# Theoretical Computer Science II (ACS II) 2. Propositional logic 

Malte Helmert Andreas Karwath

Albert-Ludwigs-Universität Freiburg
October 22th, 2009

## Why logic?

- formalizing valid reasoning
- used throughout mathematics, computer science
- the basis of many tools in computer science


## Examples of reasoning

## Which are valid?

- If it is Sunday, then I don't need to work.

It is Sunday.
Therefore I don't need to work.

## Examples of reasoning

Which are valid?

- If it is Sunday, then I don't need to work.

It is Sunday.
Therefore I don't need to work.
M. Helmert
A. Karwath

Basics

Inference
Wrap-up

- It will rain or snow.

It is too warm for snow.
Therefore it will rain.

## Examples of reasoning

Which are valid?

- If it is Sunday, then I don't need to work.

It is Sunday.
Therefore I don't need to work.

- It will rain or snow.

It is too warm for snow.
Therefore it will rain.

- The butler is guilty or the maid is guilty.

The maid is guilty or the cook is guilty.
Therefore either the butler is guilty or the cook is guilty.

## Elements of logic

- Which elements are well-formed? $\rightsquigarrow$ syntax
- What does it mean for a formula to be true? $\rightsquigarrow$ semantics
- When does one formula follow from another? $\rightsquigarrow$ inference

Basics

Inference
Wrap-up

## Elements of logic

- Which elements are well-formed? $\rightsquigarrow$ syntax
- What does it mean for a formula to be true? $\rightsquigarrow$ semantics
- When does one formula follow from another? $\rightsquigarrow$ inference

Two logics:

- propositional logic
- first-order logic (aka predicate logic)


## Building blocks of propositional logic

Building blocks of propositional logic:

- atomic propositions (atoms)
- connectives

Atomic propositions

## indivisible statements

## Examples:

- "The cook is guilty."
- "It rains."
- "The girl has red hair."


## Connectives

operators to build composite formulae out of atoms
Examples:

- "and", "or", "not", ...


## Logic: basic questions

We are interested in knowing the following:

- When is a formula true?


## Logic: basic questions

We are interested in knowing the following:

- When is a formula true?
- When does one formula logically follow from (= is logically entailed by) a knowledge base (a set of formulae)?
- symbolically: $\mathrm{KB} \models \varphi$ if KB entails $\varphi$
M. Helmert
A. Karwath

Introduction
Basics

Inference
Wrap-up

## Logic: basic questions

We are interested in knowing the following:

- When is a formula true?
- When does one formula logically follow from (= is logically entailed by) a knowledge base (a set of formulae)?
- symbolically: $\mathrm{KB} \models \varphi$ if KB entails $\varphi$
- How can we define an inference mechanism ( $\approx$ proof procedure) that allows us to systematically derive consequences of a knowledge base?
- symbolically: $\mathrm{KB} \vdash \varphi$ if $\varphi$ can be derived from KB


## Logic: basic questions

We are interested in knowing the following:

- When is a formula true?
- When does one formula logically follow from (= is logically entailed by) a knowledge base (a set of formulae)?
- symbolically: $\mathrm{KB} \models \varphi$ if KB entails $\varphi$
- How can we define an inference mechanism ( $\approx$ proof procedure) that allows us to systematically derive consequences of a knowledge base?
- symbolically: $\mathrm{KB} \vdash \varphi$ if $\varphi$ can be derived from KB
- Can we find an inference mechanism in such a way that $\mathrm{KB} \vDash \varphi$ iff $\mathrm{KB} \vdash \varphi$ ?


## Syntax of propositional logic

Given: finite or countable set $\Sigma$ of atoms $p, q, r, \ldots$
Propositional formulae: inductively defined as

| $p \in \Sigma$ | atomic formulae |
| :---: | :--- |
| $\top$ | truth |
| $\perp$ | falseness |
| $\neg \varphi$ | negation |
| $(\varphi \wedge \psi)$ | conjunction |
| $(\varphi \vee \psi)$ | disjunction |
| $(\varphi \rightarrow \psi)$ | material conditional |
| $(\varphi \leftrightarrow \psi)$ | biconditional |

where $\varphi$ and $\psi$ are constructed in the same way

## Logic terminology and notations

- atom/atomic formula ( $p$ )
- literal: atom or negated atom ( $p, \neg p$ )
- clause: disjunction of literals $(p \vee \neg q, p \vee q \vee r, p)$

Parentheses may be omitted according to the following rules:
M. Helmert,
A. Karwath

Introduction
Basics
Syntax
Semantics
Equivalences
Normal forms
Entailment

- $\neg$ binds more tightly than $\wedge$
- $\wedge$ binds more tightly than $\vee$
- $\vee$ binds more tightly than $\rightarrow$ and $\leftrightarrow$
- $p \wedge q \wedge r \wedge s \ldots$ is read as $(\ldots(((p \wedge q) \wedge r) \wedge s) \wedge \ldots)$
- $p \vee q \vee r \vee s \ldots$ is read as $(\ldots(((p \vee q) \vee r) \vee s) \vee \ldots)$
- outermost parentheses can always be omitted


## Alternative notations

| our notation | alternative notations |  |  |
| :---: | :---: | :---: | :---: |
| $\neg \varphi$ | $\sim \varphi$ | $\bar{\varphi}$ |  |
| $\varphi \wedge \psi$ | $\varphi \& \psi$ | $\varphi, \psi$ | $\varphi \cdot \psi$ |
| $\varphi \vee \psi$ | $\varphi \mid \psi$ | $\varphi ; \psi$ | $\varphi+\psi$ |
| $\varphi \rightarrow \psi$ | $\varphi \Rightarrow \psi$ | $\varphi \supset \psi$ |  |
| $\varphi \leftrightarrow \psi$ | $\varphi \Leftrightarrow \psi$ | $\varphi \equiv \psi$ |  |

## Semantics of propositional logic

## Definition (truth assignment)

A truth assignment of the atoms in $\Sigma$, or interpretation over $\Sigma$, is a function $I: \Sigma \rightarrow\{\mathbf{T}, \mathbf{F}\}$

Idea: extend from atoms to arbitrary formulae

## Semantics of propositional logic (ctd.)

## Definition (satisfaction/truth)

$I$ satisfies $\varphi$ (alternatively: $\varphi$ is true under $I$ ),
in symbols $I \models \varphi$, according to the following inductive rules:

$$
I \models p \quad \text { iff } I(p)=\mathbf{T} \quad \text { for } p \in \Sigma
$$

$I \models \top \quad$ always (i. e., for all $I$ )
$I \models \perp$ never (i. e., for no $I$ )
$I \models \neg \varphi \quad$ iff $I \not \vDash \varphi$
$I \models \varphi \wedge \psi \quad$ iff $I \models \varphi$ and $I \models \psi$
$I \models \varphi \vee \psi \quad$ iff $I \models \varphi$ or $I \models \psi$
$I \models \varphi \rightarrow \psi \quad$ iff $I \not \models \varphi$ or $I \models \psi$
$I \models \varphi \leftrightarrow \psi \quad$ iff $(I \models \varphi$ and $I \models \psi)$ or $(I \not \vDash \varphi$ and $I \not \vDash \psi)$

## Semantics of propositional logic: example

$$
\begin{aligned}
& \Sigma=\{p, q, r, s\} \\
& I=\{p \mapsto \mathbf{T}, q \mapsto \mathbf{F}, r \mapsto \mathbf{F}, s \mapsto \mathbf{T}\} \\
& \varphi=((p \vee q) \leftrightarrow(r \vee s)) \wedge(\neg(p \wedge q) \vee(r \wedge \neg s))
\end{aligned}
$$

Semantics
Equivalences
Normal forms
Entailment
Inference
Wrap-up

Question: $I \models \varphi$ ?

