Theoretical Computer Science II (ACS II) 2. Propositional logic

Malte Helmert Andreas Karwath

Albert-Ludwigs-Universität Freiburg

October 22th, 2009

ACS II

M. Helmert, A. Karwath

Introduction

Interence

Why logic?

ACS I

M. Helmert A. Karwath

Introduction

Dasics

Inference

Wrap-up

formalizing valid reasoning

- used throughout mathematics, computer science
- the basis of many tools in computer science

Examples of reasoning

Which are valid?

If it is Sunday, then I don't need to work.
 It is Sunday.
 Therefore I don't need to work.

ACS

M. Helmert A. Karwath

Introduction

Inference

Examples of reasoning

Which are valid?

- If it is Sunday, then I don't need to work.
 It is Sunday.
 Therefore I don't need to work.
- It will rain or snow.
 It is too warm for snow.
 Therefore it will rain.

ACS II

M. Helmert A. Karwath

Introduction

.

Inference

Examples of reasoning

Which are valid?

- If it is Sunday, then I don't need to work.
 It is Sunday.
 Therefore I don't need to work.
- It will rain or snow.
 It is too warm for snow.
 Therefore it will rain.
- The butler is guilty or the maid is guilty.
 The maid is guilty or the cook is guilty.
 Therefore either the butler is guilty or the cook is guilty.

ACS II

M. Helmert, A. Karwath

Introduction

Dasies

Inference

Elements of logic

- Which elements are well-formed? → syntax
- When does one formula follow from another? → inference

ACS II

M. Helmert A. Karwath

Introduction

Inference

Elements of logic

- Which elements are well-formed? → syntax
- When does one formula follow from another? → inference

Two logics:

- propositional logic
- first-order logic (aka predicate logic)

ACS II

M. Helmert A. Karwath

Introduction

illerence

Building blocks of propositional logic

Building blocks of propositional logic:

- atomic propositions (atoms)
- connectives

Atomic propositions

indivisible statements

Examples:

- "The cook is guilty."
- "It rains."
- "The girl has red hair."

Connectives

operators to build composite formulae out of atoms Examples:

• "and", "or", "not", ...

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Inference

Nrap-up

We are interested in knowing the following:

• When is a formula true?

ACS I

M. Helmert A. Karwath

Introduction

Dasics

Inference

We are interested in knowing the following:

- When is a formula true?
- When does one formula logically follow from (= is logically entailed by) a knowledge base (a set of formulae)?
 - symbolically: KB $\models \varphi$ if KB entails φ

ACS II

M. Helmert A. Karwath

Introduction

Inference

Nrap-up

We are interested in knowing the following:

- When is a formula true?
- When does one formula logically follow from (= is logically entailed by) a knowledge base (a set of formulae)?
 - symbolically: $\mathsf{KB} \models \varphi$ if KB entails φ
- How can we define an inference mechanism (≈ proof procedure) that allows us to systematically derive consequences of a knowledge base?
 - symbolically: $\mathsf{KB} \vdash \varphi$ if φ can be derived from KB

ACS II

M. Helmert A. Karwath

Introduction

Basics

Inference

We are interested in knowing the following:

- When is a formula true?
- When does one formula logically follow from (= is logically entailed by) a knowledge base (a set of formulae)?
 - symbolically: $\mathsf{KB} \models \varphi$ if KB entails φ
- How can we define an inference mechanism (≈ proof procedure) that allows us to systematically derive consequences of a knowledge base?
 - symbolically: $KB \vdash \varphi$ if φ can be derived from KB
- Can we find an inference mechanism in such a way that $KB \models \varphi$ iff $KB \vdash \varphi$?

ACS II

M. Helmert A. Karwath

Introduction

Basics

Inference

Syntax of propositional logic

Given: finite or countable set Σ of atoms p, q, r, \ldots

Propositional formulae: inductively defined as

 $\begin{array}{ccc} p \in \Sigma & \text{atomic formulae} \\ & \top & \text{truth} \\ & \bot & \text{falseness} \\ & \neg \varphi & \text{negation} \\ (\varphi \wedge \psi) & \text{conjunction} \\ (\varphi \vee \psi) & \text{disjunction} \\ (\varphi \rightarrow \psi) & \text{material conditional} \\ (\varphi \leftrightarrow \psi) & \text{biconditional} \end{array}$

where φ and ψ are constructed in the same way

ACS II

M. Helmert, A. Karwath

Introduction

Basics Syntax Semantics

Equivalences Normal forms Entailment

Interence

Logic terminology and notations

- atom/atomic formula (p)
- literal: atom or negated atom $(p, \neg p)$
- clause: disjunction of literals $(p \lor \neg q, p \lor q \lor r, p)$

Parentheses may be omitted according to the following rules:

- ullet ¬ binds more tightly than \wedge
- ullet \wedge binds more tightly than \vee
- $\bullet~\vee$ binds more tightly than \rightarrow and \leftrightarrow
- $p \wedge q \wedge r \wedge s \dots$ is read as $(\dots(((p \wedge q) \wedge r) \wedge s) \wedge \dots)$
- $\bullet \ p \vee q \vee r \vee s \dots \text{ is read as } (\dots (((p \vee q) \vee r) \vee s) \vee \dots)$
- outermost parentheses can always be omitted

ACS II

M. Helmert, A. Karwath

Introduction

Basics Syntax

Syntax
Semantics
Equivalences
Normal forms
Entailment

nference

Alternative notations

$\begin{array}{cccc} \text{our notation} & \text{alternative notations} \\ \\ \hline \neg \varphi & \sim \varphi & \overline{\varphi} \\ \\ \varphi \wedge \psi & \varphi \& \psi & \varphi, \psi & \varphi \cdot \psi \\ \\ \varphi \vee \psi & \varphi \mid \psi & \varphi; \psi & \varphi + \psi \\ \\ \varphi \rightarrow \psi & \varphi \Rightarrow \psi & \varphi \supset \psi \\ \\ \varphi \leftrightarrow \psi & \varphi \Leftrightarrow \psi & \varphi \equiv \psi \\ \end{array}$

ACS II

M. Helmert A. Karwath

Introduction

Basics Syntax

Semantics Equivalences Normal forms

Inference

Semantics of propositional logic

ACS II

M. Helmert A. Karwath

Introduction

Basics

Syntax
Semantics
Equivalences
Normal forms

Inference

Wrap-up

Definition (truth assignment)

A truth assignment of the atoms in Σ , or interpretation over Σ , is a function $I:\Sigma \to \{\mathbf{T},\mathbf{F}\}$

Idea: extend from atoms to arbitrary formulae

Semantics of propositional logic (ctd.)

