Course content

- * Introduction to logic
 - * Propositional
 - * First order logic
- * Theoretical foundations of computer science
 - * Automata Theory
 - * Formal languages, grammars
 - * Decidability
 - ★ Computational Complexity

1. Motivation

Malte Helmert and Andreas Karwath

Theoretical Computer Science II (ACS II) WS2009/10

Theoretical Computer Science II (ACS II) WS2009/10

1. Motivation

Theoretical computer science motivation

- * Overall question:
 - **★** What are the fundamental capabilities and limitations of computers?
- * Subquestions:
 - ★ What is the meaning of computation?
 - ★ Automata theory
 - * What can be computed?
 - ★ Computability/Decidability theory
 - * What can be computed efficiently?
 - ★ Computational complexity

1. Motivation

What is the meaning of computation?

- * 1930-50s: Automata theory
 - * Various mathematical models of computers
 - ★ Automata theory
 - ★ Turing Machines
 - ★ Grammars (Noam Chomsky)
 - ★ Practical:
 - → Many devices (dishwashers, telephones, ...)
 - → Compilers and languages
 - + Protocols

What can be computed?

★ What can be computed using Turing Machines?

- **★** Some problems can be solved algorithmically
 - ★ E.g. sorting a list of numbers
- * Others cannot:
 - ★ E.g. the halting problem: determine whether a given program will ever terminate
 - ★ E.g. Gödel: no algorithm can decide in general whether statements in number theory are true or false
- * Practical:
 - ★ It is important to know what can be computed and what not

Theoretical Computer Science II (ACS II) WS2009/10

1. Motivation

Some mathematical concepts: sets

- * A set is a group of objects (unordered, no duplicates)
 - ***** {4,7,12}
 - * { x | x is a natural number, x is even }
 - * empty set: Ø or {}
- ***** Membership is denoted with ∈ and ∉:
 - * $4 \in \{4,7,12\}$ and $5 \notin \{4,7,12\}$
- ***** Subset ⊆ and proper subset ⊂:

Theoretical Computer Science II (ACS II) WS2009/10

- * $\{12, 4,7\} \subseteq \{4,7,12\}$ and $\{4,7\} \subset \{4,7,12\}$
- **★** Union (∪) and intersection (∩):
 - * A U B

and

 $A \cap B$

* Examples

- * Sorting can be done efficiently
- **★** Scheduling (apparently) cannot be done efficiently
 - ★ University lectures
- * Complexity theory gives an explanation

What can be computed efficiently?

- ★ NP-hard problems
- * Practical:
 - ★ Important to know how hard your problem is
 - ★ Cryptography
 - ★ Mechanism design

1. Motivation

Mathematical concepts: sequences and sets

- * Sequence is a list of objects in some order:
 - **★** ⟨4,7,12⟩ is not the same as ⟨12,7,4⟩
 - * $\langle 4,4 \rangle$ is not the same as $\langle 4 \rangle$
 - **★** Convention: often use (...) instead of ⟨...⟩
- * Finite or infinite sequences:
 - * finite sequences often called *tuples*, or *k-tuples* (a tuple with *k* elements). A 2-tuple is called a pair.
- Power set
 - * power set $\mathcal{P}(A)$: set of all subsets of A
 - * A = $\{0,1\}$ \Rightarrow power set $\mathcal{P}(A) = \{\{\},\{0\},\{1\},\{0,1\}\}$
- * Cartesian product or cross product

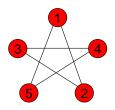
Theoretical Computer Science II (ACS II) WS2009/10

 \star A = {a,b} and B = {1,2,3} \Rightarrow A \times B = { \langle a, 1 \rangle , \langle a, 2 \rangle , \langle a, 3 \rangle , \langle b, 1 \rangle , \langle b, 2 \rangle , \langle b, 3 \rangle }

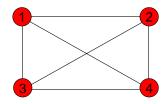
Some mathematical concepts: graphs

* Graph G=(V,E) (vertices and edges)

 $G_1 = (\{1,2,3,4,5\}, \{\{1,2\}, \{2,3\}, \{3,4\}, \{4,5\}, \{5,1\}\})$



 $G_2 = (\{1,2,3,4\}, \{\{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}\})$

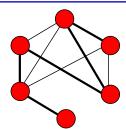


Theoretical Computer Science II (ACS II) WS2009/10

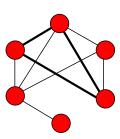
1. Motivation

Some mathematical concepts: Graphs III

* (Simple) path



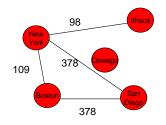
* (Simple) cycle



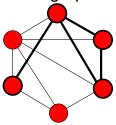
1. Motivation

Some mathematical concepts: Graphs II

* Labelled, weighted



* Subgraph, induced subgraph

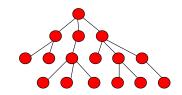


Theoretical Computer Science II (ACS II) WS2009/10

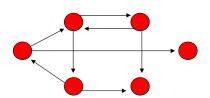
1. Motivation

Some mathematical concepts: Graphs IV

* Tree



* Directed graph



Strings and languages

- * Alphabet = set of symbols
 - **★** e.g.: $\Sigma = \{a,b,c\}$
- ★ Word/string = finite sequence of symbols over alphabet
 - * e.g. aabbabcca
- * Length |w| = number of symbols in w
- **★** Empty word = &
- * aabb is subword of aaabbbbccc
- * xy concatenation of two words x and y
- * $x^k = x...x$ (e.g. $x^3 = xxx$)
- * Language is a set of words (over an alphabet Σ)