## More logic terminology

## Definition (model)

An interpretation $I$ is called a model of a formula $\varphi$ if $I \models \varphi$. it is a model of all formulae $\varphi \in \mathrm{KB}$.

## Definition (properties of formulae)

A formula $\varphi$ is called

- satisfiable if there exists a model of $\varphi$
- unsatisfiable if it is not satisfiable
- valid/a tautology if all interpretations are models of $\varphi$
- falsifiable if it is not a tautology

Note: All valid formulae are satisfiable.
All unsatisfiable formulae are falsifiable.

## More logic terminology (ctd.)

## Definition (logical equivalence)

Two formulae $\varphi$ and $\psi$ are logically equivalent, written $\varphi \equiv \psi$, if they have the same set of models.

In other words, $\varphi \equiv \psi$ holds if for all interpretations $I$,

## The truth table method

How can we decide if a formula is satisfiable, valid, etc.?
$\rightsquigarrow$ one simple idea: generate a truth table

ACS II
M. Helmert,
A. Karwath

Introduction
Basics
Syntax
Semantics
Equivalences
Normal forms
Entailment
Inference
Wrap-up

## The truth table method

How can we decide if a formula is satisfiable, valid, etc.? $\rightsquigarrow$ one simple idea: generate a truth table

The characteristic truth table

| $p$ | $q$ | $\neg p$ | $p \wedge q$ | $p \vee q$ | $p \rightarrow q$ | $p \leftrightarrow q$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{F}$ | $\mathbf{F}$ | $\mathbf{T}$ | $\mathbf{F}$ | $\mathbf{F}$ | $\mathbf{T}$ | $\mathbf{T}$ |
| $\mathbf{F}$ | $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{F}$ | $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{F}$ |
| $\mathbf{T}$ | $\mathbf{F}$ | $\mathbf{F}$ | $\mathbf{F}$ | $\mathbf{T}$ | $\mathbf{F}$ | $\mathbf{F}$ |
| $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{F}$ | $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{T}$ |

## Truth table method: example

Question: Is $((p \vee q) \wedge \neg q) \rightarrow p$ valid?

| $p$ | $q$ | $p \vee q$ | $(p \vee q) \wedge \neg q$ | $((p \vee q) \wedge \neg q) \rightarrow p$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{F}$ | $\mathbf{F}$ |  |  |  |
| $\mathbf{F}$ | $\mathbf{T}$ |  |  |  |
| $\mathbf{T}$ | $\mathbf{F}$ |  |  |  |
| $\mathbf{T}$ | $\mathbf{T}$ |  |  |  |

## Truth table method: example

ACS II
Question: Is $((p \vee q) \wedge \neg q) \rightarrow p$ valid?

| $p$ | $q$ | $p \vee q$ | $(p \vee q) \wedge \neg q$ | $((p \vee q) \wedge \neg q) \rightarrow p$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{F}$ | $\mathbf{F}$ | $\mathbf{F}$ | $\mathbf{F}$ | $\mathbf{T}$ |
| $\mathbf{F}$ | $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{F}$ | $\mathbf{T}$ |
| $\mathbf{T}$ | $\mathbf{F}$ | $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{T}$ |
| $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{F}$ | $\mathbf{T}$ |

## Truth table method: example

Question: Is $((p \vee q) \wedge \neg q) \rightarrow p$ valid?

| $p$ | $q$ | $p \vee q$ | $(p \vee q) \wedge \neg q$ | $((p \vee q) \wedge \neg q) \rightarrow p$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{F}$ | $\mathbf{F}$ | $\mathbf{F}$ | $\mathbf{F}$ | $\mathbf{T}$ |
| $\mathbf{F}$ | $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{F}$ | $\mathbf{T}$ |
| $\mathbf{T}$ | $\mathbf{F}$ | $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{T}$ |
| $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{F}$ | $\mathbf{T}$ |

- $\varphi$ is true for all possible combinations of truth values
$\rightsquigarrow$ all interpretations are models
$\rightsquigarrow \varphi$ is valid
- satisfiability, unsatisfiability, falsifiability likewise
- logical equivalence likewise


## Some well known equivalences

Idempotence

$$
\begin{aligned}
& \varphi \wedge \varphi \equiv \varphi \\
& \varphi \vee \varphi \equiv \varphi
\end{aligned}
$$

Commutativity

$$
\varphi \wedge \psi \equiv \psi \wedge \varphi
$$

$$
\varphi \vee \psi \equiv \psi \vee \varphi
$$

Associativity

$$
(\varphi \wedge \psi) \wedge \chi \equiv \varphi \wedge(\psi \wedge \chi)
$$

Distributivity

$$
(\varphi \vee \psi) \vee \chi \equiv \varphi \vee(\psi \vee \chi)
$$

$$
\varphi \wedge(\varphi \vee \psi) \equiv \varphi
$$

$$
\varphi \vee(\varphi \wedge \psi) \equiv \varphi
$$

$$
\varphi \wedge(\psi \vee \chi) \equiv(\varphi \wedge \psi) \vee(\varphi \wedge \chi)
$$

$$
\varphi \vee(\psi \wedge \chi) \equiv(\varphi \vee \psi) \wedge(\varphi \vee \chi)
$$

De Morgan

$$
\begin{aligned}
\neg(\varphi \wedge \psi) & \equiv \neg \varphi \vee \neg \psi \\
\neg(\varphi \vee \psi) & \equiv \neg \varphi \wedge \neg \psi
\end{aligned}
$$

Double negation

$$
\neg \neg \varphi \equiv \varphi
$$

$(\rightarrow)$-Elimination
$\varphi \rightarrow \psi \equiv \neg \varphi \vee \psi$
$(\leftrightarrow)$-Elimination
$\varphi \leftrightarrow \psi \equiv(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi)$

## Substitutability

## Theorem (Substitutability)

Let $\varphi$ and $\psi$ be two equivalent formulae, i. e., $\varphi \equiv \psi$.
Let $\chi$ be a formula in which $\varphi$ occurs as a subformula, and

Example: $p \vee \neg(q \vee r) \equiv p \vee(\neg q \wedge \neg r)$
by De Morgan's law and substitutability.

## Applying equivalences: examples (1)

$$
p \wedge(\neg q \vee p)
$$

## Applying equivalences: examples (1)

$$
\begin{aligned}
& p \wedge(\neg q \vee p) \\
\equiv & (p \wedge \neg q) \vee(p \wedge p) \quad \text { (Distributivity) }
\end{aligned}
$$

ACS II
M. Helmert,
A. Karwath

Introduction
Basics
Syntax
Semantics
Equivalences
Normal forms
Entailment
Inference
Wrap-up

## Applying equivalences: examples (1)

$$
\begin{aligned}
& p \wedge(\neg q \vee p) & & \\
\equiv & (p \wedge \neg q) \vee(p \wedge p) & & \text { (Distributivity) } \\
\equiv & (p \wedge \neg q) \vee p & & \text { (Idempotence) }
\end{aligned}
$$

ACS II
M. Helmert
A. Karwath

Introduction
Basics
Syntax
Semantics
Equivalences
Normal forms
Entailment
Inference
Wrap-up

## Applying equivalences: examples (1)

$$
\begin{aligned}
& p \wedge(\neg q \vee p) \\
\equiv & (p \wedge \neg q) \vee(p \wedge p) \\
\equiv & (p \wedge \neg q) \vee p \\
\equiv & p \vee(p \wedge \neg q)
\end{aligned}
$$

(Distributivity)
(Idempotence)
(Commutativity)

