
Theoretical Computer Science II (ACS II)
2. Propositional logic

Malte Helmert Andreas Karwath

Albert-Ludwigs-Universität Freiburg

October 22th, 2009

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 1 / 50

Theoretical Computer Science II (ACS II)
October 22th, 2009 — 2. Propositional logic

Informal introduction

Basic concepts
Syntax
Semantics
Equivalences
Normal forms
Entailment

Inference
Calculi
Properties: soundness, completeness, refutation-completeness
Resolution

Wrap-up

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 2 / 50

Introduction

Why logic?

I formalizing valid reasoning

I used throughout mathematics, computer science

I the basis of many tools in computer science

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 3 / 50

Introduction

Examples of reasoning

Which are valid?

I If it is Sunday, then I don’t need to work.
It is Sunday.
Therefore I don’t need to work.

I It will rain or snow.
It is too warm for snow.
Therefore it will rain.

I The butler is guilty or the maid is guilty.
The maid is guilty or the cook is guilty.
Therefore either the butler is guilty or the cook is guilty.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 4 / 50

Introduction

Elements of logic

I Which elements are well-formed? syntax

I What does it mean for a formula to be true? semantics

I When does one formula follow from another? inference

Two logics:

I propositional logic

I first-order logic (aka predicate logic)

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 5 / 50

Introduction

Building blocks of propositional logic
Building blocks of propositional logic:

I atomic propositions (atoms)

I connectives

Atomic propositions

indivisible statements
Examples:

I “The cook is guilty.”

I “It rains.”

I “The girl has red hair.”

Connectives
operators to build composite formulae out of atoms
Examples:

I “and”, “or”, “not”, . . .

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 6 / 50

Introduction

Logic: basic questions

We are interested in knowing the following:

I When is a formula true?
I When does one formula logically follow from (= is logically entailed

by) a knowledge base (a set of formulae)?
I symbolically: KB |= ϕ if KB entails ϕ

I How can we define an inference mechanism (≈ proof procedure) that
allows us to systematically derive consequences of a knowledge base?

I symbolically: KB ` ϕ if ϕ can be derived from KB

I Can we find an inference mechanism in such a way that KB |= ϕ iff
KB ` ϕ?

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 7 / 50

Basics Syntax

Syntax of propositional logic

Given: finite or countable set Σ of atoms p, q, r , . . .

Propositional formulae: inductively defined as

p ∈ Σ atomic formulae

> truth

⊥ falseness

¬ϕ negation

(ϕ ∧ ψ) conjunction

(ϕ ∨ ψ) disjunction

(ϕ→ ψ) material conditional

(ϕ↔ ψ) biconditional

where ϕ and ψ are constructed in the same way

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 8 / 50

Basics Syntax

Logic terminology and notations

I atom/atomic formula (p)

I literal: atom or negated atom (p, ¬p)

I clause: disjunction of literals (p ∨ ¬q, p ∨ q ∨ r , p)

Parentheses may be omitted according to the following rules:

I ¬ binds more tightly than ∧
I ∧ binds more tightly than ∨
I ∨ binds more tightly than → and ↔
I p ∧ q ∧ r ∧ s . . . is read as (. . . (((p ∧ q) ∧ r) ∧ s) ∧ . . .)
I p ∨ q ∨ r ∨ s . . . is read as (. . . (((p ∨ q) ∨ r) ∨ s) ∨ . . .)
I outermost parentheses can always be omitted

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 9 / 50

Basics Syntax

Alternative notations

our notation alternative notations

¬ϕ ∼ϕ ϕ
ϕ ∧ ψ ϕ&ψ ϕ,ψ ϕ · ψ
ϕ ∨ ψ ϕ | ψ ϕ ; ψ ϕ+ ψ
ϕ→ ψ ϕ⇒ ψ ϕ ⊃ ψ
ϕ↔ ψ ϕ⇔ ψ ϕ ≡ ψ

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 10 / 50

Basics Semantics

Semantics of propositional logic

Definition (truth assignment)

A truth assignment of the atoms in Σ, or interpretation over Σ,
is a function I : Σ→ {T,F}
Idea: extend from atoms to arbitrary formulae

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 11 / 50

Basics Semantics

Semantics of propositional logic (ctd.)

