1. Motivation

Malte Helmert and Andreas Karwath

Course content

- * Introduction to logic
 - * Propositional
 - * First order logic
- * Theoretical foundations of computer science
 - ★ Automata Theory
 - * Formal languages, grammars
 - * Decidability
 - Computational Complexity

Theoretical computer science motivation

- * Overall question:
 - * What are the fundamental capabilities and limitations of computers?
- * Subquestions:
 - * What is the meaning of computation?
 - ★ Automata theory
 - ★ What can be computed?
 - ★ Computability/Decidability theory
 - ★ What can be computed efficiently?
 - ★ Computational complexity

What is the meaning of computation?

- * 1930-50s: Automata theory
 - * Various mathematical models of computers
 - ★ Automata theory
 - **★** Turing Machines
 - **★** Grammars (Noam Chomsky)
 - ★ Practical:
 - → Many devices (dishwashers, telephones, ...)
 - → Compilers and languages
 - + Protocols

What can be computed?

- * What can be computed using Turing Machines?
 - * Some problems can be solved algorithmically
 - ★ E.g. sorting a list of numbers
 - * Others cannot:
 - ★ E.g. the halting problem: determine whether a given program will ever terminate
 - ★ E.g. Gödel: no algorithm can decide in general whether statements in number theory are true or false
 - * Practical:
 - ★ It is important to know what can be computed and what not

What can be computed efficiently?

* Examples

- * Sorting can be done efficiently
- * Scheduling (apparently) cannot be done efficiently
 - ★ University lectures
- * Complexity theory gives an explanation
 - ★ NP-hard problems
- * Practical:
 - ★ Important to know how hard your problem is
 - ★ Cryptography
 - ★ Mechanism design

Some mathematical concepts: sets

- * A set is a group of objects (unordered, no duplicates)
 - ***** {4,7,12}
 - * { x | x is a natural number, x is even }
 - mpty set: Ø or {}
- Membership is denoted with ∈ and ∉:
 - **★** $4 \in \{4,7,12\}$ and $5 \notin \{4,7,12\}$
- ★ Subset ⊆ and proper subset ⊂:
 - * $\{12, 4,7\} \subseteq \{4,7,12\}$ and $\{4,7\} \subset \{4,7,12\}$
- **★** Union (∪) and intersection (∩):
 - ***** A ∪ B

and

 $A \cap B$

Mathematical concepts: sequences and sets

- * Sequence is a list of objects in some order:
 - **★** ⟨4,7,12⟩ is not the same as ⟨12,7,4⟩
 - ★ (4,4) is not the same as (4)
 - **★** Convention: often use (...) instead of ⟨...⟩
- Finite or infinite sequences:
 - * finite sequences often called *tuples*, or *k-tuples* (a tuple with *k* elements). A 2-tuple is called a *pair*.
- Power set
 - ★ power set P(A): set of all subsets of A
 - * $A = \{0,1\} \implies \text{power set } \mathcal{P}(A) = \{\{\},\{0\},\{1\},\{0,1\}\}\}$
- Cartesian product or cross product
 - * A = {a,b} and B = {1,2,3} $\Rightarrow A \times B = \{\langle a, 1 \rangle, \langle a, 2 \rangle, \langle a, 3 \rangle, \langle b, 1 \rangle, \langle b, 2 \rangle, \langle b, 3 \rangle\}$

Some mathematical concepts: graphs

★ Graph G=(V,E) (vertices and edges)

 $G_1 = (\{1,2,3,4,5\}, \{\{1,2\}, \{2,3\}, \{3,4\}, \{4,5\}, \{5,1\}\})$

 $G_2 = (\{1,2,3,4\}, \{\{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}\}))$

Some mathematical concepts: Graphs II

* Labelled, weighted

* Subgraph, induced subgraph

Some mathematical concepts: Graphs III

* (Simple) path

* (Simple) cycle

Some mathematical concepts: Graphs IV

* Tree

Directed graph

Strings and languages

- ★ Alphabet = set of symbols★ e.g.: ∑ = {a,b,c}
- Word/string = finite sequence of symbols over alphabete.g. aabbabcca
- ★ Length |w| = number of symbols in w
- * Empty word = ε
- * aabb is subword of aaabbbbccc
- * xy concatenation of two words x and y
- * $x^k = x...x (e.g. x^3 = xxx)$
- * Language is a set of words (over an alphabet Σ)