Definition (satisfaction/truth)

I satisfies φ (alternatively: φ is true under I), in symbols $I \models \varphi$, according to the following inductive rules:

```
\begin{split} I &\models p & \text{ iff } I(p) = \mathbf{T} & \text{ for } p \in \Sigma \\ I &\models \top & \text{ always (i. e., for all } I) \\ I &\models \bot & \text{ never (i. e., for no } I) \\ I &\models \neg \varphi & \text{ iff } I \not\models \varphi \\ I &\models \varphi \land \psi & \text{ iff } I \models \varphi \text{ and } I \models \psi \\ I &\models \varphi \lor \psi & \text{ iff } I \models \varphi \text{ or } I \models \psi \\ I &\models \varphi \to \psi & \text{ iff } I \not\models \varphi \text{ or } I \models \psi \\ I &\models \varphi \leftrightarrow \psi & \text{ iff } I \models \varphi \text{ and } I \models \psi ) \text{ or } (I \not\models \varphi \text{ and } I \not\models \psi) \end{split}
```

ACS II

M. Helmert, A. Karwath

Introduction

Basics Syntax

Syntax
Semantics
Equivalences
Normal forms
Entailment

Inference

Semantics of propositional logic: example

ACS II

M. Helmert A. Karwath

Introduction

Rasics

Syntax Semantics Equivalences Normal forms

Inference

Wrap-up

Example

Question: $I \models \varphi$?

$$\begin{split} \Sigma &= \{p,q,r,s\} \\ I &= \{p \mapsto \mathbf{T}, q \mapsto \mathbf{F}, r \mapsto \mathbf{F}, s \mapsto \mathbf{T}\} \\ \varphi &= ((p \lor q) \leftrightarrow (r \lor s)) \land (\neg (p \land q) \lor (r \land \neg s)) \end{split}$$

More logic terminology

Definition (model)

An interpretation I is called a model of a formula φ if $I \models \varphi$. An interpretation I is called a model of a set of formula KB if

it is a model of all formulae $\varphi \in \mathsf{KB}$.

Definition (properties of formulae)

A formula φ is called

- ullet satisfiable if there exists a model of arphi
- unsatisfiable if it is not satisfiable
- \bullet valid/a tautology if all interpretations are models of φ
- falsifiable if it is not a tautology

Note: All valid formulae are satisfiable.

All unsatisfiable formulae are falsifiable.

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Semantics
Equivalences
Normal forms

Inference

More logic terminology (ctd.)

ACS II

M. Helmert A. Karwath

Introduction

Basics Syntax

Semantics Equivalences Normal forms Entailment

Inference

Wrap-up

Definition (logical equivalence)

Two formulae φ and ψ are logically equivalent, written $\varphi \equiv \psi$, if they have the same set of models.

In other words, $\varphi\equiv\psi$ holds if for all interpretations I, we have that $I\models\varphi$ iff $I\models\psi.$

The truth table method

How can we decide if a formula is satisfiable, valid, etc.?
→ one simple idea: generate a truth table

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Semantics Equivalences Normal forms

Inference

Nrap-up

The truth table method

How can we decide if a formula is satisfiable, valid, etc.?
→ one simple idea: generate a truth table

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Semantics Equivalences Normal forms

Inference

Truth table method: example

Question: Is $((p \lor q) \land \neg q) \to p$ valid?

ACS II

M. Helmert A. Karwath

Introduction

Basics

Semantics
Equivalences
Normal forms

nference

Truth table method: example

Question: Is $((p \lor q) \land \neg q) \to p$ valid?

				$((p \lor q) \land \neg q) \to p$
F	F	F T	F	Т
F	Т	Т	F	T
Т	F	T T	Т	T
Т	Т	Т	F	T

ACS I

M. Helmert A. Karwath

Introduction

Basics

Semantics
Equivalences
Normal forms
Entailment

Inference

Truth table method: example

Question: Is $((p \lor q) \land \neg q) \to p$ valid?

				$((p \lor q) \land \neg q) \to p$
F	F	F	F	Т
F	Т	F T	F	T
Т	F	Т	Т	Т
Т	Т	Т	F	Т

- ullet φ is true for all possible combinations of truth values
- → all interpretations are models
- $\leadsto \varphi$ is valid
 - satisfiability, unsatisfiability, falsifiability likewise
 - logical equivalence likewise

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Syntax Semantics Equivalences Normal forms Entailment

Inference

Some well known equivalences

Idempotence $\varphi \wedge \varphi \equiv \varphi$

 $\varphi \vee \varphi \equiv \varphi$

Commutativity $\varphi \wedge \psi \equiv \psi \wedge \varphi$

 $\varphi \vee \psi \equiv \psi \vee \varphi$

Associativity $(\varphi \wedge \psi) \wedge \chi \equiv \varphi \wedge (\psi \wedge \chi)$

 $(\varphi \vee \psi) \vee \chi \equiv \varphi \vee (\psi \vee \chi)$

Absorption $\varphi \wedge (\varphi \vee \psi) \equiv \varphi$

 $\varphi \vee (\varphi \wedge \psi) \equiv \varphi$

Distributivity $\varphi \wedge (\psi \vee \chi) \equiv (\varphi \wedge \psi) \vee (\varphi \wedge \chi)$

 $\varphi \lor (\psi \land \chi) \equiv (\varphi \lor \psi) \land (\varphi \lor \chi)$

De Morgan $\neg(\varphi \land \psi) \equiv \neg \varphi \lor \neg \psi$

 $\neg(\varphi \lor \psi) \equiv \neg\varphi \land \neg\psi$

Double negation $\neg\neg\varphi\equiv\varphi$

 $(\rightarrow)\text{-Elimination} \quad \varphi \to \psi \equiv \neg \varphi \lor \psi$

 (\leftrightarrow) -Elimination $\varphi \leftrightarrow \psi \equiv (\varphi \to \psi) \land (\psi \to \varphi)$

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Semantics
Equivalences
Normal forms

nference

Substitutability

Theorem (Substitutability)

Let φ and ψ be two equivalent formulae, i. e., $\varphi \equiv \psi$.

Let χ be a formula in which φ occurs as a subformula, and let χ' be the formula obtained from χ by substituting ψ for φ .

Then $\chi \equiv \chi'$.

Example: $p \lor \neg (q \lor r) \equiv p \lor (\neg q \land \neg r)$

by De Morgan's law and substitutability.

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Semantics Equivalences

Normal forms Entailment

Inference

 $p \wedge (\neg q \vee p)$

ACS I

M. Helmert A. Karwatt

Introduction

Basi

Syntax

Equivalences

Normal forms Entailment

Inference

$$\begin{split} p \wedge (\neg q \vee p) \\ &\equiv (p \wedge \neg q) \vee (p \wedge p) \end{split} \qquad \text{(Distributivity)}$$

ACS II

M. Helmert A. Karwath

Introduction

Basi

Syntax Semantics

Equivalences Normal forms

Inference

$$\begin{split} p \wedge (\neg q \vee p) \\ &\equiv (p \wedge \neg q) \vee (p \wedge p) \\ &\equiv (p \wedge \neg q) \vee p \end{split} \qquad \text{(Distributivity)}$$

$$\equiv (p \wedge \neg q) \vee p \qquad \text{(Idempotence)}$$

ACS II

M. Helmert A. Karwath

Introduction

Basics

Semantics

Equivalences
Normal forms
Entailment

Inference

/rap-up

$$\begin{split} p \wedge (\neg q \vee p) \\ &\equiv (p \wedge \neg q) \vee (p \wedge p) \qquad \text{(Distributivity)} \\ &\equiv (p \wedge \neg q) \vee p \qquad \text{(Idempotence)} \\ &\equiv p \vee (p \wedge \neg q) \qquad \text{(Commutativity)} \end{split}$$

