1. Motivation

Malte Helmert and Andreas Karwath

Course content

* Introduction to logic
* Propositional
* First order logic
* Theoretical foundations of computer science
* Automata Theory
* Formal languages, grammars
* Decidability
* Computational Complexity

Theoretical computer science motivation

* Overall question:
* What are the fundamental capabilities and limitations of computers?
* Subquestions:
* What is the meaning of computation?
* Automata theory
* What can be computed?
\star Computability/Decidability theory
* What can be computed efficiently?
\star Computational complexity

What is the meaning of computation?

* 1930-50s: Automata theory
* Various mathematical models of computers
* Automata theory
\star Turing Machines
\star Grammars (Noam Chomsky)
\star Practical:
+ Many devices (dishwashers, telephones, ...)
+ Compilers and languages
+ Protocols

What can be computed?

*What can be computed using Turing Machines?

* Some problems can be solved algorithmically
\star E.g. sorting a list of numbers
* Others cannot:
* E.g. the halting problem: determine whether a given program will ever terminate
« E.g. Gödel: no algorithm can decide in general whether statements in number theory are true or false
* Practical:
\star It is important to know what can be computed and what not

What can be computed efficiently?

* Examples
* Sorting can be done efficiently
* Scheduling (apparently) cannot be done efficiently
* University lectures
* Complexity theory gives an explanation
\star NP-hard problems
* Practical:
* Important to know how hard your problem is
* Cryptography

夫Mechanism design

Some mathematical concepts: sets

* A set is a group of objects (unordered, no duplicates)
* $\{4,7,12\}$
* $\{x \mid x$ is a natural number, x is even $\}$
* empty set: \emptyset or $\}$
* Membership is denoted with \in and \notin :
* $4 \in\{4,7,12\}$ and $5 \notin\{4,7,12\}$
* Subset \subseteq and proper subset \subset :
* $\{12,4,7\} \subseteq\{4,7,12\}$ and $\{4,7\} \subset\{4,7,12\}$
* Union (\cup) and intersection ($($):
* $A \cup B$
and $A \cap B$

Mathematical concepts: sequences and sets

* Sequence is a list of objects in some order:
* $\langle 4,7,12\rangle$ is not the same as $\langle 12,7,4\rangle$
* $\langle 4,4\rangle$ is not the same as $\langle 4\rangle$
* Convention: often use (...) instead of $\langle\ldots\rangle$
* Finite or infinite sequences:
* finite sequences often called tuples, or k-tuples (a tuple with k elements).

A 2-tuple is called a pair.

* Power set
* power set $\mathscr{P}(A)$: set of all subsets of A
* $A=\{0,1\} \Rightarrow$ power set $\mathscr{P}(A)=\{\{ \},\{0\},\{1\},\{0,1\}\}$
* Cartesian product or cross product
* $A=\{a, b\}$ and $B=\{1,2,3\}$
$\Rightarrow \mathrm{A} \times \mathrm{B}=\{\langle\mathrm{a}, 1\rangle,\langle\mathrm{a}, 2\rangle,\langle\mathrm{a}, 3\rangle,\langle\mathrm{b}, 1\rangle,\langle\mathrm{b}, 2\rangle,\langle\mathrm{b}, 3\rangle\}$

Some mathematical concepts: graphs

* Graph $G=(V, E)$ (vertices and edges)

$$
G_{1}=(\{1,2,3,4,5\},\{\{1,2\},\{2,3),\{3,4\},\{4,5\},\{5,1\}\})
$$

$$
G_{2}=(\{1,2,3,4\},\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\})
$$

Some mathematical concepts: Graphs II

* Labelled, weighted

* Subgraph, induced subgraph

Some mathematical concepts: Graphs III

* (Simple) path

* (Simple) cycle

Some mathematical concepts: Graphs IV

* Tree

* Directed graph

Strings and languages

* Alphabet $=$ set of symbols
* e.g.: $\Sigma=\{a, b, c\}$
* Word/string = finite sequence of symbols over alphabet * e.g. aabbabcca
* Length $|w|=$ number of symbols in w
* Empty word $=\varepsilon$
* aabb is subword of aaabbbbccc
* $x y$ concatenation of two words x and y
* $x^{k}=x \ldots x\left(\right.$ e.g. $\left.x^{3}=x x x\right)$
* Language is a set of words (over an alphabet \sum)

Mathematical proofs

* Various types of proofs
* Direct proof
*Proof by construction/counterexample
*Proof by contradiction (indirect proof, reductio ad absurdum)
* Proof by induction
* How formal?
*Formal enough to be convincing to your audience

Direct proof

* Strategy: Logically derive conclusions from your premises until you arrive at the desired conclusion.
* Example:

Let a, b, c be integers. If $a \mid b$ and $b \mid c$, then $a \mid c$.