ACS II
M. Helmert,
A. Karwath

Introduction
Basics
Syntax
Semantics
Equivalences
Normal forms
Entailment
Inference
Wrap-up

## Applying equivalences: examples (1)

$$
\begin{aligned}
& p \wedge(\neg q \vee p) & & \\
\equiv & (p \wedge \neg q) \vee(p \wedge p) & & \text { (Distributivity) } \\
\equiv & (p \wedge \neg q) \vee p & & \text { (Idempotence) } \\
\equiv & p \vee(p \wedge \neg q) & & \text { (Commutativity) } \\
\equiv & p & & \text { (Absorption) }
\end{aligned}
$$

ACS II
M. Helmert,
A. Karwath

## Applying equivalences: examples (2)

$$
p \leftrightarrow q
$$

## Applying equivalences: examples (2)

$$
\begin{aligned}
& p \leftrightarrow q \\
\equiv & (p \rightarrow q) \wedge(q \rightarrow p)
\end{aligned}
$$

$$
((\leftrightarrow) \text {-Elimination })
$$

ACS II
M. Helmert,
A. Karwath

Basics
Syntax
Semantics
Equivalences
Normal forms
Entailment
Inference
Wrap-up

## Applying equivalences: examples (2)

$$
\begin{aligned}
& p \leftrightarrow q \\
\equiv & (p \rightarrow q) \wedge(q \rightarrow p) \\
\equiv & (\neg p \vee q) \wedge(\neg q \vee p)
\end{aligned}
$$

$$
((\leftrightarrow) \text {-Elimination })
$$

$$
((\rightarrow) \text {-Elimination })
$$

ACS II
M. Helmert
A. Karwath

## Basics

Syntax
Semantics
Equivalences
Normal forms
Entailment
Inference
Wrap-up

## Applying equivalences: examples (2)

$$
\begin{array}{rlrl} 
& p \leftrightarrow q & \\
\equiv & (p \rightarrow q) \wedge(q \rightarrow p) & ((\leftrightarrow) \text {-Elimination) } \\
\equiv & (\neg p \vee q) \wedge(\neg q \vee p) & ((\rightarrow) \text {-Elimination) } \\
\equiv & ((\neg p \vee q) \wedge \neg q) \vee((\neg p \vee q) \wedge p) & & \text { (Distributivity) }
\end{array}
$$

ACS II
M. Helmert
A. Karwath

## Applying equivalences: examples (2)

$$
\begin{array}{rlrl} 
& p \leftrightarrow q & & \\
\equiv & (p \rightarrow q) \wedge(q \rightarrow p) & & ((\leftrightarrow) \text {-Elimination) } \\
\equiv & (\neg p \vee q) \wedge(\neg q \vee p) & ((\rightarrow) \text {-Elimination) } \\
\equiv & ((\neg p \vee q) \wedge \neg q) \vee((\neg p \vee q) \wedge p) & & \text { (Distributivity) } \\
\equiv & (\neg q \wedge(\neg p \vee q)) \vee(p \wedge(\neg p \vee q)) & & \text { (Commutativity) }
\end{array}
$$

ACS II
M. Helmert
A. Karwath

## Applying equivalences: examples (2)

$$
\begin{array}{rlrl} 
& p \leftrightarrow q & \\
\equiv & (p \rightarrow q) \wedge(q \rightarrow p) & ((\leftrightarrow) \text {-Elimination) } \\
\equiv & (\neg p \vee q) \wedge(\neg q \vee p) & ((\rightarrow) \text {-Elimination) } \\
\equiv & ((\neg p \vee q) \wedge \neg q) \vee((\neg p \vee q) \wedge p) & & \text { (Distributivity) } \\
\equiv & (\neg q \wedge(\neg p \vee q)) \vee(p \wedge(\neg p \vee q)) & & \text { (Commutativity) } \\
\equiv & ((\neg q \wedge \neg p) \vee(\neg q \wedge q)) \vee & &
\end{array}
$$

ACS II
M. Helmert
A. Karwath

## Applying equivalences: examples (2)

$$
\begin{aligned}
& p \leftrightarrow q & & ((\leftrightarrow) \text {-Elimination) } \\
\equiv & (p \rightarrow q) \wedge(q \rightarrow p) & & ((\rightarrow) \text {-Elimination) } \\
\equiv & (\neg p \vee q) \wedge(\neg q \vee p) & & \text { (Distributivity) } \\
\equiv & ((\neg p \vee q) \wedge \neg q) \vee((\neg p \vee q) \wedge p) & & \\
\equiv & (\neg q \wedge(\neg p \vee q)) \vee(p \wedge(\neg p \vee q)) & & \text { (Commutativity) } \\
\equiv & ((\neg q \wedge \neg p) \vee(\neg q \wedge q)) \vee & & \text { (Distributivity) }
\end{aligned}
$$

## Applying equivalences: examples (2)

$$
\begin{array}{rlrl} 
& p \leftrightarrow q & & \\
\equiv & (p \rightarrow q) \wedge(q \rightarrow p) & ((\leftrightarrow) \text {-Elimination) } \\
\equiv & (\neg p \vee q) \wedge(\neg q \vee p) & & ((\rightarrow) \text {-Elimination) } \\
\equiv & ((\neg p \vee q) \wedge \neg q) \vee((\neg p \vee q) \wedge p) & & \text { (Distributivity) } \\
\equiv & (\neg q \wedge(\neg p \vee q)) \vee(p \wedge(\neg p \vee q)) & & \text { (Commutativity) } \\
\equiv & ((\neg q \wedge \neg p) \vee(\neg q \wedge q)) \vee & & \\
& ((p \wedge \neg p) \vee(p \wedge q)) & & \text { (Distributivity) } \\
\equiv & ((\neg q \wedge \neg p) \vee \perp) \vee(\perp \vee(p \wedge q)) & & (\varphi \wedge \neg \varphi \equiv \perp)
\end{array}
$$

M. Helmert
A. Karwath

## Applying equivalences: examples (2)

$$
\begin{array}{rlrl} 
& p \leftrightarrow q & \\
\equiv & (p \rightarrow q) \wedge(q \rightarrow p) & ((\leftrightarrow) \text {-Elimination) } \\
\equiv & (\neg p \vee q) \wedge(\neg q \vee p) & ((\rightarrow) \text {-Elimination) } \\
\equiv & ((\neg p \vee q) \wedge \neg q) \vee((\neg p \vee q) \wedge p) & \text { (Distributivity) } \\
\equiv & (\neg q \wedge(\neg p \vee q)) \vee(p \wedge(\neg p \vee q)) & & \text { (Commutativity) } \\
\equiv & ((\neg q \wedge \neg p) \vee(\neg q \wedge q)) \vee & \\
& ((p \wedge \neg p) \vee(p \wedge q)) & & \text { (Distributivity) } \\
\equiv & ((\neg q \wedge \neg p) \vee \perp) \vee(\perp \vee(p \wedge q)) & & (\varphi \wedge \neg \varphi \equiv \perp) \\
\equiv & (\neg q \wedge \neg p) \vee(p \wedge q) & (\varphi \vee \perp \equiv \varphi \equiv \perp \vee \varphi)
\end{array}
$$

M. Helmert
A. Karwath

## Conjunctive normal form

## Definition (conjunctive normal form)

A formula is in conjunctive normal form (CNF) if it consists of a conjunction of clauses, i. e., if it has the form

$$
\bigwedge_{i=1}^{n}\left(\bigvee_{j=1}^{m_{i}} l_{i j}\right)
$$

where the $l_{i j}$ are literals.
Theorem: For each formula $\varphi$, there exists a logically equivalent formula in CNF.
Note: A CNF formula is valid iff every clause is valid.

