $p \lor \neg q \rightarrow p$
- p
CNF and DNF examples

Examples

- \((p \lor \neg q) \land p\) is in CNF
- \((r \lor q) \land p \land (r \lor s)\) is in CNF
- \(p \lor (\neg q \land r)\)
- \(p \lor \neg q \rightarrow p\)
- \(p\)
CNF and DNF examples

Examples

- \((p \lor \neg q) \land p\) is in CNF
- \((r \lor q) \land p \land (r \lor s)\) is in CNF
- \(p \lor (\neg q \land r)\) is in DNF
- \(p \lor \neg q \rightarrow p\)
- \(p\)
Examples

-
 \((p \lor \neg q) \land p\) is in CNF
-
 \((r \lor q) \land p \land (r \lor s)\) is in CNF
-
 \(p \lor (\neg q \land r)\) is in DNF
-
 \(p \lor \neg q \rightarrow p\) is neither in CNF nor in DNF
-
 \(p\)
CNF and DNF examples

Examples

- \((p \lor \neg q) \land p\) is in CNF
- \((r \lor q) \land p \land (r \lor s)\) is in CNF
- \(p \lor (\neg q \land r)\) is in DNF
- \(p \lor \neg q \rightarrow p\) is neither in CNF nor in DNF
- \(p\) is in CNF and in DNF
Producing CNF

Algorithm for producing CNF

1. Get rid of → and ↔ with (→)-Elimination and (↔)-Elimination.
 ⇔ formula structure: only ∨, ∧, ¬

2. Move negations inwards with De Morgan and Double negation.
 ⇔ formula structure: only ∨, ∧, literals

3. Distribute ∨ over ∧ with Distributivity (strictly speaking, also Commutativity).
 ⇔ formula structure: CNF

4. Optionally, simplify (e.g., using Idempotence) at the end or at any previous point.

Note: For DNF, just distribute ∧ over ∨ instead.
Question: runtime?
Producing CNF: example

Producing CNF

Given: \(\varphi = ((p \lor r) \land \neg q) \rightarrow p \)
Producing CNF: example

Producing CNF

Given: \(\varphi = ((p \lor r) \land \neg q) \rightarrow p \)

\[
\varphi \equiv \neg((p \lor r) \land \neg q) \lor p \quad \text{Step 1}
\]
Producing CNF: example

Producing CNF

Given: \(\varphi = ((p \lor r) \land \neg q) \rightarrow p \)

\[
\varphi \equiv \neg((p \lor r) \land \neg q) \lor p \\
\equiv \neg(p \lor r) \lor \neg\neg q \lor p
\]

Step 1

Step 2
Producing CNF: example

Producing CNF

Given: \(\phi = ((p \lor r) \land \neg q) \rightarrow p \)

\[\phi \equiv \neg((p \lor r) \land \neg q) \lor p \]
Step 1

\[\equiv (\neg(p \lor r) \lor \neg\neg q) \lor p \]
Step 2

\[\equiv ((\neg p \land \neg r) \lor q) \lor p \]
Step 2

\[\equiv \top \land (\neg r \lor q \lor p) \]
Step 4

\[\equiv \neg r \lor q \lor p \]
Step 4
Producing CNF: example

Producing CNF

Given: \(\varphi = ((p \lor r) \land \neg q) \rightarrow p \)

\[\varphi \equiv \neg((p \lor r) \land \neg q) \lor p \]
Step 1

\[\equiv (\neg p \lor r) \lor \neg \neg q \lor p \]
Step 2

\[\equiv ((\neg p \land \neg r) \lor q) \lor p \]
Step 2

\[\equiv ((\neg p \lor q) \land (\neg r \lor q)) \lor p \]
Step 3
Producing CNF: example