Definition (satisfaction/truth)

I satisfies ϕ (alternatively: ϕ is true under I),
in symbols I |= ϕ, according to the following inductive rules:

I |= p iff I (p) = T for p ∈ Σ

I |= > always (i. e., for all I)

I |= ⊥ never (i. e., for no I)

I |= ¬ϕ iff I 6|= ϕ

I |= ϕ ∧ ψ iff I |= ϕ and I |= ψ

I |= ϕ ∨ ψ iff I |= ϕ or I |= ψ

I |= ϕ→ ψ iff I 6|= ϕ or I |= ψ

I |= ϕ↔ ψ iff (I |= ϕ and I |= ψ) or (I 6|= ϕ and I 6|= ψ)

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 12 / 50

Basics Semantics

Semantics of propositional logic: example

Example

Σ = {p, q, r , s}
I = {p 7→ T, q 7→ F, r 7→ F, s 7→ T}
ϕ = ((p ∨ q)↔ (r ∨ s)) ∧ (¬(p ∧ q) ∨ (r ∧ ¬s))

Question: I |= ϕ?

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 13 / 50

Basics Semantics

More logic terminology

Definition (model)

An interpretation I is called a model of a formula ϕ if I |= ϕ.

An interpretation I is called a model of a set of formula KB if it is a model
of all formulae ϕ ∈ KB.

Definition (properties of formulae)

A formula ϕ is called

I satisfiable if there exists a model of ϕ

I unsatisfiable if it is not satisfiable

I valid/a tautology if all interpretations are models of ϕ

I falsifiable if it is not a tautology

Note: All valid formulae are satisfiable.
Note: All unsatisfiable formulae are falsifiable.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 14 / 50

Basics Semantics

More logic terminology (ctd.)

Definition (logical equivalence)

Two formulae ϕ and ψ are logically equivalent, written ϕ ≡ ψ, if they
have the same set of models.

In other words, ϕ ≡ ψ holds if for all interpretations I ,
we have that I |= ϕ iff I |= ψ.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 15 / 50

Basics Semantics

The truth table method

How can we decide if a formula is satisfiable, valid, etc.?
 one simple idea: generate a truth table

The characteristic truth table

p q ¬p p ∧ q p ∨ q p → q p ↔ q

F F T F F T T
F T T F T T F
T F F F T F F
T T F T T T T

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 16 / 50

Basics Semantics

Truth table method: example

Question: Is ((p ∨ q) ∧ ¬q)→ p valid?

p q p ∨ q (p ∨ q) ∧ ¬q ((p ∨ q) ∧ ¬q)→ p

F F F F T
F T T F T
T F T T T
T T T F T

I ϕ is true for all possible combinations of truth values

 all interpretations are models

 ϕ is valid

I satisfiability, unsatisfiability, falsifiability likewise

I logical equivalence likewise

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 17 / 50

Basics Equivalences

Some well known equivalences

Idempotence ϕ ∧ ϕ ≡ ϕ
ϕ ∨ ϕ ≡ ϕ

Commutativity ϕ ∧ ψ ≡ ψ ∧ ϕ
ϕ ∨ ψ ≡ ψ ∨ ϕ

Associativity (ϕ ∧ ψ) ∧ χ ≡ ϕ ∧ (ψ ∧ χ)
(ϕ ∨ ψ) ∨ χ ≡ ϕ ∨ (ψ ∨ χ)

