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Introduction

•
 

Cooperative sensing and world modeling follows the 
goal of deliberative decision making
–

 
Which is in contrast to reactive acting

•
 

Agents perceive their environment by sensors
–

 
However, sensing can either be inaccurate or ambiguous 

–
 

Sensing requires the process of world modeling for 
meaningful and robust decision making

–
 

Probabilistic models are the first choice for this task

•
 

World models can be used to extract abstract 
predicates of the world
–

 
For example, “objectInOpponentGoal(ball)”



Processing Sensor data I 
Inertial Measurement Unit (IMU)

•
 

A closed system for detecting orientation 
and motion of a vehicle or human

•
 

Typically consists of 3 accelerometer, 3 
gyroscopes, and 3 magnetometers

•
 

Data rate @100 Hz
•

 
Gyro data reliable only within some time 
period (temperature drift)

•
 

Magnetometer data can locally be wrong 
(magnetic fields)

•
 

Therefore, gyro, accelerometer, and 
magnetometer data is fused by a Kalman 
Filter onboard the IMU sensor

•
 

For the estimation of robot poses (x,y,θ) 
also wheel odometry, i.e. a hardware 
counting the number of wheel revolutions 
per second, is required



Processing Sensor data II 
Laser Range Finders (LRFs) 

•
 

Found on nearly every robot
•

 
Highly accurate, high data rate

•
 

Measures distances and angles to 
surrounding objects

•
 

Returns distances di and angles 
αi , with i ∈

 
[0…FOV/resolution]  

Scan taken on a soccer field

SICK LMS200 Hokuyo URG



Processing Sensor data III 
Color Cameras 

•
 

Sensor that generates color 
images, e.g. with 640x480 
pixel resolution @30hz

•
 

Can be used for ball detection
–

 
Color thresholding, e.g. 
separation of ball colors from 
background

–
 

Determination of relative 
object location by camera 
calibration or interpolation

Logitech Quickcam 
4000 Pro

Sony DFW-500

Image coordinates World coordinates



Modeling Sensor noise

•
 

Sensor data is typically noisy, .e.g., the distance 
measurement of a LRF at one meter can be 1m ± 1cm

•
 

Sensor noise is typically modeled by a normal 
distribution

•
 

Model fully described by mean μ
 

and variance σ2

Notation:

N-dimensional:

one-dimensional:

Notation:



Transformation of density functions I 
Linear Transformation

•
 

When processing data from multiple sensors, all observations have 
to be transformed into a single coordinate system

•
 

For example, distance and angle measurements of a LRF have to be 
integrated into a Cartesian coordinate frame

•
 

Linear transformations can be represented by                    ,
where A is a nXm Matrix and b a n-dimensional vector

•
 

Mean μx and covariance Σx can then be computed by:



•
 

Linearization necessary in order to yield normal distribution
–

 

Approximation by Taylor polynom while skipping higher order terms:

where                           is a n X m Matrix (also known as Jacobi- Matrix) 
with partial derivates of F at 

•
 

Notation according to linear case:

•
 

Mean μx and covariance Σx can then be computed by:

Transformation of density functions II 
Non-Linear Transformation



Transformation of density functions III 
Example: LRF Measurement Transformation

•
 

We assume a normally distributed error of distance 
measurement d and angle measurement α: 

•
 

Transformation function F:



Transformation of density functions IV 
Example: LRF Measurement Transformation

•
 

Assume d=3000mm, α=30°, σd =100mm, σα

 

=5.7°



Kalman Filter I 
Introduction

Conditional density 
of observation z1

Conditional density 
of observation z2

Conditional density after 
combining z1 and z2

•
 

An optimal recursive data processing algorithm
–

 

optimal since it processes all data regardless of precision

–

 

recursive since the filter does not need to keep all data in memory and 
to reprocess it 

•
 

Fusion of two independent measurements of the same concept

•
 

Each measurement has a confidence expressed by the variance of 
the Gaussian

•
 

Example: two people on a boat estimate their 1D location. The 2nd 
person (z2 ) is more skilled than the 1st one (z1 )



Kalman Filter II 
Update Formula

one-dimensional:

n-dimensional:



Case-Study: Cooperative opponent 
sensing on a soccer field I

1st step: players estimate 
their own position and 
orientation on the field by 
matching scans with the 
field model 

2nd step: Extraction of 
other players by 
discarding scan points 
belonging to field walls 
and clustering the
remaining ones. For each 
cluster the center of 
gravity is assumed to 
correspond to the center 
of another robot. 