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Semantics

Equivalences Normal forms Entailment

Inference

$$\begin{array}{l} p \wedge (\neg q \vee p) \\ \equiv (p \wedge \neg q) \vee (p \wedge p) \\ \equiv (p \wedge \neg q) \vee p \\ \equiv p \vee (p \wedge \neg q) \\ \equiv p \end{array} \qquad \begin{array}{l} \text{(Distributivity)} \\ \text{(Idempotence)} \\ \text{(Commutativity)} \\ \equiv p \end{array}$$

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Syntax Semantic

Equivalences
Normal forms

Inference

Nrap-up

 $n \leftrightarrow c$

ACS I

M. Helmert A. Karwatt

Introduction

Syntax

Semantics Equivalences

Normal forms Entailment

Inference

$$\begin{aligned} p &\leftrightarrow q \\ \equiv (p \to q) \wedge (q \to p) \end{aligned}$$

ACS II

M. Helmert A. Karwath

Introduction

Basics Syntax

 $((\leftrightarrow)$ -Elimination)

Equivalences Normal forms

Inforonco

Nrap-up

$$\begin{array}{l} p \leftrightarrow q \\ \equiv (p \rightarrow q) \land (q \rightarrow p) \\ \equiv (\neg p \lor q) \land (\neg q \lor p) \end{array} \qquad \begin{array}{l} \text{((\leftrightarrow)$-Elimination)} \\ \text{((\rightarrow)$-Elimination)} \end{array}$$

ACS II

M. Helmert A. Karwath

Introduction

Basics

Semantics Equivalences

Entailmen

....

$$\begin{array}{l} p \leftrightarrow q \\ \equiv (p \rightarrow q) \wedge (q \rightarrow p) \\ \equiv (\neg p \vee q) \wedge (\neg q \vee p) \\ \equiv ((\neg p \vee q) \wedge \neg q) \vee ((\neg p \vee q) \wedge p) \end{array} \qquad \begin{array}{l} ((\leftrightarrow)\text{-Elimination}) \\ ((\rightarrow)\text{-Elimination}) \\ \end{array}$$

ACS II

M. Helmert, A. Karwath

introduction

Basics Syntax

Semantics Equivalences Normal forms

Inference

$$\begin{array}{l} p \leftrightarrow q \\ \equiv (p \rightarrow q) \wedge (q \rightarrow p) \\ \equiv (\neg p \vee q) \wedge (\neg q \vee p) \\ \equiv ((\neg p \vee q) \wedge \neg q) \vee ((\neg p \vee q) \wedge p) \\ \equiv ((\neg q \wedge (\neg p \vee q)) \vee (p \wedge (\neg p \vee q)) \\ \end{array} \begin{array}{l} \text{((\leftrightarrow)$-Elimination)} \\ \text{(Distributivity)} \\ \end{array}$$

ACS II

M. Helmert, A. Karwath

Introduction

Basics Syntax

Semantics
Equivalences
Normal forms

Inference

Vrap-up

$$\begin{array}{l} p \leftrightarrow q \\ \equiv (p \rightarrow q) \wedge (q \rightarrow p) \\ \equiv (\neg p \vee q) \wedge (\neg q \vee p) \\ \equiv ((\neg p \vee q) \wedge \neg q) \vee ((\neg p \vee q) \wedge p) \\ \equiv ((\neg q \wedge (\neg p \vee q)) \vee (p \wedge (\neg p \vee q)) \\ \equiv ((\neg q \wedge \neg p) \vee (\neg q \wedge q)) \vee \end{array} \qquad \begin{array}{l} \text{((\leftrightarrow)-Elimination)} \\ \text{(Distributivity)} \\ \text{(Commutativity)} \\ \end{array}$$

ACS II

M. Helmert, A. Karwath

Introduction

Basics
Syntax
Semantics
Equivalences
Normal forms

Inference

Vrap-up

$$\begin{array}{l} p \leftrightarrow q \\ \equiv (p \rightarrow q) \wedge (q \rightarrow p) \\ \equiv (\neg p \vee q) \wedge (\neg q \vee p) \\ \equiv ((\neg p \vee q) \wedge \neg q) \vee ((\neg p \vee q) \wedge p) \\ \equiv ((\neg p \vee q) \wedge \neg q) \vee ((\neg p \vee q) \wedge p) \\ \equiv (\neg q \wedge (\neg p \vee q)) \vee (p \wedge (\neg p \vee q)) \\ \equiv ((\neg q \wedge \neg p) \vee (\neg q \wedge q)) \vee \\ ((p \wedge \neg p) \vee (p \wedge q)) \end{array} \qquad \begin{array}{l} \text{(Commutativity)} \\ \text{(Distributivity)} \end{array}$$

ACS II

M. Helmert, A. Karwath

Introduction

Basics
Syntax
Semantics
Equivalences
Normal forms
Entailment

Inference

Nrap-up

$\begin{array}{l} p \leftrightarrow q \\ \equiv (p \rightarrow q) \wedge (q \rightarrow p) \\ \equiv (\neg p \vee q) \wedge (\neg q \vee p) \\ \equiv ((\neg p \vee q) \wedge \neg q) \vee ((\neg p \vee q) \wedge p) \\ \equiv ((\neg p \vee q) \wedge \neg q) \vee ((\neg p \vee q) \wedge p) \\ \equiv ((\neg q \wedge (\neg p \vee q)) \vee (p \wedge (\neg p \vee q)) \\ \equiv ((\neg q \wedge \neg p) \vee (\neg q \wedge q)) \vee \\ ((p \wedge \neg p) \vee (p \wedge q)) \\ \equiv ((\neg q \wedge \neg p) \vee \bot) \vee (\bot \vee (p \wedge q)) \\ \end{array} \begin{array}{l} ((\leftrightarrow)\text{-Elimination}) \\ \text{(Distributivity)} \\ \text{(Commutativity)} \\ \text{(Distributivity)} \\ \end{array}$

ACS II

M. Helmert A. Karwath

Introduction

Basics
Syntax
Semantics
Equivalences
Normal forms
Entailment

Inference

Vrap-up

$p \leftrightarrow q$ $\equiv (p \to q) \land (q \to p)$ $((\leftrightarrow)$ -Elimination) $\equiv (\neg p \lor q) \land (\neg q \lor p)$ $((\rightarrow)$ -Elimination) $\equiv ((\neg p \lor q) \land \neg q) \lor ((\neg p \lor q) \land p)$ (Distributivity) $\equiv (\neg q \land (\neg p \lor q)) \lor (p \land (\neg p \lor q))$ (Commutativity) $\equiv ((\neg q \land \neg p) \lor (\neg q \land q)) \lor$ $((p \land \neg p) \lor (p \land q))$ (Distributivity) $\equiv ((\neg q \land \neg p) \lor \bot) \lor (\bot \lor (p \land q))$ $(\varphi \land \neg \varphi \equiv \bot)$ $\equiv (\neg q \land \neg p) \lor (p \land q)$ $(\varphi \lor \bot \equiv \varphi \equiv \bot \lor \varphi)$

ACS II

M. Helmert A. Karwath

Introduction

Basics
Syntax
Semantics
Equivalences
Normal forms
Entailment

Inference

Vrap-up

Conjunctive normal form

Definition (conjunctive normal form)

A formula is in conjunctive normal form (CNF) if it consists of a conjunction of clauses, i. e., if it has the form

$$\bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{m_i} l_{ij} \right),$$

where the l_{ij} are literals.

Theorem: For each formula φ , there exists a logically equivalent formula in CNF.

Note: A CNF formula is valid iff every clause is valid.