Absorption ϕ ∧ (ϕ ∨ ψ) ≡ ϕ
ϕ ∨ (ϕ ∧ ψ) ≡ ϕ

Distributivity ϕ ∧ (ψ ∨ χ) ≡ (ϕ ∧ ψ) ∨ (ϕ ∧ χ)
ϕ ∨ (ψ ∧ χ) ≡ (ϕ ∨ ψ) ∧ (ϕ ∨ χ)

De Morgan ¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ
¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ

Double negation ¬¬ϕ ≡ ϕ
(→)-Elimination ϕ→ ψ ≡ ¬ϕ ∨ ψ
(↔)-Elimination ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ)

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 18 / 50

Basics Equivalences

Substitutability

Theorem (Substitutability)

Let ϕ and ψ be two equivalent formulae, i. e., ϕ ≡ ψ.

Let χ be a formula in which ϕ occurs as a subformula, and
let χ′ be the formula obtained from χ by substituting ψ for ϕ.

Then χ ≡ χ′.
Example: p ∨ ¬(q ∨ r) ≡ p ∨ (¬q ∧ ¬r)
Example: by De Morgan’s law and substitutability.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 19 / 50

Basics Equivalences

Applying equivalences: examples (1)

p ∧ (¬q ∨ p)

≡ (p ∧ ¬q) ∨ (p ∧ p) (Distributivity)

≡ (p ∧ ¬q) ∨ p (Idempotence)

≡ p ∨ (p ∧ ¬q) (Commutativity)

≡ p (Absorption)

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 20 / 50

Basics Equivalences

Applying equivalences: examples (2)

p ↔ q

≡ (p → q) ∧ (q → p) ((↔)-Elimination)

≡ (¬p ∨ q) ∧ (¬q ∨ p) ((→)-Elimination)

≡ ((¬p ∨ q) ∧ ¬q) ∨ ((¬p ∨ q) ∧ p) (Distributivity)

≡ (¬q ∧ (¬p ∨ q)) ∨ (p ∧ (¬p ∨ q)) (Commutativity)

≡ ((¬q ∧ ¬p) ∨ (¬q ∧ q)) ∨
((p ∧ ¬p) ∨ (p ∧ q)) (Distributivity)

≡ ((¬q ∧ ¬p) ∨ ⊥) ∨ (⊥ ∨ (p ∧ q)) (ϕ ∧ ¬ϕ ≡ ⊥)

≡ (¬q ∧ ¬p) ∨ (p ∧ q) (ϕ ∨ ⊥ ≡ ϕ ≡ ⊥ ∨ ϕ)

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 21 / 50

Basics Normal forms

Conjunctive normal form

Definition (conjunctive normal form)

A formula is in conjunctive normal form (CNF) if it consists of a
conjunction of clauses, i. e., if it has the form

n∧
i=1

 mi∨
j=1

lij

 ,

where the lij are literals.

Theorem: For each formula ϕ, there exists a logically equivalent formula in
CNF.

Note: A CNF formula is valid iff every clause is valid.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 22 / 50

Basics Normal forms

Disjunctive normal form

Definition (disjunctive normal form)

A formula is in disjunctive normal form (DNF) if it consists of a
disjunction of conjunctions of literals, i. e., if it has the form

n∨
i=1

 mi∧
j=1

lij

 ,

where the lij are literals.

Theorem: For each formula ϕ, there exists a logically equivalent formula in
DNF.

Note: A DNF formula is satisfiable iff at least one disjunct is satisfiable.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 23 / 50

Basics Normal forms

CNF and DNF examples

Examples

I (p ∨ ¬q) ∧ p is in CNF

I (r ∨ q) ∧ p ∧ (r ∨ s) is in CNF

I p ∨ (¬q ∧ r) is in DNF

I p ∨ ¬q → p is neither in CNF nor in DNF

I p is in CNF and in DNF

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 24 / 50

Basics Normal forms

Producing CNF

Algorithm for producing CNF

1. Get rid of → and ↔ with (→)-Elimination and (↔)-Elimination.
 formula structure: only ∨, ∧, ¬

2. Move negations inwards with De Morgan and Double negation.
 formula structure: only ∨, ∧, literals

3. Distribute ∨ over ∧ with Distributivity
(strictly speaking, also Commutativity).
 formula structure: CNF

4. Optionally, simplify (e. g., using Idempotence)
at the end or at any previous point.

Note: For DNF, just distribute ∧ over ∨ instead.
Question: runtime?