Matching a scan to field model

Extracting and clustering objects



Case-Study: Cooperative opponent 
sensing on a soccer field II

3rd step: 
Communication of 
position, heading and 
velocity of each 
detected object and 
own pose to a central 
multi-sensor integration 
module

4th step: Assignment of 
team player IDs to 
objects Detection of 
opponents (red)

Cooperative world model



Integration of multiple measurements I

Each observation is modeled by a random variable:

With mean and covariance        , where              is the position,     the orientation, and     ,                        
are the translational and rotational velocities* of the object.

Modeling of the covariance:                                                               ,

where                                         are constant standard deviations 
determined experimentally

State representation:

State projection:

Constant standard 
deviations

 
determined 
experimentally

*Note velocities are determined by differencing the last 10 pose

 

estimates 



Integration of multiple measurements II

State update:

(a) Observation of 
a new object:

(b) Observation of 
a known object:

Greedy method:
Search the global world model for the track 
whose predicted mean is closest to the 
observation. Assign observation if distance is 
beyond a certain threshold.

Can be sub-optimal! 

Data association problem, i.e. how to associate observations to 
known objects?

Greedy method Optimal solution

Better approach: geometric assignment      

Go over all possible sets of assignment pairs

Find assignment that minimizes



Single Object Tracking from Noisy Data 
Example: Ball Tracking

•
 

For example, global ball position estimation: stereo vision with 
robot groups

•
 

Detection of the ball by vision, e.g. detecting the ball by color
–

 
Estimation of the angle is quite accurate, however, distance is not

–
 

Kalman Filter integration yields an error ellipse with respect to these 
confidences

–
 

Fusion of two estimates respects error ellipse: effect of 
“triangulation”

•
 

Prediction step (predict next location where ball will be observed):
–

 

Project ball position into the future using a constant negative ball 
acceleration

–

 

Consider a certain projection error

•
 

Update step (when new observation is made):
–

 

Integrate new measurement (using a weighted average on the error)
•

 
distance error grows with distance

•
 

angular error is small and constant



Single Object Tracking from Noisy Data 
Example: Ball Tracking

Effect of triangulation

Kalman filtering 
compared to simple 
averaging: highly 

confident estimates are 
more strongly weighted

Kalman filtering

Simple averaging
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Minho (Portugal) shoots 
at our goal from the other 
side of the field. Our 
goalie gets this 
information early on from 
his team mates and can 
easily defend

The Importance of Global Ball 
Estimation
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Single Object Tracking from Noisy Data 
Problem of false positives (ghost balls)

Player 2 is hallucinating

?



Markov Localization as Observation Filter 
Introduction

•
 

The Kalman-Filter expects that measurements 
originate from the same objects
–

 
However, color thresholding on a soccer field 
might confuse “red t-shirts” with the ball

–
 

Consequently, Kalman filtering yields poor 
results

•
 

Markov localization: Simultaneous tracking of 
multiple hypotheses

•
 

Idea: To filter-out false positives with 
probability grid
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Probabilistic Localization

Courtesy of Wolfram Burgard
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Simple Example of State Estimation

Suppose a robot obtains measurement z
What is P(open|z)?

Courtesy of Wolfram Burgard
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Causal vs. Diagnostic Reasoning

P(open|z) is diagnostic.
P(z|open) is causal.
Often causal knowledge is easier to obtain.
Bayes rule allows us to use causal knowledge:

)(
)()|()|( zP

openPopenzPzopenP =

Courtesy of Wolfram Burgard
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Example

P(z|open) = 0.6 P(z|¬open) = 0.3
P(open) = P(¬open) = 0.5

67.0
3
2

5.03.05.06.0
5.06.0)|(

)()|()()|(
)()|()|(

==
⋅+⋅

⋅
=

¬¬+
=

zopenP

openpopenzPopenpopenzP
openPopenzPzopenP

z raises the probability that the door is open.

Courtesy of Wolfram Burgard



•
 

Discretization of the soccer field into a two-dimensional (x,y) 
grid

–
 

Each cells of the grid reflects the probability p(z) that the ball is 
in the cell

•
 

Uniform initialization of the grid before any observation is 
processed

•
 

Prediction step:
–

 
Simple model of ball motion                                    where 

denotes the probability that the ball is at z given it was 
at z’. 

–
 

When assuming that all kind of motion directions are equally 
possible, and velocities are normally distributed with zero mean 
and covariance       ,            can be modeled by a time- 
depended Gaussian around z’:

Markov Localization as Observation Filter 
Prediction & Update I

# cells



Markov Localization as Observation Filter 
Prediction & Update II

•
 

Update step:
–

 
Fusion of new ball observation zb into the grid according 
to Bayes’ law:

–
 

The sensor model               determines the likelihood 
observing zb given the ball is at position z.