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Syntax Semantics Equivalences Normal forms Entailment

Inference

Disjunctive normal form

Definition (disjunctive normal form)

A formula is in disjunctive normal form (DNF) if it consists of a disjunction of conjunctions of literals, i. e., if it has the form

$$\bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{m_i} l_{ij} \right),\,$$

where the l_{ij} are literals.

Theorem: For each formula φ , there exists a logically equivalent formula in DNF.

Note: A DNF formula is satisfiable iff at least one disjunct is satisfiable.

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Syntax Semantics Equivalences Normal forms

Inference

Examples

- $\bullet \ (p \vee \neg q) \wedge p$
- $\bullet \ (r \vee q) \wedge p \wedge (r \vee s)$
- $p \lor (\neg q \land r)$
- $\bullet \ p \vee \neg q \to p$
- p

ACS II

M. Helmert A. Karwath

Introduction

Basics

Semantics
Equivalences
Normal forms

Entailmen

• $(p \lor \neg q) \land p$ is in CNF

- $(r \lor q) \land p \land (r \lor s)$
- $p \lor (\neg q \land r)$
- $\bullet \ p \vee \neg q \to p$
- p

Examples

ACS II

M. Helmert A. Karwath

Introduction

Basics

Semantics Equivalences Normal forms

Inference

Examples |

- $(p \lor \neg q) \land p$ is in CNF
- \bullet $(r \lor q) \land p \land (r \lor s)$ is in CNF
- $p \lor (\neg q \land r)$
- $\bullet \ p \lor \neg q \to p$
- p

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Semantics Equivalences

Normal forms Entailment

Inference

Examples

- $(p \lor \neg q) \land p$ is in CNF
- \bullet $(r \lor q) \land p \land (r \lor s)$ is in CNF
- $\bullet \ p \vee (\neg q \wedge r) \text{ is in DNF}$
- $\bullet \ p \vee \neg q \to p$
- p

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Semantics
Equivalences
Normal forms

I--f-----

Examples

- $(p \lor \neg q) \land p$ is in CNF
- \bullet $(r \lor q) \land p \land (r \lor s)$ is in CNF
- $p \lor (\neg q \land r)$ is in DNF
- ullet $p \lor \neg q \to p$ is neither in CNF nor in DNF
- p

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Semantics
Equivalences
Normal forms

Entailment

Inference

Examples

- $(p \lor \neg q) \land p$ is in CNF
- $(r \lor q) \land p \land (r \lor s)$ is in CNF
- $p \lor (\neg q \land r)$ is in DNF
- ullet $p \lor \neg q \to p$ is neither in CNF nor in DNF
- ullet p is in CNF and in DNF

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Semantics Equivalences Normal forms

Inference

Producing CNF

Algorithm for producing CNF

- **①** Get rid of \rightarrow and \leftrightarrow with (\rightarrow) -Elimination and (\leftrightarrow) -Elimination.
 - \rightsquigarrow formula structure: only \lor , \land , \neg
- Move negations inwards with De Morgan and Double negation.
 - \rightsquigarrow formula structure: only \lor , \land , literals
- Distribute ∨ over ∧ with Distributivity (strictly speaking, also Commutativity).
 - → formula structure: CNF
- Optionally, simplify (e.g., using Idempotence) at the end or at any previous point.

Note: For DNF, just distribute \land over \lor instead.

Question: runtime?

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Syntax Semantics Equivalences Normal forms

Inference

Producing CNF

Given: $\varphi = ((p \lor r) \land \neg q) \to p$

ACS I

M. Helmert A. Karwath

Introduction

Basics

Semantics Fauivalence

> Normal forms Entailment

Inference

Producing CNF

Given:
$$\varphi = ((p \lor r) \land \neg q) \rightarrow p$$

$$\varphi \equiv \neg((p \lor r) \land \neg q) \lor p$$

Step 1

ACS II

M. Helmert A. Karwath

Introduction

Basics

Semantics

Equivalences Normal forms Entailment

Inference

Nrap-up

Producing CNF

Given:
$$\varphi = ((p \lor r) \land \neg q) \to p$$

$$\varphi \equiv \neg((p \lor r) \land \neg q) \lor p$$
 Step 1

$$\equiv (\neg (p \lor r) \lor \neg \neg q) \lor p$$
 Step 2

ACS II

M. Helmert A. Karwath

Introduction

Basics

Semantics Equivalence

Equivalences Normal forms Entailment

Inference

Nrap-up

Producing CNF

Given:
$$\varphi = ((p \lor r) \land \neg q) \rightarrow p$$

$$\varphi \equiv \neg((p \lor r) \land \neg q) \lor p$$
 Step 1

$$\equiv (\neg(p \lor r) \lor \neg \neg q) \lor p$$
 Step 2

$$\equiv ((\neg p \land \neg r) \lor q) \lor p$$
 Step 2

Step 2

ACS II

Normal forms

Producing CNF

Given:
$$\varphi = ((p \lor r) \land \neg q) \rightarrow p$$

$$\varphi \equiv \neg((p \lor r) \land \neg q) \lor p$$
 Step 1

$$\equiv (\neg(p \lor r) \lor \neg \neg q) \lor p$$
 Step 2

$$\equiv ((\neg p \land \neg r) \lor q) \lor p$$
 Step 2

$$\equiv ((\neg p \lor q) \land (\neg r \lor q)) \lor p$$
 Step 3

ACS II

M. Helmert A. Karwath

Introduction

Basics

Syntax Semantics

Equivalences Normal forms Entailment

Inference

Producing CNF

Given:
$$\varphi = ((p \lor r) \land \neg q) \rightarrow p$$

$$\varphi \equiv \neg((p \lor r) \land \neg q) \lor p$$
 Step 1

$$\equiv (\neg(p \lor r) \lor \neg \neg q) \lor p$$
 Step 2

$$\equiv ((\neg p \land \neg r) \lor q) \lor p$$
 Step 2

$$\equiv ((\neg p \lor q) \land (\neg r \lor q)) \lor p$$
 Step 3

$$\equiv (\neg p \lor q \lor p) \land (\neg r \lor q \lor p)$$
 Step 3

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Semantics
Equivalences
Normal forms

Inference

Producing CNF

Given:
$$\varphi = ((p \lor r) \land \neg q) \rightarrow p$$

$$\varphi \equiv \neg((p \lor r) \land \neg q) \lor p$$
 Step 1

$$\equiv (\neg(p \lor r) \lor \neg \neg q) \lor p$$
 Step 2

$$\equiv ((\neg p \land \neg r) \lor q) \lor p$$
 Step 2

$$\equiv ((\neg p \lor q) \land (\neg r \lor q)) \lor p$$
 Step 3

$$\equiv (\neg p \lor q \lor p) \land (\neg r \lor q \lor p)$$
 Step 3

$$\equiv \top \land (\neg r \lor q \lor p)$$
 Step 4

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Syntax Semantics Equivalences Normal forms

Inference

Producing CNF

Given:
$$\varphi = ((p \lor r) \land \neg q) \rightarrow p$$

$$\varphi \equiv \neg((p \lor r) \land \neg q) \lor p \qquad \qquad \text{Step 1}$$

$$\equiv (\neg(p \lor r) \lor \neg \neg q) \lor p \qquad \qquad \text{Step 2}$$

$$\equiv ((\neg p \land \neg r) \lor q) \lor p \qquad \qquad \text{Step 2}$$

$$\equiv ((\neg p \lor q) \land (\neg r \lor q)) \lor p \qquad \qquad \text{Step 3}$$

$$\equiv (\neg p \lor q \lor p) \land (\neg r \lor q \lor p) \qquad \qquad \text{Step 3}$$

$$\equiv \top \land (\neg r \lor q \lor p) \qquad \qquad \text{Step 4}$$

$$\equiv \neg r \lor q \lor p \qquad \qquad \text{Step 4}$$

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Syntax
Semantics
Equivalences
Normal forms

Inference

Logical entailment

A set of formulae (a knowledge base) usually provides an incomplete description of the world, i. e., it leaves the truth values of some propositions open.