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 25 / 50

Basics Normal forms

Producing CNF: example

Producing CNF

Given: ϕ = ((p ∨ r) ∧ ¬q)→ p

ϕ ≡ ¬((p ∨ r) ∧ ¬q) ∨ p Step 1

≡ (¬(p ∨ r) ∨ ¬¬q) ∨ p Step 2

≡ ((¬p ∧ ¬r) ∨ q) ∨ p Step 2

≡ ((¬p ∨ q) ∧ (¬r ∨ q)) ∨ p Step 3

≡ (¬p ∨ q ∨ p) ∧ (¬r ∨ q ∨ p) Step 3

≡ > ∧ (¬r ∨ q ∨ p) Step 4

≡ ¬r ∨ q ∨ p Step 4

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 26 / 50

Basics Entailment

Logical entailment

A set of formulae (a knowledge base) usually provides an incomplete
description of the world, i. e., it leaves the truth values of some
propositions open.

Example: KB = {p ∨ q, r ∨ ¬p, s} is definitive w.r.t. s, but leaves p, q, r
open (though not completely!)

Models of the KB

p q r s

F T F T
F T F T
T F T T
T T T T

In all models, q ∨ r is true. Hence, q ∨ r is logically entailed by KB (a
logical consequence of KB).

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 27 / 50

Basics Entailment

Logical entailment: formally

Definition (entailment)

Let KB be a set of formulae and ϕ be a formula.
We say that KB entails ϕ (also: ϕ follows logically from KB;
ϕ is a logical consequence of KB), in symbols KB |= ϕ,
if all models of KB are models of ϕ.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 28 / 50

Basics Entailment

Properties of entailment

Some properties of logical entailment:

I Deduction theorem:
KB ∪ {ϕ} |= ψ iff KB |= ϕ→ ψ

I Contraposition theorem:
KB ∪ {ϕ} |= ¬ψ iff KB ∪ {ψ} |= ¬ϕ

I Contradiction theorem:
KB ∪ {ϕ} is unsatisfiable iff KB |= ¬ϕ

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 29 / 50

Basics Entailment

Proof of the deduction theorem

Deduction theorem: KB ∪ {ϕ} |= ψ iff KB |= ϕ→ ψ

Proof.
“⇒”: The premise is that KB ∪ {ϕ} |= ψ.
We must show that KB |= ϕ→ ψ, i. e., that all models of KB satisfy
ϕ→ ψ. Consider any such model I .
We distinguish two cases:

I Case 1: I |= ϕ.
Then I is a model of KB ∪ {ϕ}, and by the premise, I |= ψ, from
which we conclude that I |= ϕ→ ψ.

I Case 2: I 6|= ϕ.
Then we can directly conclude that I |= ϕ→ ψ.

. . .

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 30 / 50

Basics Entailment

Proof of the deduction theorem

Deduction theorem: KB ∪ {ϕ} |= ψ iff KB |= ϕ→ ψ

Proof (ctd.)

“⇐”: The premise is that KB |= ϕ→ ψ.
We must show that KB ∪ {ϕ} |= ψ, i. e., that all models of KB ∪ {ϕ}
satisfy ψ. Consider any such model I .

By definition, I |= ϕ. Moreover, as I is a model of KB, we have
I |= ϕ→ ψ by the premise.