•
 

e.g. less confidence as more far away the ball
•

 
Finally, the Markov grid can be used for outlier 
rejection
–

 
Kalman filtering is only applied at the highest peak of the 
distribution

–
 

If another peak becomes more likely, the Kalman filter is 
re-initialized accordingly

Normalization: Ensuring 
that probabilities sum up 
to 1.0



Phantom Balls: Development of 
Probability Distribution I

after 3rd measurement (3) after 1st measurement (1)after 2nd measurement (2) 

Consider area with highest peak as possible ball area
and use KF there



Phantom Balls: Development of 
Probability Distribution II

after 6th measurement (3) after 5th measurement (2) after 4th measurement (1) 

At RoboCup 2000, 938 out of 118388 (0.8%) ball observations were 
ignored because of the Markov localization filter.



Demo Webplayer

See www.cs-freiburg.de



Potential Fields 
Introduction

•
 

Originally introduced for robot path planning
–

 
Robot is considered as particle within a force field, the 
potential field

–
 

Potential field is generated by overlaying repulsive 
potentials (e.g. obstacles) and attractive potentials (e.g. 
goals)

–
 

The motion of the robot is determined by negating the 
field’s gradient, leading to the potential minimum

–
 

Repulsive and attractive potentials are computed 
separately

•
 

Can also be used for strategic decision making (e.g. 
CS-Freiburg) 



Potential Fields 
Potentials

•
 

Potentials are differentiable functions of the type                  , 
where Cfree is the set of robot configurations

•
 

Typically, high values indicate obstacles and low values goals

•
 

Given differentiable potentials, one can compute the force at 
each configuration q by:

•
 

For example, given a 2D work space, force F(q) can be 
computed from U(q) by:



Potential Fields 
Attractive Potential

• Influence of potential has to be workspace wide!
• Linearly decreasing potential with increasing distance to 

goal qziel :

• Singularity at q=qziel ! 
– Has to be dealt with seperately

with

Computation of force Fatt :

and scaling factor  ξ.

Attractive potential



Potential Fields 
Repulsive Potential

• Influence of potential can be limited in 
order to simplify computations

• Increasing potential with increasing 
distance to object:

Where  η

 

is a scaling factor, p(q) the 
distance to the obstacle, and p0 the 
maximal influence radius of the 
potential

The distance function should 
respect the shape of the object, 
for example:

Repulsive potential

Computation of force Frep :



Potential Fields 
Grid representation 

•
 

Discretization of the configuration space into equally sized 
cells

•
 

Grid representation GC is defined for every q=(x,y) as 
follows:

where  δx , δy are the step sizes in X and Y direction, and N, M 
are the number of cells along the axes, respectively



Potential Fields 
Computing the potential field

Computation by:

Situation: Obstacles, start, and goal

Resulting force field

Resulting potential field



Case-Study: Extracting predicates for 
playing soccer I

•
 

Predicates are the basis for action selection and 
strategic decision making

•
 

Can be considered as world model abstractions
•

 
Simple predicates of objects (can be directly computed 
from positions):
–

 
InOpponentsGoal(object)

•
 

Object in opponent goal?
–

 
InOwnGoal(object)

•
 

Object in own goal?
–

 
CloseToBorder(object) 

•
 

The distance to any border is beyond a threshold?
–

 
FrontClear()

•
 

Neither another object nor the border is in front?
–

 
InDefense(object) 

•
 

Object in the last third of the soccer field?



Case-Study: Extracting predicates for 
playing soccer II

•
 

Extended predicates: 
–

 
computed by normalized potential fields:                       
(fi : ℜ

 
x ℜ → ([1..0]

–
 

discretized by grids of 10x10cm cell size

•
 

Examples:
–

 
ffree: indicates positions 
under the influence of the 
opponent

–
 

fcovered: indicates position 
covered by teammates

–
 

fdesired: indicates tactical 
good positions

ffree

fdesired



Case-Study: Extracting predicates for 
playing soccer III

•
 

Combined potential 
fields:
–

 
fballview: indicates 
whether the direct 
line from the ball to 
a position is free

–
 

Recursive 
computation:

Where z1 ,…,zn are the indices of the cells on the line



Summary

•

 

Consistent world models are the key to deliberative 
acting! 

•

 

The Kalman Filter is a tool for accurately estimating 
object poses

–

 

However, only single hypotheses can be tracked

•

 

Markov Localization is a tool for robust object 
tracking by considering multiple hypotheses

–

 

However, accuracy depends on the discretization

•

 

Best results are yielded by combining both methods
•

 

Potential Fields are an efficient tool for generating 
predicates from complex representations, simplifying 
decision making of a mobile agent
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