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Introduction

Why logic?

I formalizing valid reasoning

I used throughout mathematics, computer science

I the basis of many tools in computer science
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Introduction

Examples of reasoning

Which are valid?

I If it is Sunday, then I don’t need to work.
It is Sunday.
Therefore I don’t need to work.

I It will rain or snow.
It is too warm for snow.
Therefore it will rain.

I The butler is guilty or the maid is guilty.
The maid is guilty or the cook is guilty.
Therefore either the butler is guilty or the cook is guilty.
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Introduction

Elements of logic

I Which elements are well-formed?  syntax

I What does it mean for a formula to be true?  semantics

I When does one formula follow from another?  inference

Two logics:

I propositional logic

I first-order logic (aka predicate logic)
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Introduction

Building blocks of propositional logic
Building blocks of propositional logic:

I atomic propositions (atoms)

I connectives

Atomic propositions

indivisible statements
Examples:

I “The cook is guilty.”

I “It rains.”

I “The girl has red hair.”

Connectives
operators to build composite formulae out of atoms
Examples:

I “and”, “or”, “not”, . . .
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Introduction

Logic: basic questions

We are interested in knowing the following:

I When is a formula true?
I When does one formula logically follow from (= is logically entailed

by) a knowledge base (a set of formulae)?
I symbolically: KB |= ϕ if KB entails ϕ

I How can we define an inference mechanism (≈ proof procedure) that
allows us to systematically derive consequences of a knowledge base?

I symbolically: KB ` ϕ if ϕ can be derived from KB

I Can we find an inference mechanism in such a way that KB |= ϕ iff
KB ` ϕ?

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 7 / 50



Basics Syntax

Syntax of propositional logic

Given: finite or countable set Σ of atoms p, q, r , . . .

Propositional formulae: inductively defined as

p ∈ Σ atomic formulae

> truth

⊥ falseness

¬ϕ negation

(ϕ ∧ ψ) conjunction

(ϕ ∨ ψ) disjunction

(ϕ→ ψ) material conditional

(ϕ↔ ψ) biconditional

where ϕ and ψ are constructed in the same way
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Basics Syntax

Logic terminology and notations

I atom/atomic formula (p)

I literal: atom or negated atom (p, ¬p)

I clause: disjunction of literals (p ∨ ¬q, p ∨ q ∨ r , p)

Parentheses may be omitted according to the following rules:

I ¬ binds more tightly than ∧
I ∧ binds more tightly than ∨
I ∨ binds more tightly than → and ↔
I p ∧ q ∧ r ∧ s . . . is read as (. . . (((p ∧ q) ∧ r) ∧ s) ∧ . . . )
I p ∨ q ∨ r ∨ s . . . is read as (. . . (((p ∨ q) ∨ r) ∨ s) ∨ . . . )
I outermost parentheses can always be omitted
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Basics Syntax

Alternative notations

our notation alternative notations

¬ϕ ∼ϕ ϕ
ϕ ∧ ψ ϕ&ψ ϕ,ψ ϕ · ψ
ϕ ∨ ψ ϕ | ψ ϕ ; ψ ϕ+ ψ
ϕ→ ψ ϕ⇒ ψ ϕ ⊃ ψ
ϕ↔ ψ ϕ⇔ ψ ϕ ≡ ψ
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Basics Semantics

Semantics of propositional logic

Definition (truth assignment)

A truth assignment of the atoms in Σ, or interpretation over Σ,
is a function I : Σ→ {T,F}
Idea: extend from atoms to arbitrary formulae
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Basics Semantics

Semantics of propositional logic (ctd.)

Definition (satisfaction/truth)

I satisfies ϕ (alternatively: ϕ is true under I ),
in symbols I |= ϕ, according to the following inductive rules:

I |= p iff I (p) = T for p ∈ Σ

I |= > always (i. e., for all I )

I |= ⊥ never (i. e., for no I )

I |= ¬ϕ iff I 6|= ϕ

I |= ϕ ∧ ψ iff I |= ϕ and I |= ψ

I |= ϕ ∨ ψ iff I |= ϕ or I |= ψ

I |= ϕ→ ψ iff I 6|= ϕ or I |= ψ

I |= ϕ↔ ψ iff (I |= ϕ and I |= ψ) or (I 6|= ϕ and I 6|= ψ)
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Basics Semantics

Semantics of propositional logic: example

Example

Σ = {p, q, r , s}
I = {p 7→ T, q 7→ F, r 7→ F, s 7→ T}
ϕ = ((p ∨ q)↔ (r ∨ s)) ∧ (¬(p ∧ q) ∨ (r ∧ ¬s))

Question: I |= ϕ?
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Basics Semantics

More logic terminology

Definition (model)

An interpretation I is called a model of a formula ϕ if I |= ϕ.