Producing CNF

Given: \(\varphi = ((p \lor r) \land \neg q) \rightarrow p \)

\[
\varphi \equiv \neg((p \lor r) \land \neg q) \lor p \quad \text{Step 1}
\]

\[
\equiv (\neg(p \lor r) \lor \neg \neg q) \lor p \quad \text{Step 2}
\]

\[
\equiv ((\neg p \land \neg r) \lor q) \lor p \quad \text{Step 2}
\]

\[
\equiv (((\neg p \lor q) \land (\neg r \lor q)) \lor p) \quad \text{Step 3}
\]

\[
\equiv (\neg p \lor q \lor p) \land (\neg r \lor q \lor p) \quad \text{Step 3}
\]
Producing CNF: example

Producing CNF

Given: \(\varphi = ((p \lor r) \land \neg q) \rightarrow p \)

\[
\begin{align*}
\varphi & \equiv \neg((p \lor r) \land \neg q) \lor p & \text{Step 1} \\
& \equiv (\neg p \lor r) \lor \neg \neg q \lor p & \text{Step 2} \\
& \equiv ((\neg p \land \neg r) \lor q) \lor p & \text{Step 2} \\
& \equiv ((\neg p \lor q) \land (\neg r \lor q)) \lor p & \text{Step 3} \\
& \equiv (\neg p \lor q \lor p) \land (\neg r \lor q \lor p) & \text{Step 3} \\
& \equiv \top \land (\neg r \lor q \lor p) & \text{Step 4}
\end{align*}
\]
Producing CNF: example

Given: \(\varphi = ((p \lor r) \land \neg q) \rightarrow p \)

<table>
<thead>
<tr>
<th>Step</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\varphi \equiv \neg((p \lor r) \land \neg q) \lor p)</td>
</tr>
<tr>
<td>2</td>
<td>(\equiv (\neg(p \lor r) \lor \neg \neg q) \lor p)</td>
</tr>
<tr>
<td>2</td>
<td>(\equiv ((\neg p \land \neg r) \lor q) \lor p)</td>
</tr>
<tr>
<td>3</td>
<td>(\equiv (((\neg p \lor q) \land (\neg r \lor q)) \lor p))</td>
</tr>
<tr>
<td>3</td>
<td>(\equiv (\neg p \lor q \lor p) \land (\neg r \lor q \lor p))</td>
</tr>
<tr>
<td>4</td>
<td>(\equiv \top \land (\neg r \lor q \lor p))</td>
</tr>
<tr>
<td>4</td>
<td>(\equiv \neg r \lor q \lor p)</td>
</tr>
</tbody>
</table>
Logical entailment

A set of formulae (a knowledge base) usually provides an incomplete description of the world, i.e., it leaves the truth values of some propositions open.

Example: $\text{KB} = \{p \lor q, r \lor \neg p, s\}$ is definitive w.r.t. s, but leaves p, q, r open (though not completely!)
Logical entailment

A set of formulae (a knowledge base) usually provides an incomplete description of the world, i.e., it leaves the truth values of some propositions open.

Example: KB = \{p \lor q, r \lor \neg p, s\} is definitive w.r.t. s, but leaves p, q, r open (though not completely!)

Models of the KB

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>r</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

In all models, q \lor r is true. Hence, q \lor r is logically entailed by KB (a logical consequence of KB).
Logical entailment: formally

Definition (entailment)
Let KB be a set of formulae and \(\varphi \) be a formula. We say that KB entails \(\varphi \) (also: \(\varphi \) follows logically from KB; \(\varphi \) is a logical consequence of KB), in symbols \(KB \models \varphi \), if all models of KB are models of \(\varphi \).
Properties of entailment

Some properties of logical entailment:
Properties of entailment

Some properties of logical entailment:

- **Deduction theorem:**
 \[KB \cup \{ \varphi \} \models \psi \iff KB \models \varphi \to \psi \]
Properties of entailment

Some properties of logical entailment:

- **Deduction theorem:**
 \[KB \cup \{ \varphi \} \models \psi \iff KB \models \varphi \rightarrow \psi \]

- **Contraposition theorem:**
 \[KB \cup \{ \varphi \} \models \neg \psi \iff KB \cup \{ \psi \} \models \neg \varphi \]
Some properties of logical entailment:

- **Deduction theorem:**
 \[KB \cup \{ \varphi \} \models \psi \text{ iff } KB \models \varphi \rightarrow \psi \]

- **Contraposition theorem:**
 \[KB \cup \{ \varphi \} \models \neg \psi \text{ iff } KB \cup \{ \psi \} \models \neg \varphi \]

- **Contradiction theorem:**
 \[KB \cup \{ \varphi \} \text{ is unsatisfiable iff } KB \models \neg \varphi \]
Proof of the deduction theorem

Deduction theorem: \(KB \cup \{ \varphi \} \models \psi \) iff \(KB \models \varphi \rightarrow \psi \)

Proof.