Example: KB = $\{p \lor q, r \lor \neg p, s\}$ is definitive w.r.t. s, but leaves p, q, r open (though not completely!)

ACS II

M. Helmert, A. Karwath

Introduction

Syntax Semantics

Equivalences Normal forms Entailment

Inference

Vrap-up

Logical entailment

A set of formulae (a knowledge base) usually provides an incomplete description of the world, i. e., it leaves the truth values of some propositions open.

Example: KB = $\{p \lor q, r \lor \neg p, s\}$ is definitive w.r.t. s, but leaves p, q, r open (though not completely!)

Models of the KB

p	q	r	s
F	Т	F	Т
F	Т	F	Т
Т	F	Т	Т
Т	Т	Т	Т

In all models, $q \lor r$ is true. Hence, $q \lor r$ is logically entailed by KB (a logical consequence of KB).

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Semantics Equivalences Normal form Entailment

Inference

Logical entailment: formally

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Semantics Equivalences

Entailment

merence

Wrap-up

Definition (entailment)

Let KB be a set of formulae and φ be a formula. We say that KB entails φ (also: φ follows logically from KB; φ is a logical consequence of KB), in symbols KB $\models \varphi$, if all models of KB are models of φ .

Some properties of logical entailment:

ACS I

M. Helmert A. Karwatl

Introduction

Basics

Syntax Semantics

Normal forms Entailment

Mran un

Some properties of logical entailment:

Deduction theorem:

$$\mathsf{KB} \cup \{\varphi\} \models \psi \text{ iff } \mathsf{KB} \models \varphi \to \psi$$

ACS II

M. Helmert, A. Karwath

Introduction

Basic

Semantics Equivalences

Normal forms
Entailment

Inference

Vrap-up

ACS II

M. Helmert A. Karwath

Introduction

Basic

Syntax Semant

Equivalences Normal forms

Inference

Wrap-up

Some properties of logical entailment:

Deduction theorem:

$$\mathsf{KB} \cup \{\varphi\} \models \psi \mathsf{ iff } \mathsf{KB} \models \varphi \to \psi$$

• Contraposition theorem:

$$\mathsf{KB} \cup \{\varphi\} \models \neg \psi \text{ iff } \mathsf{KB} \cup \{\psi\} \models \neg \varphi$$

ACS II

M. Helmert A. Karwath

Introduction

Basics

Semantics
Equivalences
Normal form

Entailment Inference

Wrap-up

Some properties of logical entailment:

- Deduction theorem: $KB \cup \{\varphi\} \models \psi \text{ iff } KB \models \varphi \rightarrow \psi$
- Contraposition theorem: $KB \cup \{\varphi\} \models \neg \psi \text{ iff } KB \cup \{\psi\} \models \neg \varphi$
- Contradiction theorem: $KB \cup \{\varphi\}$ is unsatisfiable iff $KB \models \neg \varphi$

Deduction theorem: $KB \cup \{\varphi\} \models \psi$ iff $KB \models \varphi \rightarrow \psi$

Proof.

" \Rightarrow ": The premise is that KB \cup { φ } $\models \psi$.

We must show that KB $\models \varphi \rightarrow \psi$, i. e., that all models of KB satisfy $\varphi \rightarrow \psi$. Consider any such model I.

We distinguish two cases:

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Syntax

Normal forms Entailment

Inference

Deduction theorem: $KB \cup \{\varphi\} \models \psi$ iff $KB \models \varphi \rightarrow \psi$

Proof.

" \Rightarrow ": The premise is that KB \cup { φ } $\models \psi$.

We must show that KB $\models \varphi \to \psi$, i. e., that all models of KB satisfy $\varphi \to \psi$. Consider any such model I.

We distinguish two cases:

• Case 1: $I \models \varphi$. Then I is a model of KB $\cup \{\varphi\}$, and by the premise, $I \models \psi$, from which we conclude that $I \models \varphi \rightarrow \psi$.

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Semantics
Equivalences
Normal form
Entailment

Inference

Deduction theorem: $KB \cup \{\varphi\} \models \psi$ iff $KB \models \varphi \rightarrow \psi$

Proof.

" \Rightarrow ": The premise is that KB \cup { φ } \models ψ .

We must show that KB $\models \varphi \rightarrow \psi$, i. e., that all models of KB satisfy $\varphi \rightarrow \psi$. Consider any such model I.

We distinguish two cases:

- Case 1: $I \models \varphi$. Then I is a model of KB $\cup \{\varphi\}$, and by the premise, $I \models \psi$, from which we conclude that $I \models \varphi \rightarrow \psi$.
- Case 2: $I \not\models \varphi$. Then we can directly conclude that $I \models \varphi \to \psi$.

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Semantics
Equivalences
Normal forms

Inference

Nrap-up

. . .

Deduction theorem: $KB \cup \{\varphi\} \models \psi \text{ iff } KB \models \varphi \rightarrow \psi$

Proof (ctd.)

" \Leftarrow ": The premise is that KB $\models \varphi \rightarrow \psi$.

We must show that KB \cup { φ } $\models \psi$, i. e., that all models of KB \cup { φ } satisfy ψ . Consider any such model I.

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Semantics Equivalences Normal form

Entailment

Inference

Deduction theorem: $KB \cup \{\varphi\} \models \psi \text{ iff } KB \models \varphi \rightarrow \psi$

Proof (ctd.)

" \Leftarrow ": The premise is that KB $\models \varphi \rightarrow \psi$.

We must show that $\mathsf{KB} \cup \{\varphi\} \models \psi$, i.e., that all models of $\mathsf{KB} \cup \{\varphi\}$ satisfy ψ . Consider any such model I.

By definition, $I \models \varphi$. Moreover, as I is a model of KB, we have $I \models \varphi \rightarrow \psi$ by the premise.

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Semantics
Equivalences
Normal forms

Inference

Deduction theorem: $KB \cup \{\varphi\} \models \psi \text{ iff } KB \models \varphi \rightarrow \psi$

Proof (ctd.)

" \Leftarrow ": The premise is that KB $\models \varphi \rightarrow \psi$.

We must show that $\mathsf{KB} \cup \{\varphi\} \models \psi$, i.e., that all models of $\mathsf{KB} \cup \{\varphi\}$ satisfy ψ . Consider any such model I.

By definition, $I \models \varphi$. Moreover, as I is a model of KB, we have $I \models \varphi \to \psi$ by the premise.

Putting this together, we get $I \models \varphi \land (\varphi \rightarrow \psi) \equiv \varphi \land \psi$, which implies that $I \models \psi$.