An interpretation I is called a model of a set of formula KB if it is a model
of all formulae ϕ ∈ KB.

Definition (properties of formulae)

A formula ϕ is called

I satisfiable if there exists a model of ϕ

I unsatisfiable if it is not satisfiable

I valid/a tautology if all interpretations are models of ϕ

I falsifiable if it is not a tautology

Note: All valid formulae are satisfiable.
Note: All unsatisfiable formulae are falsifiable.
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Basics Semantics

More logic terminology (ctd.)

Definition (logical equivalence)

Two formulae ϕ and ψ are logically equivalent, written ϕ ≡ ψ, if they
have the same set of models.

In other words, ϕ ≡ ψ holds if for all interpretations I ,
we have that I |= ϕ iff I |= ψ.
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Basics Semantics

The truth table method

How can we decide if a formula is satisfiable, valid, etc.?
 one simple idea: generate a truth table

The characteristic truth table

p q ¬p p ∧ q p ∨ q p → q p ↔ q

F F T F F T T
F T T F T T F
T F F F T F F
T T F T T T T
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Basics Semantics

Truth table method: example

Question: Is ((p ∨ q) ∧ ¬q)→ p valid?

p q p ∨ q (p ∨ q) ∧ ¬q ((p ∨ q) ∧ ¬q)→ p

F F F F T
F T T F T
T F T T T
T T T F T

I ϕ is true for all possible combinations of truth values

 all interpretations are models

 ϕ is valid

I satisfiability, unsatisfiability, falsifiability likewise

I logical equivalence likewise

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 17 / 50



Basics Equivalences

Some well known equivalences

Idempotence ϕ ∧ ϕ ≡ ϕ
ϕ ∨ ϕ ≡ ϕ

Commutativity ϕ ∧ ψ ≡ ψ ∧ ϕ
ϕ ∨ ψ ≡ ψ ∨ ϕ

Associativity (ϕ ∧ ψ) ∧ χ ≡ ϕ ∧ (ψ ∧ χ)
(ϕ ∨ ψ) ∨ χ ≡ ϕ ∨ (ψ ∨ χ)

Absorption ϕ ∧ (ϕ ∨ ψ) ≡ ϕ
ϕ ∨ (ϕ ∧ ψ) ≡ ϕ

Distributivity ϕ ∧ (ψ ∨ χ) ≡ (ϕ ∧ ψ) ∨ (ϕ ∧ χ)
ϕ ∨ (ψ ∧ χ) ≡ (ϕ ∨ ψ) ∧ (ϕ ∨ χ)

De Morgan ¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ
¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ

Double negation ¬¬ϕ ≡ ϕ
(→)-Elimination ϕ→ ψ ≡ ¬ϕ ∨ ψ
(↔)-Elimination ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ)
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Basics Equivalences

Substitutability

Theorem (Substitutability)

Let ϕ and ψ be two equivalent formulae, i. e., ϕ ≡ ψ.

Let χ be a formula in which ϕ occurs as a subformula, and
let χ′ be the formula obtained from χ by substituting ψ for ϕ.

Then χ ≡ χ′.
Example: p ∨ ¬(q ∨ r) ≡ p ∨ (¬q ∧ ¬r)
Example: by De Morgan’s law and substitutability.
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Basics Equivalences

Applying equivalences: examples (1)

p ∧ (¬q ∨ p)

≡ (p ∧ ¬q) ∨ (p ∧ p) (Distributivity)

≡ (p ∧ ¬q) ∨ p (Idempotence)

≡ p ∨ (p ∧ ¬q) (Commutativity)

≡ p (Absorption)
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Basics Equivalences

Applying equivalences: examples (2)

p ↔ q

≡ (p → q) ∧ (q → p) ((↔)-Elimination)

≡ (¬p ∨ q) ∧ (¬q ∨ p) ((→)-Elimination)