“\(\Rightarrow \)”: The premise is that \(KB \cup \{ \varphi \} \models \psi \).
We must show that \(KB \models \varphi \rightarrow \psi \), i.e., that all models of KB satisfy \(\varphi \rightarrow \psi \). Consider any such model \(I \).
We distinguish two cases:
Proof of the deduction theorem

Deduction theorem: \(KB \cup \{\varphi\} \models \psi \) iff \(KB \models \varphi \rightarrow \psi \)

Proof.

“\(\Rightarrow \): The premise is that \(KB \cup \{\varphi\} \models \psi \).
We must show that \(KB \models \varphi \rightarrow \psi \), i.e., that all models of \(KB \) satisfy \(\varphi \rightarrow \psi \). Consider any such model \(I \).
We distinguish two cases:

- **Case 1:** \(I \models \varphi \).
 Then \(I \) is a model of \(KB \cup \{\varphi\} \), and by the premise, \(I \models \psi \), from which we conclude that \(I \models \varphi \rightarrow \psi \).
Proof of the deduction theorem

Deduction theorem: $\text{KB} \cup \{\varphi\} \models \psi$ iff $\text{KB} \models \varphi \to \psi$

Proof.

“\Rightarrow”: The premise is that $\text{KB} \cup \{\varphi\} \models \psi$. We must show that $\text{KB} \models \varphi \to \psi$, i.e., that all models of KB satisfy $\varphi \to \psi$. Consider any such model I. We distinguish two cases:

- **Case 1:** $I \models \varphi$.
 Then I is a model of $\text{KB} \cup \{\varphi\}$, and by the premise, $I \models \psi$, from which we conclude that $I \models \varphi \to \psi$.

- **Case 2:** $I \not\models \varphi$.
 Then we can directly conclude that $I \models \varphi \to \psi$.

...
Proof of the deduction theorem

Deduction theorem: \(KB \cup \{\varphi\} \models \psi \) iff \(KB \models \varphi \rightarrow \psi \)

Proof (ctd.)

“\(\leftarrow \)”: The premise is that \(KB \models \varphi \rightarrow \psi \).
We must show that \(KB \cup \{\varphi\} \models \psi \), i.e., that all models of \(KB \cup \{\varphi\} \) satisfy \(\psi \). Consider any such model \(I \).
Proof of the deduction theorem

Deduction theorem: $\text{KB} \cup \{\varphi\} \models \psi$ iff $\text{KB} \models \varphi \rightarrow \psi$

Proof (ctd.)

“\Leftarrow”: The premise is that $\text{KB} \models \varphi \rightarrow \psi$.

We must show that $\text{KB} \cup \{\varphi\} \models \psi$, i.e., that all models of $\text{KB} \cup \{\varphi\}$ satisfy ψ. Consider any such model I.

By definition, $I \models \varphi$. Moreover, as I is a model of KB, we have $I \models \varphi \rightarrow \psi$ by the premise.
Proof of the deduction theorem

Deduction theorem: $\text{KB} \cup \{\varphi\} \models \psi$ iff $\text{KB} \models \varphi \rightarrow \psi$

Proof (ctd.)

“\Leftarrow”: The premise is that $\text{KB} \models \varphi \rightarrow \psi$.

We must show that $\text{KB} \cup \{\varphi\} \models \psi$, i.e., that all models of $\text{KB} \cup \{\varphi\}$ satisfy ψ. Consider any such model I.

By definition, $I \models \varphi$. Moreover, as I is a model of KB, we have $I \models \varphi \rightarrow \psi$ by the premise.