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Syntax Semantics Equivalences Normal forms Entailment

Inference

Proof of the contraposition theorem

Contraposition theorem: $KB \cup \{\varphi\} \models \neg \psi$ iff $KB \cup \{\psi\} \models \neg \varphi$

Proof.

By the deduction theorem, KB \cup { φ } $\models \neg \psi$ iff KB $\models \varphi \rightarrow \neg \psi$. For the same reason, KB \cup { ψ } $\models \neg \varphi$ iff KB $\models \psi \rightarrow \neg \varphi$.

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Semantics Equivalences

Entailment

Inference

Nrap-up

Proof of the contraposition theorem

Contraposition theorem: $KB \cup \{\varphi\} \models \neg \psi \text{ iff } KB \cup \{\psi\} \models \neg \varphi$

Proof.

By the deduction theorem, KB \cup { φ } $\models \neg \psi$ iff KB $\models \varphi \rightarrow \neg \psi$. For the same reason, KB \cup { ψ } $\models \neg \varphi$ iff KB $\models \psi \rightarrow \neg \varphi$.

We have $\varphi \to \neg \psi \equiv \neg \varphi \lor \neg \psi \equiv \neg \psi \lor \neg \varphi \equiv \psi \to \neg \varphi$.

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Semantics Equivalences Normal form

Entailment

Inference

Proof of the contraposition theorem

Contraposition theorem: $KB \cup \{\varphi\} \models \neg \psi \text{ iff } KB \cup \{\psi\} \models \neg \varphi$

Proof.

By the deduction theorem, KB \cup { φ } $\models \neg \psi$ iff KB $\models \varphi \rightarrow \neg \psi$. For the same reason, KB \cup { ψ } $\models \neg \varphi$ iff KB $\models \psi \rightarrow \neg \varphi$.

We have $\varphi \to \neg \psi \equiv \neg \varphi \lor \neg \psi \equiv \neg \psi \lor \neg \varphi \equiv \psi \to \neg \varphi$.

Putting this together, we get

$$\begin{aligned} \mathsf{KB} \cup \{\varphi\} &\models \neg \psi \\ \mathsf{iff} \quad \mathsf{KB} &\models \neg \varphi \vee \neg \psi \\ \mathsf{iff} \quad \mathsf{KB} \cup \{\psi\} &\models \neg \varphi \end{aligned}$$

as required.

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Semantics
Equivalences
Normal form
Entailment

Inference

Inference rules, calculi and proofs

Question: Can we determine whether KB $\models \varphi$ without considering all interpretations (the truth table method)?

- Yes! There are various ways of doing this.
- One is to use inference rules that produce formulae that follow logically from a given set of formulae.
- Inference rules are written in the form

$$\frac{\varphi_1,\ldots,\varphi_k}{\psi}$$

meaning "if $\varphi_1, \ldots, \varphi_k$ are true, then ψ is also true."

- k = 0 is allowed; such inference rules are called axioms.
- A set of inference rules is called a calculus or proof system.

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Inference Calculi Propertie Resolutio

Some inference rules for propositional logic

Modus ponens	$\frac{\varphi, \ \varphi \to \psi}{\psi}$	
Modus tolens	$\frac{\neg \psi, \ \varphi \to}{\neg \varphi}$	ψ
And elimination	$\frac{\varphi \wedge \psi}{\varphi}$	$\frac{\varphi \wedge \psi}{\psi}$
And introduction	$\frac{\varphi, \ \psi}{\varphi \wedge \psi}$	
Or introduction	$\frac{\varphi}{\varphi \vee \psi}$	
(\bot) elimination	$\frac{\perp}{\varphi}$	
(\leftrightarrow) elimination	$\frac{\varphi \leftrightarrow \psi}{\varphi \to \psi}$	$\frac{\varphi \leftrightarrow \psi}{\psi \to \varphi}$
	$\varphi \to \psi$	$\psi \to \varphi$

ACS I

M. Helmert A. Karwath

Introduction

Basics

Calculi Propertie Resolutio

Derivations

Definition (derivation)

A derivation or proof of a formula φ from a knowledge base KB is a sequence of formulae ψ_1, \ldots, ψ_k such that

- \bullet $\psi_k = \varphi$ and
- for all $i \in \{1, ..., k\}$:
 - $\psi_i \in \mathsf{KB}$, or
 - ψ_i is the result of applying an inference rule to some elements of $\{\psi_1,\ldots,\psi_{i-1}\}$.

ACS II

M. Helmert, A. Karwath

Introduction

Dasics

Calculi Properties

Resolution

Derivation example

Example

Given: $KB = \{p, p \rightarrow q, p \rightarrow r, q \land r \rightarrow s\}$

Objective: Give a derivation of $s \wedge r$ from KB.

ACS II

M. Helmert A. Karwath

Introduction

Basics

Inference Calculi

> Properties Resolution

Derivation example

Example

Given: $KB = \{p, p \rightarrow q, p \rightarrow r, q \land r \rightarrow s\}$

Objective: Give a derivation of $s \wedge r$ from KB.

- **●** *p* (KB)
- $p \rightarrow q \text{ (KB)}$

- \circ r (1, 4, modus ponens)
- **1** $q \wedge r$ (3, 5, and introduction)
- $q \wedge r \rightarrow s \text{ (KB)}$
- \bullet s (6, 7, modus ponens)
- $s \wedge r$ (8, 5, and introduction)

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Inference

Properties Resolution

Soundness and completeness

Definition (KB $\vdash_{\mathbf{C}} \varphi$, soundness, completeness)

We write $KB \vdash_{\mathbf{C}} \varphi$ if there is a derivation of φ from KB in calculus \mathbf{C} . (We often omit \mathbf{C} when it is clear from context.)

A calculus ${\bf C}$ is sound or correct if for all KB and φ , we have that KB $\vdash_{\bf C} \varphi$ implies KB $\models_{\bf C} \varphi$.

A calculus **C** is complete if for all KB and φ , we have that KB $\models \varphi$ implies KB $\vdash_{\mathbf{C}} \varphi$.

ACS II

M. Helmert, A. Karwath

Introduction

Calculi
Properties
Resolution

Soundness and completeness

Definition (KB $\vdash_{\mathbf{C}} \varphi$, soundness, completeness)

We write $KB \vdash_{\mathbf{C}} \varphi$ if there is a derivation of φ from KB in calculus \mathbf{C} . (We often omit \mathbf{C} when it is clear from context.)

A calculus ${\bf C}$ is sound or correct if for all KB and φ , we have that KB $\vdash_{\bf C} \varphi$ implies KB $\models_{\bf C} \varphi$.

A calculus **C** is complete if for all KB and φ , we have that KB $\models \varphi$ implies KB $\vdash_{\mathbf{C}} \varphi$.

Consider the calculus **C** given by the derivation rules shown previously.

Question: Is **C** sound? Question: Is **C** complete?

ACS II

M. Helmert, A. Karwath

Introduction

Dasics

Inference Calculi Properties Resolution

- Clearly we want sound calculi.
- Do we also need complete calculi?

ACS I

M. Helmert A. Karwath

Introduction

Basic

Inference Calculi Properties Resolution

- Clearly we want sound calculi.
- Do we also need complete calculi?
- Recall the contradiction theorem: $\mathsf{KB} \cup \{\varphi\}$ is unsatisfiable iff $\mathsf{KB} \models \neg \varphi$
- This implies that KB $\models \varphi$ iff KB $\cup \{\neg \varphi\}$ is unsatisfiable, i. e., KB $\models \varphi$ iff KB $\cup \{\neg \varphi\} \models \bot$.
- Hence, we can reduce the general entailment problem to testing entailment of ⊥.