Putting this together, we get I |= ϕ ∧ (ϕ→ ψ) ≡ ϕ ∧ ψ,
which implies that I |= ψ.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 31 / 50

Basics Entailment

Proof of the contraposition theorem

Contraposition theorem: KB ∪ {ϕ} |= ¬ψ iff KB ∪ {ψ} |= ¬ϕ

Proof.
By the deduction theorem, KB ∪ {ϕ} |= ¬ψ iff KB |= ϕ→ ¬ψ.
For the same reason, KB ∪ {ψ} |= ¬ϕ iff KB |= ψ → ¬ϕ.

We have ϕ→ ¬ψ ≡ ¬ϕ ∨ ¬ψ ≡ ¬ψ ∨ ¬ϕ ≡ ψ → ¬ϕ.

Putting this together, we get

KB ∪ {ϕ} |= ¬ψ
iff KB |= ¬ϕ ∨ ¬ψ
iff KB ∪ {ψ} |= ¬ϕ

as required.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 32 / 50

Inference Calculi

Inference rules, calculi and proofs

Question: Can we determine whether KB |= ϕ without considering all
interpretations (the truth table method)?

I Yes! There are various ways of doing this.

I One is to use inference rules that produce formulae that follow
logically from a given set of formulae.

I Inference rules are written in the form

ϕ1, . . . , ϕk

ψ
,

meaning “if ϕ1, . . . , ϕk are true, then ψ is also true.”

I k = 0 is allowed; such inference rules are called axioms.

I A set of inference rules is called a calculus or proof system.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 33 / 50

Inference Calculi

Some inference rules for propositional logic

Modus ponens
ϕ, ϕ→ ψ

ψ

Modus tolens
¬ψ, ϕ→ ψ

¬ϕ

And elimination
ϕ ∧ ψ
ϕ

ϕ ∧ ψ
ψ

And introduction
ϕ, ψ

ϕ ∧ ψ
Or introduction

ϕ

ϕ ∨ ψ

(⊥) elimination
⊥
ϕ

(↔) elimination
ϕ↔ ψ

ϕ→ ψ

ϕ↔ ψ

ψ → ϕ

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 34 / 50

Inference Calculi

Derivations

Definition (derivation)

A derivation or proof of a formula ϕ from a knowledge base KB is a
sequence of formulae ψ1, . . . , ψk such that

I ψk = ϕ and
I for all i ∈ {1, . . . , k}:

I ψi ∈ KB, or
I ψi is the result of applying an inference rule

to some elements of {ψ1, . . . , ψi−1}.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 35 / 50

Inference Calculi

Derivation example

Example

Given: KB = {p, p → q, p → r , q ∧ r → s}
Objective: Give a derivation of s ∧ r from KB.

1. p (KB)

2. p → q (KB)

3. q (1, 2, modus ponens)

4. p → r (KB)

5. r (1, 4, modus ponens)

6. q ∧ r (3, 5, and introduction)

7. q ∧ r → s (KB)

8. s (6, 7, modus ponens)

9. s ∧ r (8, 5, and introduction)

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 36 / 50

Inference Properties

Soundness and completeness

Definition (KB `C ϕ, soundness, completeness)

We write KB `C ϕ if there is a derivation of ϕ from KB in calculus C.
(We often omit C when it is clear from context.)

A calculus C is sound or correct if for all KB and ϕ,
we have that KB `C ϕ implies KB |= ϕ.

A calculus C is complete if for all KB and ϕ,
we have that KB |= ϕ implies KB `C ϕ.

Consider the calculus C given by the derivation rules shown previously.
Question: Is C sound?
Question: Is C complete?

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 37 / 50

Inference Properties

Refutation-completeness

I Clearly we want sound calculi.

I Do we also need complete calculi?

I Recall the contradiction theorem:
KB ∪ {ϕ} is unsatisfiable iff KB |= ¬ϕ

I This implies that KB |= ϕ iff KB ∪ {¬ϕ} is unsatisfiable,
i. e., KB |= ϕ iff KB ∪ {¬ϕ} |= ⊥.

I Hence, we can reduce the general entailment problem to testing
entailment of ⊥.