Putting this together, we get $I \models \varphi \land (\varphi \rightarrow \psi) \equiv \varphi \land \psi$, which implies that $I \models \psi$.

□
Proof of the contraposition theorem

Contraposition theorem: \(KB \cup \{\varphi\} \models \neg\psi \iff KB \cup \{\psi\} \models \neg\varphi \)

Proof.

By the deduction theorem, \(KB \cup \{\varphi\} \models \neg\psi \iff KB \models \varphi \rightarrow \neg\psi \).
For the same reason, \(KB \cup \{\psi\} \models \neg\varphi \iff KB \models \psi \rightarrow \neg\varphi \).
Proof of the contraposition theorem

Contraposition theorem: $\text{KB} \cup \{\varphi\} \models \neg \psi$ iff $\text{KB} \cup \{\psi\} \models \neg \varphi$

Proof.

By the deduction theorem, $\text{KB} \cup \{\varphi\} \models \neg \psi$ iff $\text{KB} \models \varphi \rightarrow \neg \psi$.

For the same reason, $\text{KB} \cup \{\psi\} \models \neg \varphi$ iff $\text{KB} \models \psi \rightarrow \neg \varphi$.

We have $\varphi \rightarrow \neg \psi \equiv \neg \varphi \lor \neg \psi \equiv \neg \psi \lor \neg \varphi \equiv \psi \rightarrow \neg \varphi$.

Putting this together, we get $\text{KB} \cup \{\varphi\} \models \neg \psi$ iff $\text{KB} \cup \{\psi\} \models \neg \varphi$ as required.
Proof of the contraposition theorem

Contraposition theorem: $\text{KB} \cup \{\varphi\} \models \neg \psi$ iff $\text{KB} \cup \{\psi\} \models \neg \varphi$

Proof.

By the deduction theorem, $\text{KB} \cup \{\varphi\} \models \neg \psi$ iff $\text{KB} \models \varphi \rightarrow \neg \psi$.

For the same reason, $\text{KB} \cup \{\psi\} \models \neg \varphi$ iff $\text{KB} \models \psi \rightarrow \neg \varphi$.

We have $\varphi \rightarrow \neg \psi \equiv \neg \varphi \lor \neg \psi \equiv \neg \psi \lor \neg \varphi \equiv \psi \rightarrow \neg \varphi$.

Putting this together, we get

$\text{KB} \cup \{\varphi\} \models \neg \psi$

iff $\text{KB} \models \neg \varphi \lor \neg \psi$

iff $\text{KB} \cup \{\psi\} \models \neg \varphi$

as required.
Question: Can we determine whether $\text{KB} \models \varphi$ without considering all interpretations (the truth table method)?

- Yes! There are various ways of doing this.
- One is to use inference rules that produce formulae that follow logically from a given set of formulae.
- Inference rules are written in the form

 \[
 \frac{\varphi_1, \ldots, \varphi_k}{\psi},
 \]

 meaning “if $\varphi_1, \ldots, \varphi_k$ are true, then ψ is also true.”
- $k = 0$ is allowed; such inference rules are called axioms.
- A set of inference rules is called a calculus or proof system.
Some inference rules for propositional logic

- **Modus ponens**
 \[\frac{\varphi, \varphi \rightarrow \psi}{\psi} \]

- **Modus tollens**
 \[\frac{\neg \psi, \varphi \rightarrow \psi}{\neg \varphi} \]

- **And elimination**
 \[\frac{\varphi \land \psi}{\varphi} \quad \frac{\varphi \land \psi}{\psi} \]

- **And introduction**
 \[\frac{\varphi, \psi}{\varphi \land \psi} \]

- **Or introduction**
 \[\frac{\varphi}{\varphi \lor \psi} \]

- **(⊥) elimination**
 \[\frac{\bot}{\varphi} \]

- **(↔) elimination**
 \[\frac{\varphi \leftrightarrow \psi}{\varphi \rightarrow \psi} \quad \frac{\varphi \leftrightarrow \psi}{\psi \rightarrow \varphi} \]
Definition (derivation)