ACS II

M. Helmert, A. Karwath

Introduction

asics

Inference Calculi Properties Resolution

- Clearly we want sound calculi.
- Do we also need complete calculi?
- Recall the contradiction theorem: $\mathsf{KB} \cup \{\varphi\} \text{ is unsatisfiable iff } \mathsf{KB} \models \neg \varphi$
- This implies that KB $\models \varphi$ iff KB $\cup \{\neg \varphi\}$ is unsatisfiable, i. e., KB $\models \varphi$ iff KB $\cup \{\neg \varphi\} \models \bot$.
- Hence, we can reduce the general entailment problem to testing entailment of ⊥.

Definition (refutation-complete)

A calculus \mathbf{C} is refutation-complete if for all KB, we have that KB $\models \bot$ implies KB $\vdash_{\mathbf{C}} \bot$.

ACS II

M. Helmert, A. Karwath

Introduction

sasics

Calculi
Properties
Resolution

- Clearly we want sound calculi.
- Do we also need complete calculi?
- Recall the contradiction theorem: $KB \cup \{\varphi\}$ is unsatisfiable iff $KB \models \neg \varphi$
- This implies that KB $\models \varphi$ iff KB $\cup \{\neg \varphi\}$ is unsatisfiable, i. e., KB $\models \varphi$ iff KB $\cup \{\neg \varphi\} \models \bot$.
- Hence, we can reduce the general entailment problem to testing entailment of ⊥.

Definition (refutation-complete)

A calculus $\bf C$ is refutation-complete if for all KB, we have that KB $\models \bot$ implies KB $\vdash_{\bf C} \bot$.

Question: What is the relationship between completeness and refutation-completeness?

ACS II

M. Helmert, A. Karwath

Introduction

asics

Calculi
Properties
Resolution

Resolution: idea

- Resolution is a refutation-complete calculus for knowledge bases in CNF.
- For knowledge bases that are not in CNF, we can convert them to equivalent formulae in CNF.
 - However, this conversion can take exponential time.
 - Alternatively, we can convert to a satisfiability-equivalent (but not logically equivalent) knowledge base in polynomial time.

ACS II

M. Helmert A. Karwath

Introduction

Basics

Inference Calculi Properties Resolution

Resolution: idea

- Resolution is a refutation-complete calculus for knowledge bases in CNF.
- For knowledge bases that are not in CNF, we can convert them to equivalent formulae in CNF.
 - However, this conversion can take exponential time.
 - Alternatively, we can convert to a satisfiability-equivalent (but not logically equivalent) knowledge base in polynomial time.
- To test if KB $\models \varphi$, we test if KB $\cup \{\neg \varphi\} \vdash_{\mathbf{R}} \bot$, where **R** is the resolution calculus. (In the following, we simply write \vdash instead of $\vdash_{\mathbf{R}}$.)

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Inference Calculi Properties Resolution

Resolution: idea

- Resolution is a refutation-complete calculus for knowledge bases in CNF.
- For knowledge bases that are not in CNF, we can convert them to equivalent formulae in CNF.
 - However, this conversion can take exponential time.
 - Alternatively, we can convert to a satisfiability-equivalent (but not logically equivalent) knowledge base in polynomial time.
- To test if KB |= φ, we test if KB ∪ {¬φ} ⊢_R ⊥, where R is the resolution calculus.
 (In the following, we simply write ⊢ instead of ⊢_R.)
- In the worst case, resolution takes exponential time.
- However, this is probably true for all refutation complete proof methods, as we will see in the computational complexity part of the course.

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Inference Calculi Properties Resolution

Knowledge bases as clause sets

- Resolution requires that knowledge bases are given in CNF.
- In this case, we can simplify notation:
 - A formula in CNF can be equivalently seen as a set of clauses (due to commutativity, idempotence and associativity of (V)).
 - A set of formulae can then also be seen as a set of clauses.
 - A clause can be seen as a set of literals (due to commutativity, idempotence and associativity of (∧)).
 - So a knowledge base can be represented as a set of sets of literals.
- Example:

• KB =
$$\{(p \lor p), (\neg p \lor q) \land (\neg p \lor r) \land (\neg p \lor q) \land r, (\neg q \lor \neg r \lor s) \land p\}$$

as clause set:

ACS II

M. Helmert A. Karwath

Introduction

Basics

Inference Calculi Properties Resolution

Knowledge bases as clause sets

- Resolution requires that knowledge bases are given in CNF.
- In this case, we can simplify notation:
 - A formula in CNF can be equivalently seen as a set of clauses (due to commutativity, idempotence and associativity of (V)).
 - A set of formulae can then also be seen as a set of clauses.
 - A clause can be seen as a set of literals (due to commutativity, idempotence and associativity of (∧)).
 - So a knowledge base can be represented as a set of sets of literals.
- Example:
 - KB = $\{(p \lor p), (\neg p \lor q) \land (\neg p \lor r) \land (\neg p \lor q) \land r, (\neg q \lor \neg r \lor s) \land p\}$
 - as clause set: $\{\{p\}, \{\neg p, q\}, \{\neg p, r\}, \{r\}, \{\neg q, \neg r, s\}\}$

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Inference Calculi Properties Resolution

Resolution: notation, empty clauses

 In the following, we use common logical notation for sets of literals (treating them as clauses) and sets of sets of literals (treating them as CNF formulae).

• Example:

- $\bullet \ \ \mathsf{Let} \ I = \{p \mapsto 1, q \mapsto 1, r \mapsto 1, s \mapsto 1\}.$
- Let $\Delta = \{\{p\}, \{\neg p, q\}, \{\neg p, r\}, \{r\}, \{\neg q, \neg r, s\}\}.$
- We can write $I \models \Delta$.
- One notation ambiguity:
 - Does the empty set mean an empty clause (equivalent to ⊥) or an empty set of clauses (equivalent to ⊤)?
 - To resolve this ambiguity, the empty clause is written as
 □, while the empty set of clauses is written as ∅.

ACS II

M. Helmert A. Karwath

Introduction

Basics

Interence Calculi Properties Resolution

The resolution rule

The resolution calculus consists of a single rule, called the resolution rule:

$$\frac{C_1 \cup \{l\}, \ C_2 \cup \{\neg l\}}{C_1 \cup C_2},$$

where C_1 and C_2 are (possibly empty) clauses, and l is an atom (and hence l and $\neg l$ are complementary literals).

In the rule above,

- l and $\neg l$ are called the resolution literals,
- ullet $C_1 \cup \{l\}$ and $C_2 \cup \{\neg l\}$ are called the parent clauses, and
- $C_1 \cup C_2$ is called the resolvent.

ACS II

M. Helmert A. Karwath

Introduction

Basics

Inference Calculi Properties Resolution

Resolution proofs

Definition (resolution proof)

Let Δ be a set of clauses. We define the resolvents of Δ as $\mathbf{R}(\Delta) := \Delta \cup \{ C \mid C \text{ is a resolvent of two clauses from } \Delta \}$.