Definition (refutation-complete)

A calculus C is refutation-complete if for all KB,
we have that KB |= ⊥ implies KB `C ⊥.

Question: What is the relationship between completeness
Question: and refutation-completeness?

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 38 / 50

Inference Resolution

Resolution: idea

I Resolution is a refutation-complete calculus for knowledge bases in
CNF.

I For knowledge bases that are not in CNF, we can convert them to
equivalent formulae in CNF.

I However, this conversion can take exponential time.
I Alternatively, we can convert to a satisfiability-equivalent (but not

logically equivalent) knowledge base in polynomial time.

I To test if KB |= ϕ, we test if KB ∪ {¬ϕ} `R ⊥,
where R is the resolution calculus.
(In the following, we simply write ` instead of `R.)

I In the worst case, resolution takes exponential time.

I However, this is probably true for all refutation complete proof
methods, as we will see in the computational complexity part of the
course.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 39 / 50

Inference Resolution

Knowledge bases as clause sets

I Resolution requires that knowledge bases are given in CNF.
I In this case, we can simplify notation:

I A formula in CNF can be equivalently seen as a set of clauses (due to
commutativity, idempotence and associativity of (∨)).

I A set of formulae can then also be seen as a set of clauses.
I A clause can be seen as a set of literals (due to commutativity,

idempotence and associativity of (∧)).
I So a knowledge base can be represented as a set of sets of literals.

I Example:
I KB = {(p ∨ p), (¬p ∨ q) ∧ (¬p ∨ r) ∧ (¬p ∨ q) ∧ r ,

KB = {(¬q ∨ ¬r ∨ s) ∧ p}
I as clause set: {{p}, {¬p, q}, {¬p, r}, {r}, {¬q,¬r , s}}

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 40 / 50

Inference Resolution

Resolution: notation, empty clauses

I In the following, we use common logical notation for sets of literals
(treating them as clauses) and sets of sets of literals (treating them
as CNF formulae).

I Example:
I Let I = {p 7→ 1, q 7→ 1, r 7→ 1, s 7→ 1}.
I Let ∆ = {{p}, {¬p, q}, {¬p, r}, {r}, {¬q,¬r , s}}.
I We can write I |= ∆.

I One notation ambiguity:
I Does the empty set mean an empty clause (equivalent to ⊥) or an

empty set of clauses (equivalent to >)?
I To resolve this ambiguity, the empty clause is written as �, while the

empty set of clauses is written as ∅.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 41 / 50

Inference Resolution

The resolution rule

The resolution calculus consists of a single rule,
called the resolution rule:

C1 ∪ {l}, C2 ∪ {¬l}
C1 ∪ C2

,

where C1 and C2 are (possibly empty) clauses, and
l is an atom (and hence l and ¬l are complementary literals).

In the rule above,

I l and ¬l are called the resolution literals,

I C1 ∪ {l} and C2 ∪ {¬l} are called the parent clauses, and

I C1 ∪ C2 is called the resolvent.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 42 / 50

Inference Resolution

Resolution proofs

Definition (resolution proof)

Let ∆ be a set of clauses. We define the resolvents of ∆ as
R(∆) := ∆ ∪ {C | C is a resolvent of two clauses from ∆ }.

A resolution proof of a clause D from ∆, is a sequence of clauses
C1, . . . ,Cn with

I Cn = D and

I Ci ∈ R(∆ ∪ {C1, . . . ,Ci−1}) for all i ∈ {1, . . . , n}.

We say that D can be derived from ∆ by resolution, written ∆ `R D, if
there exists a resolution proof of D from ∆.

Remarks: Resolution is a sound and refutation-complete,
Remarks: but incomplete proof system.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 43 / 50

Inference Resolution

Resolution proofs: example

Using resolution for testing entailment: example

Let KB = {p, p → (q ∧ r)}.
We want to use resolution to show that show that KB |= r ∨ s.
Three steps:

1. Reduce entailment to unsatisfiability.

2. Convert resulting knowledge base to clause form (CNF).

3. Derive empty clause by resolution.

Step 1: Reduce entailment to unsatisfiability.