A derivation or proof of a formula \(\varphi \) from a knowledge base KB is a sequence of formulae \(\psi_1, \ldots, \psi_k \) such that

- \(\psi_k = \varphi \) and
- for all \(i \in \{1, \ldots, k\} \):
 - \(\psi_i \in KB \), or
 - \(\psi_i \) is the result of applying an inference rule to some elements of \(\{\psi_1, \ldots, \psi_{i-1}\} \).
Derivation example

Example

Given: \(\text{KB} = \{ p, p \rightarrow q, p \rightarrow r, q \land r \rightarrow s \} \)

Objective: Give a derivation of \(s \land r \) from KB.
Example

Given: $KB = \{p, p \rightarrow q, p \rightarrow r, q \wedge r \rightarrow s\}$

Objective: Give a derivation of $s \wedge r$ from KB.

1. p (KB)
2. $p \rightarrow q$ (KB)
3. q (1, 2, modus ponens)
4. $p \rightarrow r$ (KB)
5. r (1, 4, modus ponens)
6. $q \wedge r$ (3, 5, and introduction)
7. $q \wedge r \rightarrow s$ (KB)
8. s (6, 7, modus ponens)
9. $s \wedge r$ (8, 5, and introduction)
Soundness and completeness

Definition (KB ⊢ₐ ϕ, soundness, completeness)

We write $KB \vdash_{C} \varphi$ if there is a derivation of φ from KB in calculus C. (We often omit C when it is clear from context.)

A calculus C is **sound** or **correct** if for all KB and φ, we have that $KB \vdash_{C} \varphi$ implies $KB \models \varphi$.

A calculus C is **complete** if for all KB and φ, we have that $KB \models \varphi$ implies $KB \vdash_{C} \varphi$.

Consider the calculus C given by the derivation rules shown previously.

Question: Is C sound?

Question: Is C complete?
Definition (KB \vdash_c \varphi, soundness, completeness)

We write KB \vdash_c \varphi if there is a derivation of \varphi from KB in calculus C. (We often omit C when it is clear from context.)

A calculus C is **sound** or **correct** if for all KB and \varphi, we have that KB \vdash_c \varphi implies KB \models \varphi.

A calculus C is **complete** if for all KB and \varphi, we have that KB \models \varphi implies KB \vdash_c \varphi.

Consider the calculus C given by the derivation rules shown previously.

Question: Is C sound?

Question: Is C complete?
Refutation-completeness

- Clearly we want **sound** calculi.
- Do we also need **complete** calculi?
Clearly we want sound calculi.
Do we also need complete calculi?
Recall the contradiction theorem:
KB ∪ {φ} is unsatisfiable iff KB ⊨ ¬φ
This implies that KB ⊨ φ iff KB ∪ {¬φ} is unsatisfiable, i.e., KB ⊨ φ iff KB ∪ {¬φ} ⊨ ⊥.
Hence, we can reduce the general entailment problem to testing entailment of ⊥.
Refutation-completeness

- Clearly we want sound calculi.
- Do we also need complete calculi?
- Recall the contradiction theorem:
 \[KB \cup \{ \varphi \} \text{ is unsatisfiable iff } KB \models \neg \varphi \]
- This implies that \(KB \models \varphi \) iff \(KB \cup \{ \neg \varphi \} \) is unsatisfiable, i.e., \(KB \models \varphi \) iff \(KB \cup \{ \neg \varphi \} \models \bot \).
- Hence, we can reduce the general entailment problem to testing entailment of \(\bot \).

Definition (refutation-complete)

A calculus \(\mathbf{C} \) is *refutation-complete* if for all \(KB \), we have that \(KB \models \bot \) implies \(KB \vdash_{\mathbf{C}} \bot \).
Clearly we want sound calculi.
Do we also need complete calculi?
Recall the contradiction theorem:
\(KB \cup \{ \varphi \} \) is unsatisfiable iff \(KB \models \neg \varphi \)
This implies that \(KB \models \varphi \) iff \(KB \cup \{ \neg \varphi \} \) is unsatisfiable, i.e., \(KB \models \varphi \) iff \(KB \cup \{ \neg \varphi \} \models \bot \).
Hence, we can reduce the general entailment problem to testing entailment of \(\bot \).