13

Theoretical Computer Science II (ACS II) WS2009/10

Theoretical Computer Science II (ACS II) WS2009/10

1. Motivation

Direct proof

- * Strategy: Logically derive conclusions from your premises until you arrive at the desired conclusion.
- * Example: Let a, b, c be integers. If a | b and b | c, then a | c.
- * Proof:
 - * From $a \mid b$, we get: (1) ex. integer k_1 s.t. $b = k_1 \cdot a$
 - * From $b \mid c$, we get: (2) ex. integer k_2 s.t. $c = k_2 \cdot b$
 - * From (1) and (2) we get: (3) ex. integers k_1 , k_2 s.t. $c = k_2 \cdot k_1 \cdot a$
 - * From (3) we get: (4) ex. integer k s.t. $c = k \cdot a$ (namely, $k = k_2 k_1$)
 - * From (4) we get that $a \mid c$.

Mathematical proofs

- * Various types of proofs
 - **★** Direct proof
 - ★ Proof by construction/counterexample
 - * Proof by contradiction (indirect proof, reductio ad absurdum)
 - * Proof by induction
- *How formal?
 - * Formal enough to be convincing to your audience

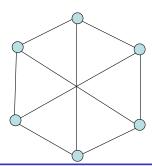
1. Motivation

Proof by construction

- * Objective: prove that a particular type of object exists
 - ★ Proof strategy: Demonstrate how to construct the object.
- * Example:
 - **★** Definition: A graph is *k*-regular if all vertices have degree *k*
 - **★** Theorem: For all even numbers n > 2, there exists a 3-regular graph with n nodes

Proof by Construction II

- * Proof:
 - **★** G=(V,E) with
 - \star V = {0,1,...,n-1} and
 - **★** E = {{i,i+1} | for $0 \le i \le n-2$ } \cup {{n-1,0}} \cup {{i, i+n/2} | $0 \le i \le n/2-1$ }}
 - ★ → every vertex has exactly three neighbours:
 - + its predecessor in the cycle 0, 1, 2, ..., n-1, 0
 - + its successor in the cycle
 - + its "mirror image" n/2 positions before/ahead in the cycle



Theoretical Computer Science II (ACS II) WS2009/10

17

19

1. Motivation

Proof by contradiction

- *** Theorem**: $\sqrt{2}$ is irrational
- * Proof: Assume that the theorem is not true. Then:

$$\sqrt{2} = \frac{b}{a}$$

where a and b are integers and \underline{b} is reduced.

hence, b^2 is even, hence b is even $2a^2 = b^2$

now, we can write b=2c, which gives:

 $2a^2 = 4c^2$

divide by 2, gives:

 $a^2 = 2c^2$

hence, a2 is even, hence a must be even

CONTRADICTION

Proof by contradiction

*** Theorem**: $\sqrt{2}$ is irrational

- * Proof strategy:
 - * Assume that the theorem is not true.
 - * Show that this leads to a contradiction, and hence the theorem must be true.

1. Motivation

Proof by induction

Theoretical Computer Science II (ACS II) WS2009/10

- * Prove a statement S(X) about a family of objects (e.g. integers, trees) in two parts:
 - * Basis: prove for one or several small values of X directly
 - **★** Inductive step: Assume S(Y) for Y smaller than X; prove S(X) using that assumption
- * Applies to
 - * Natural numbers
 - **★** Inductively defined objects (structured induction)

Inductively defined: example

Rooted binary trees are inductively defined

- * Basis: a single node is a tree and that node is the root of the tree
- * **Induction**: if T_1 and T_2 are rooted binary trees, then the object constructed as follows is a rooted binary tree:
 - **★** Begin with a new node N as the root
 - * Add copies of T_1 and T_2
 - * Add edges from N to T_1 and T_2

Theorem: A binary tree with *n* leaves has 2*n-1* nodes

Proof by induction: example

- * Basis:
 - **★** if a tree has one leaf, then it is a one node tree, and 2·1-1 = 1
- Induction:

21

- * assume S(T) for trees with fewer nodes than T, in particular for subtrees of T (i.e. use the theorem as an assumption, and use the smaller trees of T, namely U and V to prove it)
- ★ T must be a root plus two subtrees U and V
- * If U and V have u and v leaves respectively and T has t leaves, then t = u + v
- ★ By the induction assumption, U and V have 2u-1 and 2v-1 nodes, respectively
- **★** Then T has 1+(2*u*-1)+(2*v*-1) nodes

$$1+(2u-1)+(2v-1)$$
= 2(u+v)-1
= 2t-1

Theoretical Computer Science II (ACS II) WS2009/10

Theoretical Computer Science II (ACS II) WS2009/10