≡ ((¬p ∨ q) ∧ ¬q) ∨ ((¬p ∨ q) ∧ p) (Distributivity)

≡ (¬q ∧ (¬p ∨ q)) ∨ (p ∧ (¬p ∨ q)) (Commutativity)

≡ ((¬q ∧ ¬p) ∨ (¬q ∧ q)) ∨
((p ∧ ¬p) ∨ (p ∧ q)) (Distributivity)

≡ ((¬q ∧ ¬p) ∨ ⊥) ∨ (⊥ ∨ (p ∧ q)) (ϕ ∧ ¬ϕ ≡ ⊥)

≡ (¬q ∧ ¬p) ∨ (p ∧ q) (ϕ ∨ ⊥ ≡ ϕ ≡ ⊥ ∨ ϕ)
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Basics Normal forms

Conjunctive normal form

Definition (conjunctive normal form)

A formula is in conjunctive normal form (CNF) if it consists of a
conjunction of clauses, i. e., if it has the form

n∧
i=1

 mi∨
j=1

lij

 ,

where the lij are literals.

Theorem: For each formula ϕ, there exists a logically equivalent formula in
CNF.

Note: A CNF formula is valid iff every clause is valid.
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Basics Normal forms

Disjunctive normal form

Definition (disjunctive normal form)

A formula is in disjunctive normal form (DNF) if it consists of a
disjunction of conjunctions of literals, i. e., if it has the form

n∨
i=1

 mi∧
j=1

lij

 ,

where the lij are literals.

Theorem: For each formula ϕ, there exists a logically equivalent formula in
DNF.

Note: A DNF formula is satisfiable iff at least one disjunct is satisfiable.

M. Helmert, A. Karwath (Univ. Freiburg) ACS II October 22th, 2009 23 / 50



Basics Normal forms

CNF and DNF examples

Examples

I (p ∨ ¬q) ∧ p is in CNF

I (r ∨ q) ∧ p ∧ (r ∨ s) is in CNF

I p ∨ (¬q ∧ r) is in DNF

I p ∨ ¬q → p is neither in CNF nor in DNF

I p is in CNF and in DNF
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Basics Normal forms

Producing CNF

Algorithm for producing CNF

1. Get rid of → and ↔ with (→)-Elimination and (↔)-Elimination.
 formula structure: only ∨, ∧, ¬

2. Move negations inwards with De Morgan and Double negation.
 formula structure: only ∨, ∧, literals

3. Distribute ∨ over ∧ with Distributivity
(strictly speaking, also Commutativity).
 formula structure: CNF

4. Optionally, simplify (e. g., using Idempotence)
at the end or at any previous point.

Note: For DNF, just distribute ∧ over ∨ instead.
Question: runtime?
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Basics Normal forms

Producing CNF: example

Producing CNF

Given: ϕ = ((p ∨ r) ∧ ¬q)→ p

ϕ ≡ ¬((p ∨ r) ∧ ¬q) ∨ p Step 1

≡ (¬(p ∨ r) ∨ ¬¬q) ∨ p Step 2

≡ ((¬p ∧ ¬r) ∨ q) ∨ p Step 2

≡ ((¬p ∨ q) ∧ (¬r ∨ q)) ∨ p Step 3

≡ (¬p ∨ q ∨ p) ∧ (¬r ∨ q ∨ p) Step 3

≡ > ∧ (¬r ∨ q ∨ p) Step 4

≡ ¬r ∨ q ∨ p Step 4
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Basics Entailment

Logical entailment

A set of formulae (a knowledge base) usually provides an incomplete
description of the world, i. e., it leaves the truth values of some
propositions open.

Example: KB = {p ∨ q, r ∨ ¬p, s} is definitive w.r.t. s, but leaves p, q, r
open (though not completely!)