Definition (refutation-complete)

A calculus \(\mathcal{C} \) is **refutation-complete** if for all \(KB \), we have that \(KB \models \bot \) implies \(KB \vdash \mathcal{C} \bot \).

Question: What is the relationship between completeness and refutation-completeness?
Resolution: idea

- **Resolution** is a refutation-complete calculus for knowledge bases in **CNF**.
- For knowledge bases that are not in CNF, we can convert them to equivalent formulae in CNF.
 - However, this conversion can take exponential time.
 - Alternatively, we can convert to a **satisfiability-equivalent** (but not logically equivalent) knowledge base in polynomial time.
Resolution: idea

- **Resolution** is a refutation-complete calculus for knowledge bases in **CNF**.
- For knowledge bases that are not in CNF, we can convert them to equivalent formulae in CNF.
 - However, this conversion can take exponential time.
 - Alternatively, we can convert to a **satisfiability-equivalent** (but not logically equivalent) knowledge base in polynomial time.
- To test if $\text{KB} \models \varphi$, we test if $\text{KB} \cup \{\neg \varphi\} \vdash_{R} \bot$, where R is the resolution calculus.
 (In the following, we simply write \vdash instead of \vdash_{R}.)
Resolution: idea

- **Resolution** is a refutation-complete calculus for knowledge bases in **CNF**.
- For knowledge bases that are not in CNF, we can convert them to equivalent formulae in CNF.
 - However, this conversion can take exponential time.
 - Alternatively, we can convert to a **satisfiability-equivalent** (but not logically equivalent) knowledge base in polynomial time.
- To test if $\text{KB} \models \varphi$, we test if $\text{KB} \cup \{\neg \varphi\} \vdash_{R} \bot$, where R is the resolution calculus.
 (In the following, we simply write \vdash instead of \vdash_{R}.)
- In the worst case, resolution takes exponential time.
- However, this is probably true for all refutation complete proof methods, as we will see in the computational complexity part of the course.
Knowledge bases as clause sets

- Resolution requires that knowledge bases are given in CNF.
- In this case, we can simplify notation:
 - A formula in CNF can be equivalently seen as a set of clauses (due to commutativity, idempotence and associativity of (∨)).
 - A set of formulae can then also be seen as a set of clauses.
 - A clause can be seen as a set of literals (due to commutativity, idempotence and associativity of (∧)).
 - So a knowledge base can be represented as a set of sets of literals.

- Example:
 - $\text{KB} = \{(p \lor p), (\neg p \lor q) \land (\neg p \lor r) \land (\neg p \lor q) \land r, $(
 \begin{align*}
 &\neg q \lor \neg r \lor s) \land p
 \end{align*}
) \land p\}$

- as clause set:
Resolution requires that knowledge bases are given in CNF.

In this case, we can simplify notation:

- A formula in CNF can be equivalently seen as a set of clauses (due to commutativity, idempotence and associativity of \(\lor \)).
- A set of formulae can then also be seen as a set of clauses.
- A clause can be seen as a set of literals (due to commutativity, idempotence and associativity of \(\land \)).
- So a knowledge base can be represented as a set of sets of literals.

Example:

- KB = \(\{(p \lor p), (\neg p \lor q) \land (\neg p \lor r) \land (\neg p \lor q) \land r, (\neg q \lor \neg r \lor s) \land p\}\)
- as clause set: \(\{\{p\}, \{\neg p, q\}, \{\neg p, r\}, \{r\}, \{\neg q, \neg r, s\}\} \)
In the following, we use common logical notation for sets of literals (treating them as clauses) and sets of sets of literals (treating them as CNF formulae).

Example:

- Let $I = \{p \mapsto 1, q \mapsto 1, r \mapsto 1, s \mapsto 1\}$.
- Let $\Delta = \{\{p\}, \{\neg p, q\}, \{\neg p, r\}, \{r\}, \{\neg q, \neg r, s\}\}$.
- We can write $I \models \Delta$.