## Disjunctive normal form

## Definition (disjunctive normal form)

A formula is in disjunctive normal form (DNF) if it consists of a disjunction of conjunctions of literals, i. e., if it has the form

Basics
Syntax
Semantics
Equivalences
Normal forms
Entailment
Inference
Wrap-up
where the $l_{i j}$ are literals.
Theorem: For each formula $\varphi$, there exists a logically equivalent formula in DNF.
Note: A DNF formula is satisfiable iff at least one disjunct is satisfiable.

## CNF and DNF examples

## Examples

- $(p \vee \neg q) \wedge p$
- $(r \vee q) \wedge p \wedge(r \vee s)$
- $p \vee(\neg q \wedge r)$
- $p \vee \neg q \rightarrow p$
- $p$


## CNF and DNF examples

## Examples

- $(p \vee \neg q) \wedge p$ is in CNF
- $(r \vee q) \wedge p \wedge(r \vee s)$
- $p \vee(\neg q \wedge r)$
- $p \vee \neg q \rightarrow p$
- $p$


## CNF and DNF examples

## Examples

- $(p \vee \neg q) \wedge p$ is in CNF
- $(r \vee q) \wedge p \wedge(r \vee s)$ is in CNF
- $p \vee(\neg q \wedge r)$
- $p \vee \neg q \rightarrow p$
- $p$


## CNF and DNF examples

## Examples

- $(p \vee \neg q) \wedge p$ is in CNF
- $(r \vee q) \wedge p \wedge(r \vee s)$ is in CNF
- $p \vee(\neg q \wedge r)$ is in DNF
- $p \vee \neg q \rightarrow p$
- $p$


## CNF and DNF examples

## Examples

- $(p \vee \neg q) \wedge p$ is in CNF
- $(r \vee q) \wedge p \wedge(r \vee s)$ is in CNF
M. Helmert
A. Karwath
- $p \vee(\neg q \wedge r)$ is in DNF
- $p \vee \neg q \rightarrow p$ is neither in CNF nor in DNF
- $p$


## CNF and DNF examples

## Examples

- $(p \vee \neg q) \wedge p$ is in CNF
- $(r \vee q) \wedge p \wedge(r \vee s)$ is in CNF
- $p \vee(\neg q \wedge r)$ is in DNF
- $p \vee \neg q \rightarrow p$ is neither in CNF nor in DNF
- $p$ is in CNF and in DNF


## Producing CNF

## Algorithm for producing CNF

(1) Get rid of $\rightarrow$ and $\leftrightarrow$ with $(\rightarrow)$-Elimination and $(\leftrightarrow)$-Elimination.
$\rightsquigarrow$ formula structure: only $\vee, \wedge$, $\neg$
(2) Move negations inwards with De Morgan and Double negation.
$\rightsquigarrow$ formula structure: only $\vee, \wedge$, literals
M. Helmert
A. Karwath

Introduction
Basics
Syntax
Semantics
Equivalences
Normal forms
Entailment
Inference
Wrap-up
(3) Distribute $\vee$ over $\wedge$ with Distributivity (strictly speaking, also Commutativity).
$\rightsquigarrow$ formula structure: CNF
(9) Optionally, simplify (e.g., using Idempotence) at the end or at any previous point.

Note: For DNF, just distribute $\wedge$ over $\vee$ instead. Question: runtime?

## Producing CNF: example

## Producing CNF

Given: $\varphi=((p \vee r) \wedge \neg q) \rightarrow p$

ACS II
M. Helmert,
A. Karwath

Introduction
Basics
Syntax
Semantics
Equivalences
Normal forms
Entailment
Inference
Wrap-up

## Producing CNF: example

## Producing CNF

Given: $\varphi=((p \vee r) \wedge \neg q) \rightarrow p$

$$
\varphi \equiv \neg((p \vee r) \wedge \neg q) \vee p \quad \text { Step } 1
$$

## Producing CNF: example

## Producing CNF

Given: $\varphi=((p \vee r) \wedge \neg q) \rightarrow p$

$$
\begin{aligned}
\varphi & \equiv \neg((p \vee r) \wedge \neg q) \vee p & & \text { Step 1 } \\
& \equiv(\neg(p \vee r) \vee \neg \neg q) \vee p & & \text { Step 2 }
\end{aligned}
$$

ACS II
M. Helmert,
A. Karwath

Introduction
Basics
Syntax
Semantics
Equivalences
Normal forms
Entailment
Inference
Wrap-up

## Producing CNF: example

## Producing CNF

Given: $\varphi=((p \vee r) \wedge \neg q) \rightarrow p$

$$
\begin{aligned}
\varphi & \equiv \neg((p \vee r) \wedge \neg q) \vee p & & \text { Step 1 } \\
& \equiv(\neg(p \vee r) \vee \neg \neg q) \vee p & & \text { Step 2 } \\
& \equiv((\neg p \wedge \neg r) \vee q) \vee p & & \text { Step 2 }
\end{aligned}
$$

Introduction
Basics
Syntax
Semantics
Equivalences
Normal forms
Entailment
Inference
Wrap-up

## Producing CNF: example

## Producing CNF

Given: $\varphi=((p \vee r) \wedge \neg q) \rightarrow p$

$$
\begin{aligned}
\varphi & \equiv \neg((p \vee r) \wedge \neg q) \vee p \\
& \equiv(\neg(p \vee r) \vee \neg \neg q) \vee p \\
& \equiv((\neg p \wedge \neg r) \vee q) \vee p \\
& \equiv((\neg p \vee q) \wedge(\neg r \vee q)) \vee p
\end{aligned}
$$

Step 1
Step 2
Step 2
Step 3

Introduction
Basics
Syntax
Semantics
Equivalences
Normal forms
Entailment
Inference
Wrap-up

## Producing CNF: example

## Producing CNF

Given: $\varphi=((p \vee r) \wedge \neg q) \rightarrow p$

$$
\begin{aligned}
\varphi & \equiv \neg((p \vee r) \wedge \neg q) \vee p \\
& \equiv(\neg(p \vee r) \vee \neg \neg q) \vee p \\
& \equiv((\neg p \wedge \neg r) \vee q) \vee p \\
& \equiv((\neg p \vee q) \wedge(\neg r \vee q)) \vee p \\
& \equiv(\neg p \vee q \vee p) \wedge(\neg r \vee q \vee p)
\end{aligned}
$$

Step 1
Step 2
Introduction
Basics
Syntax
Semantics
Equivalences
Normal forms
Entailment
Step 2
Step 3
Step 3

## Producing CNF: example

## Producing CNF

Given: $\varphi=((p \vee r) \wedge \neg q) \rightarrow p$

$$
\begin{aligned}
\varphi & \equiv \neg((p \vee r) \wedge \neg q) \vee p \\
& \equiv(\neg(p \vee r) \vee \neg \neg q) \vee p \\
& \equiv((\neg p \wedge \neg r) \vee q) \vee p \\
& \equiv((\neg p \vee q) \wedge(\neg r \vee q)) \vee p \\
& \equiv(\neg p \vee q \vee p) \wedge(\neg r \vee q \vee p) \\
& \equiv \top \wedge(\neg r \vee q \vee p)
\end{aligned}
$$

Step 1
Step 2
Step 2
Step 3
Step 3
Step 4

Introduction
Basics
Syntax
Semantics
Equivalences
Normal forms
Entailment
Inference
Wrap-up

## Producing CNF: example

## Producing CNF

Given: $\varphi=((p \vee r) \wedge \neg q) \rightarrow p$

$$
\begin{aligned}
\varphi & \equiv \neg((p \vee r) \wedge \neg q) \vee p \\
& \equiv(\neg(p \vee r) \vee \neg \neg q) \vee p \\
& \equiv((\neg p \wedge \neg r) \vee q) \vee p \\
& \equiv((\neg p \vee q) \wedge(\neg r \vee q)) \vee p \\
& \equiv(\neg p \vee q \vee p) \wedge(\neg r \vee q \vee p) \\
& \equiv \top \wedge(\neg r \vee q \vee p) \\
& \equiv \neg r \vee q \vee p
\end{aligned}
$$

Step 1
Step 2
Step 2
Step 3
Step 3
Step 4
Step 4

Introduction
Basics
Syntax
Semantics
Equivalences
Normal forms
Entailment
Inference
Wrap-up

## Logical entailment

A set of formulae (a knowledge base) usually provides an incomplete description of the world, i. e., it leaves the truth values of some propositions open.