Mathematical proofs

- * Various types of proofs
 - **★** Direct proof
 - * Proof by construction/counterexample
 - Proof by contradiction (indirect proof, reductio ad absurdum)
 - **★** Proof by induction
- *How formal?
 - * Formal enough to be convincing to your audience

Direct proof

- * Strategy: Logically derive conclusions from your premises until you arrive at the desired conclusion.
- ★ Example: Let a, b, c be integers. If a | b and b | c, then a | c.
- * Proof:
 - * From $a \mid b$, we get: (1) ex. integer k_1 s.t. $b = k_1 \cdot a$
 - * From $b \mid c$, we get: (2) ex. integer k_2 s.t. $c = k_2 \cdot b$
 - * From (1) and (2) we get: (3) ex. integers k_1 , k_2 s.t. $c = k_2 \cdot k_1 \cdot a$
 - * From (3) we get: (4) ex. integer k s.t. $c = k \cdot a$ (namely, $k = k_2 k_1$)
 - * From (4) we get that $a \mid c$.

Proof by construction

- * Objective: prove that a particular type of object exists
 - * Proof strategy: Demonstrate how to construct the object.
- * Example:
 - ★ Definition: A graph is k-regular if all vertices have degree k
 - ★ Theorem: For all even numbers n > 2, there exists a 3-regular graph with n nodes

Proof by Construction II

* Proof:

```
★ G=(V,E) with
```

- \star V = {0,1,...,n-1} and
- **★** E = {{i,i+1} | for $0 \le i \le n-2$ } \cup {{n-1,0}} \cup {{i, i+n/2} | 0 ≤ i ≤ n/2-1}}
- ★ → every vertex has exactly three neighbours:
 - → its predecessor in the cycle 0, 1, 2, ..., n-1, 0
 - + its successor in the cycle
 - → its "mirror image" n/2 positions before/ahead in the cycle

Proof by contradiction

- *** Theorem**: $\sqrt{2}$ is irrational
- * Proof strategy:
 - * Assume that the theorem is not true.
 - * Show that this leads to a contradiction, and hence the theorem must be true.

Proof by contradiction

- *** Theorem**: $\sqrt{2}$ is irrational
- * **Proof**: Assume that the theorem is not true. Then:

$$\sqrt{2} = \frac{b}{a}$$

where a and b are integers and $\frac{b}{a}$ is reduced.

$$2 = \frac{b^2}{a^2}$$

 $2a^2 = b^2$

hence, b^2 is even, hence b is even

now, we can write *b*=2*c*, *which gives*:

$$2a^2 = 4c^2$$

divide by 2, gives:

$$a^2 = 2c^2$$

hence, a^2 is even, hence a must be even

CONTRADICTION

Proof by induction

- ★ Prove a statement S(X) about a family of objects (e.g. integers, trees) in two parts:
 - ★ Basis: prove for one or several small values of X directly
 - ★ Inductive step: Assume S(Y) for Y smaller than X; prove S(X) using that assumption
- * Applies to
 - * Natural numbers
 - * Inductively defined objects (structured induction)

Inductively defined: example

Rooted binary trees are inductively defined

- *** Basis**: a single node is a tree and that node is the root of the tree
- * Induction: if T_1 and T_2 are rooted binary trees, then the object constructed as follows is a rooted binary tree:
 - ★ Begin with a new node N as the root
 - ★ Add copies of T₁ and T₂
 - * Add edges from N to T_1 and T_2

Proof by induction: example

Theorem: A binary tree with *n* leaves has *2n-1* nodes

- Basis:
 - ★ if a tree has one leaf, then it is a one node tree, and 2·1-1 = 1
- Induction:
 - * assume S(T) for trees with fewer nodes than T, in particular for subtrees of T (i.e. use the theorem as an assumption, and use the smaller trees of T, namely U and V to prove it)
 - ★ T must be a root plus two subtrees U and V
 - * If U and V have u and v leaves respectively and T has t leaves, then t = u + v
 - ★ By the induction assumption, U and V have 2u-1 and 2v-1 nodes, respectively
 - ★ Then T has 1+(2u-1)+(2v-1) nodes

$$1+(2u-1)+(2v-1)$$
= 2(u+v)-1
= 2t-1