Models of the KB

p q r s

F T F T
F T F T
T F T T
T T T T

In all models, q ∨ r is true. Hence, q ∨ r is logically entailed by KB (a
logical consequence of KB).
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Basics Entailment

Logical entailment: formally

Definition (entailment)

Let KB be a set of formulae and ϕ be a formula.
We say that KB entails ϕ (also: ϕ follows logically from KB;
ϕ is a logical consequence of KB), in symbols KB |= ϕ,
if all models of KB are models of ϕ.
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Basics Entailment

Properties of entailment

Some properties of logical entailment:

I Deduction theorem:
KB ∪ {ϕ} |= ψ iff KB |= ϕ→ ψ

I Contraposition theorem:
KB ∪ {ϕ} |= ¬ψ iff KB ∪ {ψ} |= ¬ϕ

I Contradiction theorem:
KB ∪ {ϕ} is unsatisfiable iff KB |= ¬ϕ
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Basics Entailment

Proof of the deduction theorem

Deduction theorem: KB ∪ {ϕ} |= ψ iff KB |= ϕ→ ψ

Proof.
“⇒”: The premise is that KB ∪ {ϕ} |= ψ.
We must show that KB |= ϕ→ ψ, i. e., that all models of KB satisfy
ϕ→ ψ. Consider any such model I .
We distinguish two cases:

I Case 1: I |= ϕ.
Then I is a model of KB ∪ {ϕ}, and by the premise, I |= ψ, from
which we conclude that I |= ϕ→ ψ.

I Case 2: I 6|= ϕ.
Then we can directly conclude that I |= ϕ→ ψ.

. . .
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Basics Entailment

Proof of the deduction theorem

Deduction theorem: KB ∪ {ϕ} |= ψ iff KB |= ϕ→ ψ

Proof (ctd.)

“⇐”: The premise is that KB |= ϕ→ ψ.
We must show that KB ∪ {ϕ} |= ψ, i. e., that all models of KB ∪ {ϕ}
satisfy ψ. Consider any such model I .

By definition, I |= ϕ. Moreover, as I is a model of KB, we have
I |= ϕ→ ψ by the premise.

Putting this together, we get I |= ϕ ∧ (ϕ→ ψ) ≡ ϕ ∧ ψ,
which implies that I |= ψ.
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Basics Entailment

Proof of the contraposition theorem

Contraposition theorem: KB ∪ {ϕ} |= ¬ψ iff KB ∪ {ψ} |= ¬ϕ

Proof.
By the deduction theorem, KB ∪ {ϕ} |= ¬ψ iff KB |= ϕ→ ¬ψ.
For the same reason, KB ∪ {ψ} |= ¬ϕ iff KB |= ψ → ¬ϕ.

We have ϕ→ ¬ψ ≡ ¬ϕ ∨ ¬ψ ≡ ¬ψ ∨ ¬ϕ ≡ ψ → ¬ϕ.

Putting this together, we get

KB ∪ {ϕ} |= ¬ψ
iff KB |= ¬ϕ ∨ ¬ψ
iff KB ∪ {ψ} |= ¬ϕ

as required.
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Inference Calculi

Inference rules, calculi and proofs

Question: Can we determine whether KB |= ϕ without considering all
interpretations (the truth table method)?

I Yes! There are various ways of doing this.

I One is to use inference rules that produce formulae that follow
logically from a given set of formulae.

I Inference rules are written in the form

ϕ1, . . . , ϕk

ψ
,

meaning “if ϕ1, . . . , ϕk are true, then ψ is also true.”

I k = 0 is allowed; such inference rules are called axioms.

I A set of inference rules is called a calculus or proof system.
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Inference Calculi

Some inference rules for propositional logic

Modus ponens
ϕ, ϕ→ ψ

ψ

Modus tolens
¬ψ, ϕ→ ψ

¬ϕ

And elimination
ϕ ∧ ψ
ϕ

ϕ ∧ ψ
ψ

And introduction
ϕ, ψ

ϕ ∧ ψ
Or introduction

ϕ

ϕ ∨ ψ

(⊥) elimination
⊥
ϕ

(↔) elimination
ϕ↔ ψ

ϕ→ ψ

ϕ↔ ψ

ψ → ϕ
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Inference Calculi

Derivations

Definition (derivation)

A derivation or proof of a formula ϕ from a knowledge base KB is a
sequence of formulae ψ1, . . . , ψk such that

I ψk = ϕ and
I for all i ∈ {1, . . . , k}:

I ψi ∈ KB, or
I ψi is the result of applying an inference rule

to some elements of {ψ1, . . . , ψi−1}.
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Inference Calculi

Derivation example

Example

Given: KB = {p, p → q, p → r , q ∧ r → s}
Objective: Give a derivation of s ∧ r from KB.