Example: $\mathrm{KB}=\{p \vee q, r \vee \neg p, s\}$ is definitive w.r.t. $s$, but leaves $p, q, r$ open (though not completely!)

## Logical entailment

A set of formulae (a knowledge base) usually provides an incomplete description of the world, i.e., it leaves the truth values of some propositions open.

Example: $\mathrm{KB}=\{p \vee q, r \vee \neg p, s\}$ is definitive w.r.t. $s$, but leaves $p, q, r$ open (though not completely!)

## Models of the KB

| $p$ | $q$ | $r$ | $s$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{F}$ | $\mathbf{T}$ | $\mathbf{F}$ | $\mathbf{T}$ |
| $\mathbf{F}$ | $\mathbf{T}$ | $\mathbf{F}$ | $\mathbf{T}$ |
| $\mathbf{T}$ | $\mathbf{F}$ | $\mathbf{T}$ | $\mathbf{T}$ |
| $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{T}$ | $\mathbf{T}$ |

In all models, $q \vee r$ is true. Hence, $q \vee r$ is logically entailed by KB (a logical consequence of KB).

## Logical entailment: formally

## Definition (entailment)

Let KB be a set of formulae and $\varphi$ be a formula.
We say that KB entails $\varphi$ (also: $\varphi$ follows logically from KB ;
$\varphi$ is a logical consequence of KB ), in symbols $\mathrm{KB} \models \varphi$,
if all models of KB are models of $\varphi$.

## Properties of entailment

Some properties of logical entailment:

## Properties of entailment

Some properties of logical entailment:

- Deduction theorem: $\mathrm{KB} \cup\{\varphi\} \models \psi$ iff $\mathrm{KB} \models \varphi \rightarrow \psi$


## Properties of entailment

Some properties of logical entailment:

- Deduction theorem: $\mathrm{KB} \cup\{\varphi\} \models \psi$ iff $\mathrm{KB} \models \varphi \rightarrow \psi$
- Contraposition theorem: $\mathrm{KB} \cup\{\varphi\} \models \neg \psi$ iff $\mathrm{KB} \cup\{\psi\} \models \neg \varphi$


## Properties of entailment

Some properties of logical entailment:

- Deduction theorem: $\mathrm{KB} \cup\{\varphi\} \models \psi$ iff $\mathrm{KB} \models \varphi \rightarrow \psi$
- Contraposition theorem: $\mathrm{KB} \cup\{\varphi\} \models \neg \psi$ iff $\mathrm{KB} \cup\{\psi\} \models \neg \varphi$
- Contradiction theorem:
$\mathrm{KB} \cup\{\varphi\}$ is unsatisfiable iff $\mathrm{KB} \models \neg \varphi$


## Proof of the deduction theorem

Deduction theorem: $\mathrm{KB} \cup\{\varphi\} \models \psi$ iff $\mathrm{KB} \vDash \varphi \rightarrow \psi$

## Proof.

" $\Rightarrow$ ": The premise is that $\mathrm{KB} \cup\{\varphi\} \models \psi$.
We must show that $\mathrm{KB} \models \varphi \rightarrow \psi$, i. e., that all models of KB
M. Helmert
A. Karwath

Syntax
Semantics
Equivalences
Normal forms
Entailment
Inference
Wrap-up

## Proof of the deduction theorem

Deduction theorem: $\mathrm{KB} \cup\{\varphi\} \models \psi$ iff $\mathrm{KB} \vDash \varphi \rightarrow \psi$

## Proof.

" $\Rightarrow$ ": The premise is that $\mathrm{KB} \cup\{\varphi\} \models \psi$.
We must show that $\mathrm{KB} \models \varphi \rightarrow \psi$, i. e., that all models of KB
M. Helmert
A. Karwath satisfy $\varphi \rightarrow \psi$. Consider any such model $I$.
We distinguish two cases:

- Case 1: $I \models \varphi$.

Then $I$ is a model of $\mathrm{KB} \cup\{\varphi\}$, and by the premise, $I \models \psi$, from which we conclude that $I \models \varphi \rightarrow \psi$.

## Proof of the deduction theorem

Deduction theorem: $\mathrm{KB} \cup\{\varphi\} \models \psi$ iff $\mathrm{KB} \models \varphi \rightarrow \psi$

## Proof.

" $\Rightarrow$ ": The premise is that $\mathrm{KB} \cup\{\varphi\} \models \psi$.
We must show that $\mathrm{KB} \models \varphi \rightarrow \psi$, i. e., that all models of KB
M. Helmert
A. Karwath satisfy $\varphi \rightarrow \psi$. Consider any such model $I$.
We distinguish two cases:

- Case 1: $I \models \varphi$.

Then $I$ is a model of $\mathrm{KB} \cup\{\varphi\}$, and by the premise, $I \models \psi$, from which we conclude that $I \models \varphi \rightarrow \psi$.

- Case 2: $I \not \vDash \varphi$.

Then we can directly conclude that $I \models \varphi \rightarrow \psi$.

## Proof of the deduction theorem

Deduction theorem: $\mathrm{KB} \cup\{\varphi\} \models \psi$ iff $\mathrm{KB} \models \varphi \rightarrow \psi$

## Proof (ctd.)

" $\Leftarrow$ ": The premise is that $\mathrm{KB} \models \varphi \rightarrow \psi$.
We must show that $\mathrm{KB} \cup\{\varphi\} \models \psi$, i. e., that all models of
M. Helmert
A. Karwath $\mathrm{KB} \cup\{\varphi\}$ satisfy $\psi$. Consider any such model $I$.

## Proof of the deduction theorem

Deduction theorem: $\mathrm{KB} \cup\{\varphi\} \models \psi$ iff $\mathrm{KB} \models \varphi \rightarrow \psi$

## Proof (ctd.)

" $\Leftarrow$ ": The premise is that $\mathrm{KB} \models \varphi \rightarrow \psi$.
We must show that $\mathrm{KB} \cup\{\varphi\} \models \psi$, i. e., that all models of $\mathrm{KB} \cup\{\varphi\}$ satisfy $\psi$. Consider any such model $I$.

Basics
Syntax
Semantics
Equivalences
Normal forms
Entailment
Inference
Wrap-up

By definition, $I \models \varphi$. Moreover, as $I$ is a model of KB , we have $I \models \varphi \rightarrow \psi$ by the premise.

## Proof of the deduction theorem

Deduction theorem: $\mathrm{KB} \cup\{\varphi\} \models \psi$ iff $\mathrm{KB} \models \varphi \rightarrow \psi$
Proof (ctd.)
" $\Leftarrow$ ": The premise is that $\mathrm{KB} \models \varphi \rightarrow \psi$.
We must show that $\mathrm{KB} \cup\{\varphi\} \vDash \psi$, i. e., that all models of $\mathrm{KB} \cup\{\varphi\}$ satisfy $\psi$. Consider any such model $I$.
By definition, $I \models \varphi$. Moreover, as $I$ is a model of KB, we have $I \models \varphi \rightarrow \psi$ by the premise.
Putting this together, we get $I \models \varphi \wedge(\varphi \rightarrow \psi) \equiv \varphi \wedge \psi$, which implies that $I \models \psi$.