KB |= r ∨ s iff KB ∪ {¬(r ∨ s)} is unsatisfiable.
Hence, consider KB′ = KB ∪ {¬(r ∨ s)} = {p, p → (q ∧ r),¬(r ∨ s)}.

. . .

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 44 / 50

Inference Resolution

Resolution proofs: example (ctd.)

Using resolution for testing entailment: example (ctd.)

KB′ = KB ∪ {¬(r ∨ s)} = {p, p → (q ∧ r),¬(r ∨ s)}.

Step 2: Convert resulting knowledge base to clause form (CNF).

p
 clauses:{p}
p → (q ∧ r) ≡ ¬p ∨ (q ∧ r) ≡ (¬p ∨ q) ∧ (¬p ∨ r)
 clauses:{¬p, q}, {¬p, r}
¬(r ∨ s) ≡ ¬r ∧ ¬s
 clauses:{¬r}, {¬s}

∆ = {{p}, {¬p, q}, {¬p, r}, {¬r}, {¬s}}

. . .

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 45 / 50

Inference Resolution

Resolution proofs: example (ctd.)

Using resolution for testing entailment: example (ctd.)

∆ = {{p}, {¬p, q}, {¬p, r}, {¬r}, {¬s}}

Step 3: Derive empty clause by resolution.

I C1 = {p} (from ∆)

I C2 = {¬p, q} (from ∆)

I C3 = {¬p, r} (from ∆)

I C4 = {¬r} (from ∆)

I C5 = {¬s} (from ∆)

I C6 = {q} (from C1 and C2)

I C7 = {¬p} (from C3 and C4)

I C8 = � (from C1 and C7)

Note: Much shorter proofs exist. (For example?)

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 46 / 50

Inference Resolution

Another example

Another resolution example

We want to prove {p → q, q → r} |= p → r .

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 47 / 50

Inference Resolution

Larger example: blood types

We know the following:

I If test T is positive, the person has blood type A or AB.

I If test S is positive, the person has blood type B or AB.

I If a person has blood type A, then test T will be positive.

I If a person has blood type B, then test S will be positive.

I If a person has blood type AB, both tests will be positive.

I A person has exactly one of the blood types A, B, AB, 0.

I Suppose T is true and S is false for a given person.

Prove that the person must have blood type A or 0.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 48 / 50

Wrap-up

Summary

I Logics are mathematical approaches for formalizing reasoning.

I Propositional logic is one logic which is of particular relevance to
computer science.

I Three important components of all forms of logic include:
I Syntax formalizes what statements can be expressed.
 atoms, connectives, formulae, . . .

I Semantics formalizes what these statements mean.
 interpretations, models, satisfiable, valid, . . .

I Calculi (proof systems) provide formal rules for deriving conclusions
from a set of given statements.
 inference rules, derivations, sound, complete,
 refutation-complete, . . .

I We had a closer look at the resolution calculus,
which is a sound and refutation-complete proof system.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 49 / 50

Wrap-up

Further topics

There are many further topics we did not discuss:

I resolution strategies to make resolution as efficient as possible in
practice

I other proof systems, for example tableaux proofs

I algorithms for model construction, for example the
Davis-Putnam-Logemann-Loveland (DPLL) procedure

These topics are discussed in advanced courses, such as:

I Foundations of Artificial Intelligence
(every summer semester)

I Principles of Knowledge Representation and Reasoning
(no fixed schedule; roughly once in two years)

I Modal Logic (no fixed schedule; infrequently)

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 50 / 50

	Informal introduction
	Basic concepts
	Syntax
	Semantics
	Equivalences
	Normal forms
	Entailment

	Inference
	Calculi
	Properties: soundness, completeness, refutation-completeness
	Resolution

	Wrap-up