1. p (KB)

2. p → q (KB)

3. q (1, 2, modus ponens)

4. p → r (KB)

5. r (1, 4, modus ponens)

6. q ∧ r (3, 5, and introduction)

7. q ∧ r → s (KB)

8. s (6, 7, modus ponens)

9. s ∧ r (8, 5, and introduction)
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Inference Properties

Soundness and completeness

Definition (KB `C ϕ, soundness, completeness)

We write KB `C ϕ if there is a derivation of ϕ from KB in calculus C.
(We often omit C when it is clear from context.)

A calculus C is sound or correct if for all KB and ϕ,
we have that KB `C ϕ implies KB |= ϕ.

A calculus C is complete if for all KB and ϕ,
we have that KB |= ϕ implies KB `C ϕ.

Consider the calculus C given by the derivation rules shown previously.
Question: Is C sound?
Question: Is C complete?
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Inference Properties

Refutation-completeness

I Clearly we want sound calculi.

I Do we also need complete calculi?

I Recall the contradiction theorem:
KB ∪ {ϕ} is unsatisfiable iff KB |= ¬ϕ

I This implies that KB |= ϕ iff KB ∪ {¬ϕ} is unsatisfiable,
i. e., KB |= ϕ iff KB ∪ {¬ϕ} |= ⊥.

I Hence, we can reduce the general entailment problem to testing
entailment of ⊥.

Definition (refutation-complete)

A calculus C is refutation-complete if for all KB,
we have that KB |= ⊥ implies KB `C ⊥.

Question: What is the relationship between completeness
Question: and refutation-completeness?
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Inference Resolution

Resolution: idea

I Resolution is a refutation-complete calculus for knowledge bases in
CNF.

I For knowledge bases that are not in CNF, we can convert them to
equivalent formulae in CNF.

I However, this conversion can take exponential time.
I Alternatively, we can convert to a satisfiability-equivalent (but not

logically equivalent) knowledge base in polynomial time.

I To test if KB |= ϕ, we test if KB ∪ {¬ϕ} `R ⊥,
where R is the resolution calculus.
(In the following, we simply write ` instead of `R.)

I In the worst case, resolution takes exponential time.

I However, this is probably true for all refutation complete proof
methods, as we will see in the computational complexity part of the
course.
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Inference Resolution

Knowledge bases as clause sets

I Resolution requires that knowledge bases are given in CNF.
I In this case, we can simplify notation:

I A formula in CNF can be equivalently seen as a set of clauses (due to
commutativity, idempotence and associativity of (∨)).

I A set of formulae can then also be seen as a set of clauses.
I A clause can be seen as a set of literals (due to commutativity,

idempotence and associativity of (∧)).
I So a knowledge base can be represented as a set of sets of literals.

I Example:
I KB = {(p ∨ p), (¬p ∨ q) ∧ (¬p ∨ r) ∧ (¬p ∨ q) ∧ r ,

KB = {(¬q ∨ ¬r ∨ s) ∧ p}
I as clause set: {{p}, {¬p, q}, {¬p, r}, {r}, {¬q,¬r , s}}
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Inference Resolution

Resolution: notation, empty clauses

I In the following, we use common logical notation for sets of literals
(treating them as clauses) and sets of sets of literals (treating them
as CNF formulae).

I Example:
I Let I = {p 7→ 1, q 7→ 1, r 7→ 1, s 7→ 1}.
I Let ∆ = {{p}, {¬p, q}, {¬p, r}, {r}, {¬q,¬r , s}}.
I We can write I |= ∆.

I One notation ambiguity:
I Does the empty set mean an empty clause (equivalent to ⊥) or an

empty set of clauses (equivalent to >)?
I To resolve this ambiguity, the empty clause is written as �, while the

empty set of clauses is written as ∅.
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Inference Resolution

The resolution rule

The resolution calculus consists of a single rule,
called the resolution rule:

C1 ∪ {l}, C2 ∪ {¬l}
C1 ∪ C2

,

where C1 and C2 are (possibly empty) clauses, and
l is an atom (and hence l and ¬l are complementary literals).

In the rule above,

I l and ¬l are called the resolution literals,

I C1 ∪ {l} and C2 ∪ {¬l} are called the parent clauses, and

I C1 ∪ C2 is called the resolvent.
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Inference Resolution

Resolution proofs

Definition (resolution proof)

Let ∆ be a set of clauses. We define the resolvents of ∆ as
R(∆) := ∆ ∪ {C | C is a resolvent of two clauses from ∆ }.