## Proof of the contraposition theorem

Contraposition theorem: $\mathrm{KB} \cup\{\varphi\} \vDash \neg \psi$ iff $\mathrm{KB} \cup\{\psi\} \models \neg \varphi$

## Proof.

By the deduction theorem, $\mathrm{KB} \cup\{\varphi\} \models \neg \psi$ iff $\mathrm{KB} \models \varphi \rightarrow \neg \psi$.
M. Helmert
A. Karwath

Introduction
Basics
Syntax
Semantics
Equivalences
Normal forms
Entailment
Inference
Wrap-up

## Proof of the contraposition theorem

Contraposition theorem: $\mathrm{KB} \cup\{\varphi\} \vDash \neg \psi$ iff $\mathrm{KB} \cup\{\psi\} \models \neg \varphi$

## Proof.

By the deduction theorem, $\mathrm{KB} \cup\{\varphi\} \models \neg \psi$ iff $\mathrm{KB} \models \varphi \rightarrow \neg \psi$.
For the same reason, $\mathrm{KB} \cup\{\psi\} \models \neg \varphi$ iff $\mathrm{KB} \models \psi \rightarrow \neg \varphi$.
We have $\varphi \rightarrow \neg \psi \equiv \neg \varphi \vee \neg \psi \equiv \neg \psi \vee \neg \varphi \equiv \psi \rightarrow \neg \varphi$.
M. Helmert
A. Karwath

Introduction
Basics
Syntax
Semantics
Equivalences
Normal forms
Entailment
Inference
Wrap-up

## Proof of the contraposition theorem

Contraposition theorem: $\mathrm{KB} \cup\{\varphi\} \models \neg \psi$ iff $\mathrm{KB} \cup\{\psi\} \models \neg \varphi$
M. Helmert
A. Karwath

## Proof.

By the deduction theorem, $\mathrm{KB} \cup\{\varphi\} \models \neg \psi$ iff $\mathrm{KB} \models \varphi \rightarrow \neg \psi$.
For the same reason, $\mathrm{KB} \cup\{\psi\} \models \neg \varphi$ iff $\mathrm{KB} \models \psi \rightarrow \neg \varphi$.
We have $\varphi \rightarrow \neg \psi \equiv \neg \varphi \vee \neg \psi \equiv \neg \psi \vee \neg \varphi \equiv \psi \rightarrow \neg \varphi$.
Putting this together, we get

$$
\begin{array}{ll} 
& \mathrm{KB} \cup\{\varphi\} \models \neg \psi \\
\text { iff } & \mathrm{KB} \models \neg \varphi \vee \neg \psi \\
\text { iff } & \mathrm{KB} \cup\{\psi\} \models \neg \varphi
\end{array}
$$

as required.

## Inference rules, calculi and proofs

Question: Can we determine whether $\mathrm{KB} \vDash \varphi$ without considering all interpretations (the truth table method)?

- Yes! There are various ways of doing this.
- One is to use inference rules that produce formulae that follow logically from a given set of formulae.
- Inference rules are written in the form

Basics
Inference
Calculi
Properties
Resolution
Wrap-up

$$
\frac{\varphi_{1}, \ldots, \varphi_{k}}{\psi}
$$

meaning "if $\varphi_{1}, \ldots, \varphi_{k}$ are true, then $\psi$ is also true."

- $k=0$ is allowed; such inference rules are called axioms.
- A set of inference rules is called a calculus or proof system.


## Some inference rules for propositional logic

Modus ponens $\quad \frac{\varphi, \varphi \rightarrow \psi}{\psi}$
Modus tolens

$$
\frac{\neg \psi, \varphi \rightarrow \psi}{\neg \varphi}
$$

M. Helmert,
A. Karwath

And elimination $\quad \frac{\varphi \wedge \psi}{\varphi} \quad \frac{\varphi \wedge \psi}{\psi}$
Basics
Inference
Calculi
Properties
Resolution
And introduction $\frac{\varphi, \psi}{\varphi \wedge \psi}$
Or introduction

$$
\frac{\varphi}{\varphi \vee \psi}
$$

$(\perp)$ elimination
$\frac{\perp}{\varphi}$
$(\leftrightarrow)$ elimination $\quad \frac{\varphi \leftrightarrow \psi}{\varphi \rightarrow \psi} \quad \frac{\varphi \leftrightarrow \psi}{\psi \rightarrow \varphi}$

## Derivations

## Definition (derivation)

A derivation or proof of a formula $\varphi$ from a knowledge base KB is a sequence of formulae $\psi_{1}, \ldots, \psi_{k}$ such that

- $\psi_{k}=\varphi$ and
- for all $i \in\{1, \ldots, k\}$ :
- $\psi_{i} \in \mathrm{~KB}$, or
- $\psi_{i}$ is the result of applying an inference rule to some elements of $\left\{\psi_{1}, \ldots, \psi_{i-1}\right\}$.


## Derivation example

Example
Given: $\mathrm{KB}=\{p, p \rightarrow q, p \rightarrow r, q \wedge r \rightarrow s\}$
Objective: Give a derivation of $s \wedge r$ from KB.

## Derivation example

## Example

Given: $\mathrm{KB}=\{p, p \rightarrow q, p \rightarrow r, q \wedge r \rightarrow s\}$
Objective: Give a derivation of $s \wedge r$ from KB.
(1) $p(\mathrm{~KB})$
(2) $p \rightarrow q(\mathrm{~KB})$
(3) $q(1,2$, modus ponens)
M. Helmert
A. Karwath
(9) $p \rightarrow r(\mathrm{~KB})$
(3) $r$ (1, 4, modus ponens)
(0) $q \wedge r(3,5$, and introduction)
(1) $q \wedge r \rightarrow s(\mathrm{~KB})$
(3) $s(6,7$, modus ponens)

- $s \wedge r(8,5$, and introduction)


## Soundness and completeness

## Definition ( $\mathrm{KB} \vdash_{\mathrm{c}} \varphi$, soundness, completeness)

We write $\mathrm{KB} \vdash_{\mathrm{c}} \varphi$ if there is a derivation of $\varphi$ from KB in

A calculus $\mathbf{C}$ is sound or correct if for all KB and $\varphi$, we have that $\mathrm{KB} \vdash \mathrm{c} \varphi$ implies $\mathrm{KB} \models \varphi$.

A calculus $\mathbf{C}$ is complete if for all KB and $\varphi$, we have that $\mathrm{KB} \models \varphi$ implies $\mathrm{KB} \vdash_{\mathrm{c}} \varphi$.

## Soundness and completeness

## Definition ( $\mathrm{KB} \vdash_{\mathrm{c}} \varphi$, soundness, completeness)

We write $\mathrm{KB} \vdash_{\mathrm{c}} \varphi$ if there is a derivation of $\varphi$ from KB in

A calculus $\mathbf{C}$ is sound or correct if for all KB and $\varphi$, we have that $\mathrm{KB} \vdash \mathrm{c} \varphi$ implies $\mathrm{KB} \models \varphi$.

A calculus C is complete if for all KB and $\varphi$, we have that $\mathrm{KB} \models \varphi$ implies $\mathrm{KB} \vdash_{\mathrm{c}} \varphi$.

Consider the calculus $\mathbf{C}$ given by the derivation rules shown previously.
Question: Is C sound?
Question: Is C complete?

## Refutation-completeness

- Clearly we want sound calculi.
- Do we also need complete calculi?