One notation ambiguity:

- Does the empty set mean an empty clause (equivalent to \bot) or an empty set of clauses (equivalent to \top)?
- To resolve this ambiguity, the empty clause is written as \square, while the empty set of clauses is written as \emptyset.
The resolution rule

The resolution calculus consists of a single rule, called the resolution rule:

\[
\frac{C_1 \cup \{l\}, \ C_2 \cup \{-l\}}{C_1 \cup C_2},
\]

where \(C_1\) and \(C_2\) are (possibly empty) clauses, and \(l\) is an atom (and hence \(l\) and \(-l\) are complementary literals).

In the rule above,

- \(l\) and \(-l\) are called the resolution literals,
- \(C_1 \cup \{l\}\) and \(C_2 \cup \{-l\}\) are called the parent clauses, and
- \(C_1 \cup C_2\) is called the resolvent.
Resolution proofs

Definition (resolution proof)

Let Δ be a set of clauses. We define the resolvents of Δ as $R(\Delta) := \Delta \cup \{ C \mid C \text{ is a resolvent of two clauses from } \Delta \}$. A **resolution proof** of a clause D from Δ, is a sequence of clauses C_1, \ldots, C_n with

- $C_n = D$ and
- $C_i \in R(\Delta \cup \{C_1, \ldots, C_{i-1}\})$ for all $i \in \{1, \ldots, n\}$.

We say that D can be derived from Δ by resolution, written $\Delta \vdash_R D$, if there exists a resolution proof of D from Δ.

Remarks: Resolution is a **sound** and **refutation-complete**, but **incomplete** proof system.
Using resolution for testing entailment: example

Let $KB = \{ p, p \rightarrow (q \land r) \}$. We want to use resolution to show that $KB \models r \lor s$.

Three steps:
1. Reduce entailment to unsatisfiability.
2. Convert resulting knowledge base to clause form (CNF).
3. Derive empty clause by resolution.

Step 1: Reduce entailment to unsatisfiability.

$KB \models r \lor s$ iff $KB \cup \{ \neg (r \lor s) \}$ is unsatisfiable.

Hence, consider $KB' = KB \cup \{ \neg (r \lor s) \} = \{ p, p \rightarrow (q \land r), \neg (r \lor s) \}$.

...
Resolution proofs: example

Using resolution for testing entailment: example

Let $\text{KB} = \{ p, p \rightarrow (q \land r) \}$.

We want to use resolution to show that $\text{KB} \models r \lor s$.

Three steps:

1. Reduce entailment to unsatisfiability.
2. Convert resulting knowledge base to clause form (CNF).
3. Derive empty clause by resolution.
Resolution proofs: example

Using resolution for testing entailment: example

Let $KB = \{p, p \rightarrow (q \land r)\}$.

We want to use resolution to show that $KB \models r \lor s$.

Three steps:

1. Reduce entailment to unsatisfiability.
2. Convert resulting knowledge base to clause form (CNF).
3. Derive empty clause by resolution.

Step 1: Reduce entailment to unsatisfiability.
Resolution proofs: example

Using resolution for testing entailment: example

Let $KB = \{p, p \to (q \land r)\}$.

We want to use resolution to show that $KB \models r \lor s$.

Three steps:

1. Reduce entailment to unsatisfiability.
2. Convert resulting knowledge base to clause form (CNF).
3. Derive empty clause by resolution.

Step 1: Reduce entailment to unsatisfiability.

$KB \models r \lor s$ iff $KB \cup \{\neg(r \lor s)\}$ is unsatisfiable.

Hence, consider

$$KB' = KB \cup \{\neg(r \lor s)\} = \{p, p \to (q \land r), \neg(r \lor s)\}.$$
Resolution proofs: example (ctd.)

Using resolution for testing entailment: example (ctd.)

\[KB' = KB \cup \{ \neg(r \lor s) \} = \{ p, p \rightarrow (q \land r), \neg(r \lor s) \}. \]

Step 2: Convert resulting knowledge base to clause form (CNF).
Resolution proofs: example (ctd.)