* Proof:
* From a | b, we get: (1) ex. integer k_{1} s.t. $b=k_{1} \cdot a$
* From $b \mid c$, we get: (2) ex. integer k_{2} s.t. $c=k_{2} \cdot b$
* From (1) and (2) we get: (3) ex. integers k_{1}, k_{2} s.t. $c=k_{2} \cdot k_{1} \cdot a$
* From (3) we get: (4) ex. integer k s.t. $c=k \cdot a$ (namely, $k=k_{2} k_{1}$)
* From (4) we get that $a \mid c$.

Proof by construction

* Objective: prove that a particular type of object exists
* Proof strategy: Demonstrate how to construct the object.
* Example:
* Definition: A graph is k-regular if all vertices have degree k
* Theorem: For all even numbers $n>2$, there exists a 3-regular graph with n nodes

Proof by Construction II

* Proof:

* $G=(V, E)$ with
$\star V=\{0,1, \ldots, n-1\}$ and
$\star E=\{\{i, i+1\} \mid$ for $0 \leq i \leq n-2\} \cup\{\{n-1,0\}\} \cup\{\{i, i+n / 2\} \mid 0 \leq i \leq n / 2-1\}\}$
$\star \rightarrow$ every vertex has exactly three neighbours:
+ its predecessor in the cycle $0,1,2, \ldots, n-1,0$
+ its successor in the cycle
+ its "mirror image" $\mathrm{n} / 2$ positions before/ahead in the cycle

Proof by contradiction

* Theorem: $\sqrt{2}$ is irrational
* Proof strategy:
* Assume that the theorem is not true.
* Show that this leads to a contradiction, and hence the theorem must be true.

Proof by contradiction

* Theorem: $\sqrt{2}$ is irrational
* Proof: Assume that the theorem is not true. Then:

$$
\begin{array}{ll}
\sqrt{2}=\frac{b}{a} & \text { where } \mathrm{a} \text { and } \mathrm{b} \text { are integers and } \frac{b}{a} \text { is reduced. } \\
2=\frac{b^{2}}{a^{2}} & \\
2 a^{2}=b^{2} & \text { hence, } b^{2} \text { is even, hence } b \text { is even } \\
2 a^{2}=4 c^{2} & \text { now, we can write } b=2 c, \text { which gives: } \\
a^{2}=2 c^{2} & \begin{array}{l}
\text { hence, } a^{2} \text { is even, hence } a \text { must be even } \\
\end{array} \\
& \text { CONTRADICTION }
\end{array}
$$

Proof by induction

* Prove a statement $S(X)$ about a family of objects (e.g. integers, trees) in two parts :
* Basis: prove for one or several small values of X directly
* Inductive step: Assume $S(Y)$ for Y smaller than X; prove $S(X)$ using that assumption
* Applies to
* Natural numbers
* Inductively defined objects (structured induction)

Inductively defined: example

Rooted binary trees are inductively defined

* Basis: a single node is a tree and that node is the root of the tree
* Induction: if T_{1} and T_{2} are rooted binary trees, then the object constructed as follows is a rooted binary tree:
* Begin with a new node N as the root
* Add copies of T_{1} and T_{2}
* Add edges from N to T_{1} and T_{2}

Proof by induction: example

Theorem: A binary tree with n leaves has $2 n-1$ nodes

* Basis:
* if a tree has one leaf, then it is a one node tree, and 2•1-1 = 1
* Induction:
* assume $S(T)$ for trees with fewer nodes than T, in particular for subtrees of T (i.e. use the theorem as an assumption, and use the smaller trees of T, namely U and V to prove it)
* T must be a root plus two subtrees U and V
* If U and V have u and v leaves respectively and T has t leaves, then $t=u+v$
* By the induction assumption, U and V have $2 u-1$ and $2 v-1$ nodes, respectively
* Then T has $1+(2 u-1)+(2 v-1)$ nodes

$$
\begin{aligned}
& 1+(2 u-1)+(2 v-1) \\
& =2(u+v)-1 \\
& =2 t-1
\end{aligned}
$$