## Refutation-completeness

- Clearly we want sound calculi.
- Do we also need complete calculi?
- Recall the contradiction theorem:

$$
\mathrm{KB} \cup\{\varphi\} \text { is unsatisfiable iff } \mathrm{KB} \models \neg \varphi
$$

- This implies that $\mathrm{KB} \models \varphi$ iff $\mathrm{KB} \cup\{\neg \varphi\}$ is unsatisfiable, i. e., $\mathrm{KB} \vDash \varphi$ iff $\mathrm{KB} \cup\{\neg \varphi\} \models \perp$.
- Hence, we can reduce the general entailment problem to
M. Helmert,
A. Karwath testing entailment of $\perp$.


## Refutation-completeness

- Clearly we want sound calculi.
- Do we also need complete calculi?
- Recall the contradiction theorem:
M. Helmert,
A. Karwath $\mathrm{KB} \cup\{\varphi\}$ is unsatisfiable iff $\mathrm{KB} \models \neg \varphi$
- This implies that $\mathrm{KB} \models \varphi$ iff $\mathrm{KB} \cup\{\neg \varphi\}$ is unsatisfiable, i. e., $\mathrm{KB} \vDash \varphi$ iff $\mathrm{KB} \cup\{\neg \varphi\} \models \perp$.
- Hence, we can reduce the general entailment problem to testing entailment of $\perp$.


## Definition (refutation-complete)

A calculus $\mathbf{C}$ is refutation-complete if for all KB , we have that $\mathrm{KB} \models \perp$ implies $\mathrm{KB} \vdash \mathrm{c} \perp$.

## Refutation-completeness

- Clearly we want sound calculi.
- Do we also need complete calculi?
- Recall the contradiction theorem:
$\mathrm{KB} \cup\{\varphi\}$ is unsatisfiable iff $\mathrm{KB} \models \neg \varphi$
- This implies that $\mathrm{KB} \models \varphi$ iff $\mathrm{KB} \cup\{\neg \varphi\}$ is unsatisfiable, i. e., $\mathrm{KB} \vDash \varphi$ iff $\mathrm{KB} \cup\{\neg \varphi\} \mid=\perp$.
- Hence, we can reduce the general entailment problem to
M. Helmert,
A. Karwath

Introduction
Basics
Inference
Calculi
Properties
Resolution
Wrap-up testing entailment of $\perp$.

## Definition (refutation-complete)

A calculus $\mathbf{C}$ is refutation-complete if for all KB , we have that $\mathrm{KB} \models \perp$ implies $\mathrm{KB} \vdash \mathrm{c} \perp$.

Question: What is the relationship between completeness and refutation-completeness?

## Resolution: idea

- Resolution is a refutation-complete calculus for knowledge bases in CNF.
- For knowledge bases that are not in CNF, we can convert them to equivalent formulae in CNF.
- However, this conversion can take exponential time.
- Alternatively, we can convert to a satisfiability-equivalent (but not logically equivalent) knowledge base in polynomial time.


## Basics

Inference
Calculi
Properties
Resolution
Wrap-up

## Resolution: idea

- Resolution is a refutation-complete calculus for knowledge bases in CNF.
- For knowledge bases that are not in CNF, we can convert them to equivalent formulae in CNF.
- However, this conversion can take exponential time.
- Alternatively, we can convert to a satisfiability-equivalent (but not logically equivalent) knowledge base in polynomial time.

Basics
Inference
Calculi
Properties
Resolution
Wrap-up

- To test if $\mathrm{KB} \vDash \varphi$, we test if $\mathrm{KB} \cup\{\neg \varphi\} \vdash_{\mathbf{R}} \perp$, where $\mathbf{R}$ is the resolution calculus.
(In the following, we simply write $\vdash$ instead of $\vdash_{\mathbf{R}}$.)


## Resolution: idea

- Resolution is a refutation-complete calculus for knowledge bases in CNF.
- For knowledge bases that are not in CNF, we can convert them to equivalent formulae in CNF.
- However, this conversion can take exponential time.
- Alternatively, we can convert to a satisfiability-equivalent (but not logically equivalent) knowledge base in polynomial time.
- To test if $\mathrm{KB} \vDash \varphi$, we test if $\mathrm{KB} \cup\{\neg \varphi\} \vdash_{\mathbf{R}} \perp$, where $\mathbf{R}$ is the resolution calculus.
(In the following, we simply write $\vdash$ instead of $\vdash_{\mathbf{R}}$.)
- In the worst case, resolution takes exponential time.
- However, this is probably true for all refutation complete proof methods, as we will see in the computational complexity part of the course.


## Knowledge bases as clause sets

- Resolution requires that knowledge bases are given in CNF.
- In this case, we can simplify notation:
- A formula in CNF can be equivalently seen as a set of clauses (due to commutativity, idempotence and associativity of $(\vee)$ ).
- A set of formulae can then also be seen as a set of clauses.
- A clause can be seen as a set of literals (due to commutativity, idempotence and associativity of $(\wedge)$ ).
- So a knowledge base can be represented as a set of sets of literals.
- Example:
- KB $=\{(p \vee p),(\neg p \vee q) \wedge(\neg p \vee r) \wedge(\neg p \vee q) \wedge r$,

$$
(\neg q \vee \neg r \vee s) \wedge p\}
$$

- as clause set:


## Knowledge bases as clause sets

- Resolution requires that knowledge bases are given in CNF.
- In this case, we can simplify notation:
- A formula in CNF can be equivalently seen as a set of clauses (due to commutativity, idempotence and associativity of $(\vee)$ ).
- A set of formulae can then also be seen as a set of clauses.
- A clause can be seen as a set of literals (due to commutativity, idempotence and associativity of $(\wedge)$ ).
- So a knowledge base can be represented as a set of sets of literals.
- Example:
- KB $=\{(p \vee p),(\neg p \vee q) \wedge(\neg p \vee r) \wedge(\neg p \vee q) \wedge r$,

$$
(\neg q \vee \neg r \vee s) \wedge p\}
$$

- as clause set: $\{\{p\},\{\neg p, q\},\{\neg p, r\},\{r\},\{\neg q, \neg r, s\}\}$


## Resolution: notation, empty clauses

- In the following, we use common logical notation for sets of literals (treating them as clauses) and sets of sets of literals (treating them as CNF formulae).
- Example:
- Let $I=\{p \mapsto 1, q \mapsto 1, r \mapsto 1, s \mapsto 1\}$.
- Let $\Delta=\{\{p\},\{\neg p, q\},\{\neg p, r\},\{r\},\{\neg q, \neg r, s\}\}$.
- We can write $I \models \Delta$.
- One notation ambiguity:
- Does the empty set mean an empty clause (equivalent to $\perp$ ) or an empty set of clauses (equivalent to $T$ )?
- To resolve this ambiguity, the empty clause is written as $\square$, while the empty set of clauses is written as $\emptyset$.


## The resolution rule

The resolution calculus consists of a single rule,
M. Helmert
A. Karwath called the resolution rule:

$$
\frac{C_{1} \cup\{l\}, C_{2} \cup\{\neg l\}}{C_{1} \cup C_{2}}
$$

where $C_{1}$ and $C_{2}$ are (possibly empty) clauses, and $l$ is an atom (and hence $l$ and $\neg l$ are complementary literals).

In the rule above,

- $l$ and $\neg l$ are called the resolution literals,
- $C_{1} \cup\{l\}$ and $C_{2} \cup\{\neg l\}$ are called the parent clauses, and
- $C_{1} \cup C_{2}$ is called the resolvent.