A resolution proof of a clause D from Δ , is a sequence of clauses C_1,\ldots,C_n with

- $C_n = D$ and
- $C_i \in \mathbf{R}(\Delta \cup \{C_1, \dots, C_{i-1}\})$ for all $i \in \{1, \dots, n\}$.

We say that D can be derived from Δ by resolution, written $\Delta \vdash_{\mathbf{R}} D$, if there exists a resolution proof of D from Δ .

Remarks: Resolution is a sound and refutation-complete, but incomplete proof system.

ACS II

M. Helmert, A. Karwath

introduction

Basics

Calculi Properties Resolution

Using resolution for testing entailment: example

Let $KB = \{p, p \to (q \land r)\}.$

We want to use resolution to show that show that KB $\models r \lor s$.

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Calculi
Properties
Resolution

Vran-un

Using resolution for testing entailment: example

Let $KB = \{p, p \to (q \land r)\}.$

We want to use resolution to show that show that KB $\models r \lor s$. Three steps:

- Reduce entailment to unsatisfiability.
- Onvert resulting knowledge base to clause form (CNF).
- **3** Derive empty clause by resolution.

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Calculi Properties

Resolution

Using resolution for testing entailment: example

Let $KB = \{p, p \to (q \land r)\}.$

We want to use resolution to show that show that KB $\models r \lor s$. Three steps:

- Reduce entailment to unsatisfiability.
- Onvert resulting knowledge base to clause form (CNF).
- Oerive empty clause by resolution.

Step 1: Reduce entailment to unsatisfiability.

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Calculi Properties Resolution

Using resolution for testing entailment: example

Let $KB = \{p, p \to (q \land r)\}.$

We want to use resolution to show that show that KB $\models r \lor s$. Three steps:

- Reduce entailment to unsatisfiability.
- Onvert resulting knowledge base to clause form (CNF).
- Oerive empty clause by resolution.

Step 1: Reduce entailment to unsatisfiability.

 $\mathsf{KB} \models r \lor s \text{ iff } \mathsf{KB} \cup \{\neg(r \lor s)\} \text{ is unsatisfiable.}$

Hence, consider

 $\mathsf{KB'} = \mathsf{KB} \cup \{ \neg (r \vee s) \} = \{ p, p \rightarrow (q \wedge r), \neg (r \vee s) \}.$

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Inference Calculi Properties

Resolution

. .

Using resolution for testing entailment: example (ctd.)

$$\mathsf{KB'} = \mathsf{KB} \cup \{ \neg(r \vee s) \} = \{ p, p \rightarrow (q \wedge r), \neg(r \vee s) \}.$$

Step 2: Convert resulting knowledge base to clause form (CNF).

ACS II

M. Helmert, A. Karwath

....

Basics

nference

Properties Resolution

√ran-un

Using resolution for testing entailment: example (ctd.)

$$\mathsf{KB}' = \mathsf{KB} \cup \{ \neg (r \lor s) \} = \{ p, p \to (q \land r), \neg (r \lor s) \}.$$

Step 2: Convert resulting knowledge base to clause form (CNF).

```
\begin{array}{l} p \\ \leadsto \mathsf{clauses} : \{p\} \\ p \to (q \land r) \equiv \neg p \lor (q \land r) \equiv (\neg p \lor q) \land (\neg p \lor r) \\ \leadsto \mathsf{clauses} : \{\neg p, q\}, \{\neg p, r\} \\ \neg (r \lor s) \equiv \neg r \land \neg s \\ \leadsto \mathsf{clauses} : \{\neg r\}, \{\neg s\} \end{array}
```

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Inference Calculi

Resolution

Using resolution for testing entailment: example (ctd.)

$$\mathsf{KB}' = \mathsf{KB} \cup \{ \neg (r \lor s) \} = \{ p, p \to (q \land r), \neg (r \lor s) \}.$$

Step 2: Convert resulting knowledge base to clause form (CNF).

```
\begin{array}{l} p \\ \leadsto \mathsf{clauses:}\{p\} \\ p \to (q \land r) \equiv \neg p \lor (q \land r) \equiv (\neg p \lor q) \land (\neg p \lor r) \\ \leadsto \mathsf{clauses:}\{\neg p, q\}, \{\neg p, r\} \\ \neg (r \lor s) \equiv \neg r \land \neg s \\ \leadsto \mathsf{clauses:}\{\neg r\}, \{\neg s\} \\ \Delta = \{\{p\}, \{\neg p, q\}, \{\neg p, r\}, \{\neg r\}, \{\neg s\}\} \end{array}
```

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Inference Calculi

Resolution

Using resolution for testing entailment: example (ctd.)

$$\Delta = \{ \{p\}, \{\neg p, q\}, \{\neg p, r\}, \{\neg r\}, \{\neg s\} \}$$

Step 3: Derive empty clause by resolution.

- $C_1 = \{p\}$ (from Δ)
- $C_2 = \{ \neg p, q \}$ (from Δ)
- $C_3 = \{\neg p, r\}$ (from Δ)
- $C_4 = \{ \neg r \}$ (from Δ)
- $C_5 = \{ \neg s \}$ (from Δ)
- $C_6 = \{q\}$ (from C_1 and C_2)
- $C_7 = \{ \neg p \}$ (from C_3 and C_4)
- $C_8 = \square$ (from C_1 and C_7)

Note: Much shorter proofs exist. (For example?)

ACS II

M. Helmert, A. Karwath

Introduction

Sasics

Calculi Properties Resolution

Another example

Another resolution example

We want to prove $\{p \to q, q \to r\} \models p \to r$.

ACS I

M. Helmert A. Karwath

Introduction

Bas

Calculi Properties Resolution

Larger example: blood types

We know the following:

- If test T is positive, the person has blood type A or AB.
- If test S is positive, the person has blood type B or AB.
- If a person has blood type A, then test T will be positive.
- If a person has blood type B, then test S will be positive.
- If a person has blood type AB, both tests will be positive.
- A person has exactly one of the blood types A, B, AB, 0.
- Suppose T is true and S is false for a given person.

Prove that the person must have blood type A or 0.

ACS II

M. Helmert, A. Karwath

Introduction

Basics

Inference Calculi Properties Resolution

Summary

- Logics are mathematical approaches for formalizing reasoning.
- Propositional logic is one logic which is of particular relevance to computer science.
- Three important components of all forms of logic include:
 - Syntax formalizes what statements can be expressed.

 → atoms, connectives, formulae, . . .
 - Semantics formalizes what these statements mean.
 - → interpretations, models, satisfiable, valid, . . .
 - Calculi (proof systems) provide formal rules for deriving conclusions from a set of given statements.
 - → inference rules, derivations, sound, complete, refutation-complete, . . .
- We had a closer look at the resolution calculus, which is a sound and refutation-complete proof system.

ACS II

M. Helmert, A. Karwath

Introduction

203103

Inference

Further topics

There are many further topics we did not discuss:

- resolution strategies to make resolution as efficient as possible in practice
- other proof systems, for example tableaux proofs
- algorithms for model construction, for example the Davis-Putnam-Logemann-Loveland (DPLL) procedure

These topics are discussed in advanced courses, such as:

- Foundations of Artificial Intelligence (every summer semester)
- Principles of Knowledge Representation and Reasoning (no fixed schedule; roughly once in two years)
- Modal Logic (no fixed schedule; infrequently)

ACS II

M. Helmert, A. Karwath

Introduction

Dasics