A resolution proof of a clause D from ∆, is a sequence of clauses
C1, . . . ,Cn with

I Cn = D and

I Ci ∈ R(∆ ∪ {C1, . . . ,Ci−1}) for all i ∈ {1, . . . , n}.

We say that D can be derived from ∆ by resolution, written ∆ `R D, if
there exists a resolution proof of D from ∆.

Remarks: Resolution is a sound and refutation-complete,
Remarks: but incomplete proof system.
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Inference Resolution

Resolution proofs: example

Using resolution for testing entailment: example

Let KB = {p, p → (q ∧ r)}.
We want to use resolution to show that show that KB |= r ∨ s.
Three steps:

1. Reduce entailment to unsatisfiability.

2. Convert resulting knowledge base to clause form (CNF).

3. Derive empty clause by resolution.

Step 1: Reduce entailment to unsatisfiability.

KB |= r ∨ s iff KB ∪ {¬(r ∨ s)} is unsatisfiable.
Hence, consider KB′ = KB ∪ {¬(r ∨ s)} = {p, p → (q ∧ r),¬(r ∨ s)}.

. . .
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Inference Resolution

Resolution proofs: example (ctd.)

Using resolution for testing entailment: example (ctd.)

KB′ = KB ∪ {¬(r ∨ s)} = {p, p → (q ∧ r),¬(r ∨ s)}.

Step 2: Convert resulting knowledge base to clause form (CNF).

p
 clauses:{p}
p → (q ∧ r) ≡ ¬p ∨ (q ∧ r) ≡ (¬p ∨ q) ∧ (¬p ∨ r)
 clauses:{¬p, q}, {¬p, r}
¬(r ∨ s) ≡ ¬r ∧ ¬s
 clauses:{¬r}, {¬s}

∆ = {{p}, {¬p, q}, {¬p, r}, {¬r}, {¬s}}

. . .
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Inference Resolution

Resolution proofs: example (ctd.)

Using resolution for testing entailment: example (ctd.)

∆ = {{p}, {¬p, q}, {¬p, r}, {¬r}, {¬s}}

Step 3: Derive empty clause by resolution.

I C1 = {p} (from ∆)

I C2 = {¬p, q} (from ∆)

I C3 = {¬p, r} (from ∆)

I C4 = {¬r} (from ∆)

I C5 = {¬s} (from ∆)

I C6 = {q} (from C1 and C2)

I C7 = {¬p} (from C3 and C4)

I C8 = � (from C1 and C7)

Note: Much shorter proofs exist. (For example?)
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Inference Resolution

Another example

Another resolution example

We want to prove {p → q, q → r} |= p → r .
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Inference Resolution

Larger example: blood types

We know the following:

I If test T is positive, the person has blood type A or AB.

I If test S is positive, the person has blood type B or AB.

I If a person has blood type A, then test T will be positive.

I If a person has blood type B, then test S will be positive.

I If a person has blood type AB, both tests will be positive.

I A person has exactly one of the blood types A, B, AB, 0.

I Suppose T is true and S is false for a given person.

Prove that the person must have blood type A or 0.
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Wrap-up

Summary

I Logics are mathematical approaches for formalizing reasoning.

I Propositional logic is one logic which is of particular relevance to
computer science.

I Three important components of all forms of logic include:
I Syntax formalizes what statements can be expressed.
 atoms, connectives, formulae, . . .

I Semantics formalizes what these statements mean.
 interpretations, models, satisfiable, valid, . . .

I Calculi (proof systems) provide formal rules for deriving conclusions
from a set of given statements.
 inference rules, derivations, sound, complete,
 refutation-complete, . . .

I We had a closer look at the resolution calculus,
which is a sound and refutation-complete proof system.
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Wrap-up

Further topics

There are many further topics we did not discuss:

I resolution strategies to make resolution as efficient as possible in
practice

I other proof systems, for example tableaux proofs

I algorithms for model construction, for example the
Davis-Putnam-Logemann-Loveland (DPLL) procedure

These topics are discussed in advanced courses, such as:

I Foundations of Artificial Intelligence
(every summer semester)

I Principles of Knowledge Representation and Reasoning
(no fixed schedule; roughly once in two years)

I Modal Logic (no fixed schedule; infrequently)
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