## Resolution proofs

## Definition (resolution proof)

Let $\Delta$ be a set of clauses. We define the resolvents of $\Delta$ as $\mathbf{R}(\Delta):=\Delta \cup\{C \mid C$ is a resolvent of two clauses from $\Delta\}$.
M. Helmert
A. Karwath

A resolution proof of a clause $D$ from $\Delta$, is a sequence of clauses $C_{1}, \ldots, C_{n}$ with

Inference
Calculi
Properties
Resolution

- $C_{n}=D$ and
- $C_{i} \in \mathbf{R}\left(\Delta \cup\left\{C_{1}, \ldots, C_{i-1}\right\}\right)$ for all $i \in\{1, \ldots, n\}$.

We say that $D$ can be derived from $\Delta$ by resolution, written $\Delta \vdash_{\mathrm{R}} D$, if there exists a resolution proof of $D$ from $\Delta$.

Remarks: Resolution is a sound and refutation-complete, but incomplete proof system.

## Resolution proofs: example

## Using resolution for testing entailment: example

Let $\mathrm{KB}=\{p, p \rightarrow(q \wedge r)\}$.
We want to use resolution to show that show that $\mathrm{KB} \vDash r \vee s$.
M. Helmert
A. Karwath

## Resolution proofs: example

## Using resolution for testing entailment: example

Let $\mathrm{KB}=\{p, p \rightarrow(q \wedge r)\}$.
We want to use resolution to show that show that $\mathrm{KB} \vDash r \vee s$. Three steps:
(1) Reduce entailment to unsatisfiability.
(2) Convert resulting knowledge base to clause form (CNF).
(3) Derive empty clause by resolution.
M. Helmert
A. Karwath

## Resolution proofs: example

## Using resolution for testing entailment: example

Let $\mathrm{KB}=\{p, p \rightarrow(q \wedge r)\}$.
We want to use resolution to show that show that $\mathrm{KB} \models r \vee s$. Three steps:

- Reduce entailment to unsatisfiability.
(3) Convert resulting knowledge base to clause form (CNF).
- Derive empty clause by resolution.

Step 1: Reduce entailment to unsatisfiability.

## Resolution proofs: example

## Using resolution for testing entailment: example

Let $\mathrm{KB}=\{p, p \rightarrow(q \wedge r)\}$.
We want to use resolution to show that show that $\mathrm{KB} \models r \vee s$.
Three steps:
(1) Reduce entailment to unsatisfiability.
(2) Convert resulting knowledge base to clause form (CNF).
(3) Derive empty clause by resolution.

Step 1: Reduce entailment to unsatisfiability. $\mathrm{KB} \models r \vee s$ iff $\mathrm{KB} \cup\{\neg(r \vee s)\}$ is unsatisfiable. Hence, consider $\mathrm{KB}^{\prime}=\mathrm{KB} \cup\{\neg(r \vee s)\}=\{p, p \rightarrow(q \wedge r), \neg(r \vee s)\}$.

## Resolution proofs: example (ctd.)

Using resolution for testing entailment: example (ctd.)
$\mathrm{KB}^{\prime}=\mathrm{KB} \cup\{\neg(r \vee s)\}=\{p, p \rightarrow(q \wedge r), \neg(r \vee s)\}$.
Step 2: Convert resulting knowledge base to clause form
(CNF).

## Basics

Inference
Calculi
Properties
Resolution
Wrap-up

## Resolution proofs: example (ctd.)

Using resolution for testing entailment: example (ctd.)
M. Helmert
A. Karwath

Step 2: Convert resulting knowledge base to clause form (CNF).
$p$
Properties
Resolution
$\rightsquigarrow$ clauses: $\{p\}$
$p \rightarrow(q \wedge r) \equiv \neg p \vee(q \wedge r) \equiv(\neg p \vee q) \wedge(\neg p \vee r)$
$\rightsquigarrow$ clauses: $\{\neg p, q\},\{\neg p, r\}$
$\neg(r \vee s) \equiv \neg r \wedge \neg s$
$\rightsquigarrow$ clauses: $\{\neg r\},\{\neg s\}$

## Resolution proofs: example (ctd.)

Using resolution for testing entailment: example (ctd.)
M. Helmert
A. Karwath
$\mathrm{KB}^{\prime}=\mathrm{KB} \cup\{\neg(r \vee s)\}=\{p, p \rightarrow(q \wedge r), \neg(r \vee s)\}$.
Step 2: Convert resulting knowledge base to clause form
$\rightsquigarrow$ clauses: $\{p\}$
$p \rightarrow(q \wedge r) \equiv \neg p \vee(q \wedge r) \equiv(\neg p \vee q) \wedge(\neg p \vee r)$
$\rightsquigarrow$ clauses: $\{\neg p, q\},\{\neg p, r\}$
$\neg(r \vee s) \equiv \neg r \wedge \neg s$
$\rightsquigarrow$ clauses: $\{\neg r\},\{\neg s\}$
$\Delta=\{\{p\},\{\neg p, q\},\{\neg p, r\},\{\neg r\},\{\neg s\}\}$

## Resolution proofs: example (ctd.)

Using resolution for testing entailment: example (ctd.)
$\Delta=\{\{p\},\{\neg p, q\},\{\neg p, r\},\{\neg r\},\{\neg s\}\}$
Step 3: Derive empty clause by resolution.

- $C_{1}=\{p\}($ from $\Delta)$
- $C_{2}=\{\neg p, q\}$ (from $\Delta$ )
- $C_{3}=\{\neg p, r\}($ from $\Delta)$
- $C_{4}=\{\neg r\}($ from $\Delta)$
- $C_{5}=\{\neg s\}($ from $\Delta)$
- $C_{6}=\{q\}$ (from $C_{1}$ and $C_{2}$ )
- $C_{7}=\{\neg p\}$ (from $C_{3}$ and $C_{4}$ )
- $C_{8}=\square\left(\right.$ from $C_{1}$ and $\left.C_{7}\right)$

Note: Much shorter proofs exist. (For example?)

## Another example

## Another resolution example

We want to prove $\{p \rightarrow q, q \rightarrow r\} \models p \rightarrow r$.

ACS II
M. Helmert,
A. Karwath

Introduction
Basics

Inference
Calculi
Properties
Resolution
Wrap-up

## Larger example: blood types

We know the following:

- If test $T$ is positive, the person has blood type $A$ or $A B$.
- If test $S$ is positive, the person has blood type $B$ or $A B$.
- If a person has blood type $A$, then test $T$ will be positive.
- If a person has blood type $B$, then test $S$ will be positive.
- If a person has blood type $A B$, both tests will be positive.
- A person has exactly one of the blood types $A, B, A B, 0$.
- Suppose $T$ is true and $S$ is false for a given person.

Prove that the person must have blood type A or 0 .

## Summary

- Logics are mathematical approaches for formalizing reasoning.
- Propositional logic is one logic which is of particular relevance to computer science.
- Three important components of all forms of logic include:
- Syntax formalizes what statements can be expressed. $\rightsquigarrow$ atoms, connectives, formulae, ...
- Semantics formalizes what these statements mean. $\rightsquigarrow$ interpretations, models, satisfiable, valid, ...
- Calculi (proof systems) provide formal rules for deriving conclusions from a set of given statements.
$\rightsquigarrow$ inference rules, derivations, sound, complete, refutation-complete, ...
- We had a closer look at the resolution calculus, which is a sound and refutation-complete proof system.


## Further topics

There are many further topics we did not discuss:

- resolution strategies to make resolution as efficient as possible in practice
- other proof systems, for example tableaux proofs
- algorithms for model construction, for example the Davis-Putnam-Logemann-Loveland (DPLL) procedure

These topics are discussed in advanced courses, such as:

- Foundations of Artificial Intelligence (every summer semester)
- Principles of Knowledge Representation and Reasoning (no fixed schedule; roughly once in two years)
- Modal Logic (no fixed schedule; infrequently)