Using resolution for testing entailment: example (ctd.)

\[\text{KB}' = \text{KB} \cup \{ \neg(r \lor s) \} = \{p, p \rightarrow (q \land r), \neg(r \lor s)\}. \]

Step 2: Convert resulting knowledge base to clause form (CNF).

\[p \]
\[\Rightarrow \text{clauses:}\{p\} \]

\[p \rightarrow (q \land r) \equiv \neg p \lor (q \land r) \equiv (\neg p \lor q) \land (\neg p \lor r) \]
\[\Rightarrow \text{clauses:}\{\neg p, q\}, \{\neg p, r\} \]

\[\neg(r \lor s) \equiv \neg r \land \neg s \]
\[\Rightarrow \text{clauses:}\{\neg r\}, \{\neg s\} \]
Resolution proofs: example (ctd.)

Using resolution for testing entailment: example (ctd.)

\[\text{Step 2: Convert resulting knowledge base to clause form (CNF).} \]

\[\text{KB}' = \text{KB} \cup \{\neg(r \lor s)\} = \{p, p \rightarrow (q \land r), \neg(r \lor s)\}. \]

\[\Delta = \{\{p\}, \{\neg p, q\}, \{\neg p, r\}, \{\neg r\}, \{\neg s\}\} \]

...
Resolution proofs: example (ctd.)

Using resolution for testing entailment: example (ctd.)

\[\Delta = \{\{p\}, \{\neg p, q\}, \{\neg p, r\}, \{\neg r\}, \{\neg s\}\} \]

Step 3: Derive empty clause by resolution.

- \(C_1 = \{p\} \) (from \(\Delta \))
- \(C_2 = \{\neg p, q\} \) (from \(\Delta \))
- \(C_3 = \{\neg p, r\} \) (from \(\Delta \))
- \(C_4 = \{\neg r\} \) (from \(\Delta \))
- \(C_5 = \{\neg s\} \) (from \(\Delta \))
- \(C_6 = \{q\} \) (from \(C_1 \) and \(C_2 \))
- \(C_7 = \{\neg p\} \) (from \(C_3 \) and \(C_4 \))
- \(C_8 = \Box \) (from \(C_1 \) and \(C_7 \))

Note: Much shorter proofs exist. (For example?)
Another example

Another resolution example

We want to prove \(\{ p \rightarrow q, q \rightarrow r \} \models p \rightarrow r \).
Larger example: blood types

We know the following:

- If test T is positive, the person has blood type A or AB.
- If test S is positive, the person has blood type B or AB.
- If a person has blood type A, then test T will be positive.
- If a person has blood type B, then test S will be positive.
- If a person has blood type AB, both tests will be positive.
- A person has exactly one of the blood types A, B, AB, 0.

Suppose T is true and S is false for a given person. Prove that the person must have blood type A or 0.
Logics are mathematical approaches for formalizing reasoning.

Propositional logic is one logic which is of particular relevance to computer science.

Three important components of all forms of logic include:

- **Syntax** formalizes what statements can be expressed.
 - atoms, connectives, formulae, . . .
- **Semantics** formalizes what these statements mean.
 - interpretations, models, satisfiable, valid, . . .
- **Calculi** (proof systems) provide formal rules for deriving conclusions from a set of given statements.
 - inference rules, derivations, sound, complete, refutation-complete, . . .

We had a closer look at the **resolution** calculus, which is a sound and refutation-complete proof system.
Further topics

There are many further topics we did not discuss:

- **resolution strategies** to make resolution as efficient as possible in practice
- other proof systems, for example **tableaux proofs**
- algorithms for **model construction**, for example the Davis-Putnam-Logemann-Loveland (DPLL) procedure

These topics are discussed in advanced courses, such as:

- **Foundations of Artificial Intelligence**
 (every summer semester)
- **Principles of Knowledge Representation and Reasoning**
 (no fixed schedule; roughly once in two years)
- **Modal Logic** (no fixed schedule; infrequently)