Introduction to Multi-Agent Programming

4. Search algorithms and Path-finding

Uninformed & informed search, online search, ResQ Freiburg path planner

Alexander Kleiner, Bernhard Nebel
Contents

• Problem-Solving Agents
• General Search (Uninformed search)
• Best-First Search (Informed search)
 – Greedy Search & A*
• Online Search
 – Real-Time Adaptive A*
• Case Study: ResQ Freiburg path planner
• Summary
Goal-based agents

Formulation: goal and problem

Given: initial state

Goal: To reach the specified goal (a state) through the execution of appropriate actions.

Search for a suitable action sequence and execute the actions
A Simple Problem-Solving Agent

function SIMPLE-PROBLEM-SOLVING-AGENT(\textit{percept}) returns an action

inputs: \textit{percept}, a percept

static: \textit{seq}, an action sequence, initially empty

\textit{state}, some description of the current world state
\textit{goal}, a goal, initially null
\textit{problem}, a problem formulation

\textit{state} \leftarrow UPDATE-STATE(\textit{state}, \textit{percept})

\textbf{if} \textit{seq} is empty \textbf{then do}

\textit{goal} \leftarrow FORMULATE-GOAL(\textit{state})
\textit{problem} \leftarrow FORMULATE-PROBLEM(\textit{state}, \textit{goal})
\textit{seq} \leftarrow SEARCH(\textit{problem})
\textit{action} \leftarrow FIRST(\textit{seq})
\textit{seq} \leftarrow REST(\textit{seq})

return \textit{action}
Problem Formulation

- **Goal** formulation
 World states with certain properties
- Definition of the **state space**
 important: only the relevant aspects \(\rightarrow\) abstraction
- Definition of the **actions** that can change the world state
- Determination of the **search cost** (search costs, offline costs) and the execution costs (path costs, online costs)

Note: The type of problem formulation can have a big influence on the difficulty of finding a solution.
Problem Formulation for the Vacuum Cleaner World

- **World state space:**
 - 2 positions, dirt or no dirt → 8 world states

- **Successor function (Actions):**
 - Left (L), Right (R), or Suck (S)

- **Goal state:**
 - no dirt in the rooms

- **Path costs:**
 - one unit per action
The Vacuum Cleaner State Space

States for the search: The world states 1-8.
Example: Missionaries and Cannibals

Informal problem description:

- Three missionaries and three cannibals are on one side of a river that they wish to cross.
- A boat is available that can hold at most two people and at least one.
- You must never leave a group of missionaries outnumbered by cannibals on the same bank.

→ Find an action sequence that brings everyone safely to the opposite bank.
Formalization of the M&C Problem

State space: triple \((x,y,z)\) with \(0 \leq x,y,z \leq 3\), where
\(x, y,\) and \(z\) represent the number of missionaries, cannibals and boats currently on the original bank.

Initial State: \((3,3,1)\)

Successor function: From each state, either bring one missionary, one cannibal, two missionaries, two cannibals, or one of each type to the other bank.

Note: Not all states are attainable (e.g., \((0,0,1)\)), and some are illegal.

Goal State: \((0,0,0)\)

Path Costs: 1 unit per crossing
General Search

From the initial state, produce all successive states step by step → search tree.

(a) initial state

(b) after expansion of (3,3,1)

(c) after expansion of (3,2,0)
Implementing Search Algorithms

Data structure for nodes in the search tree:

State: state in the state space

Node: Containing a state, pointer to predecessor, depth, and path cost, action

Depth: number of steps along the path from the initial state

Path Cost: Cost of the path from the initial state to the node

Fringe: Memory for storing expanded nodes. For example, a stack or a queue

General functions to implement:

Make-Node(state): Creates a node from a state

Goal-Test(state): Returns true if state is a goal state

Successor-Fn(state): Implements the successor function, i.e. expands a set of new nodes given all actions applicable in the state

Cost(state, action): Returns the cost for executing action in state

Insert(node, fringe): Inserts a new node into the fringe

Remove-First(fringe): Returns the first node from the fringe
General Tree-Search Procedure

function TREE-SEARCH(problem, fringe) **returns** a solution, or failure

\[
fringe \leftarrow \text{INSERT}(\text{MAKE-NODE}(\text{INITIAL-STATE}[\text{problem}]), \text{fringe})
\]

loop do
 if EMPTY?(fringe) **then return** failure
 node \leftarrow \text{REMOVE-FIRST}(\text{fringe})
 if GOAL-TEST[problem] applied to STATE[node] succeeds
 then return SOLUTION(node)
 \[
 fringe \leftarrow \text{INSERT-ALL}(\text{EXPAND}(\text{node}, \text{problem}), \text{fringe})
 \]

function EXPAND(node, problem) **returns** a set of nodes

successors \leftarrow \text{the empty set}

for each \{action, result\} in SUCCESSOR-FN[problem](STATE[node]) **do**
\[
s \leftarrow \text{a new NODE}
\]
\[
\text{STATE}[s] \leftarrow \text{result}
\]
\[
\text{PARENT-NODE}[s] \leftarrow \text{node}
\]
\[
\text{ACTION}[s] \leftarrow \text{action}
\]
\[
\text{PATH-COST}[s] \leftarrow \text{PATH-COST[node]} + \text{STEP-COST}(\text{node}, \text{action}, s)
\]
\[
\text{DEPTH}[s] \leftarrow \text{DEPTH}[\text{node}] + 1
\]
add s to successors

return successors
Search Strategies

Uninformed or blind searches:
No information on the length or cost of a path to the solution.

- breadth-first search, uniform cost search, depth-first search,
- depth-limited search, Iterative deepening search, and
- bi-directional search.

In contrast: informed or heuristic approaches
Criteria for Search Strategies

Completeness:
Is the strategy guaranteed to find a solution when there is one?

Time Complexity:
How long does it take to find a solution?

Space Complexity:
How much memory does the search require?

Optimality:
Does the strategy find the best solution (with the lowest path cost)?
Breadth-First Search (1)

Nodes are expanded in the order they were produced. *fringe* = Enqueue-at-end() (LIFO).

- Always finds the shallowest goal state first.
- Completeness.
- The solution is optimal, provided the path cost is a non-decreasing function of the depth of the node (e.g., when every action has identical, non-negative costs).
Breadth-First Search (2)

The costs, however, are very high. Let b be the maximal branching factor and d the depth of a solution path. Then the maximal number of nodes expanded is

$$b + b^2 + b^3 + \ldots + b^d + (b^{d+1} - b) \in O(b^{d+1})$$

Example: $b = 10$, 10,000 nodes/second, 1,000 bytes/node:

<table>
<thead>
<tr>
<th>Depth</th>
<th>Nodes</th>
<th>Time</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1,100</td>
<td>.11 seconds</td>
<td>1 megabyte</td>
</tr>
<tr>
<td>4</td>
<td>111,100</td>
<td>11 seconds</td>
<td>106 megabytes</td>
</tr>
<tr>
<td>6</td>
<td>10^7</td>
<td>19 minutes</td>
<td>10 gigabytes</td>
</tr>
<tr>
<td>8</td>
<td>10^9</td>
<td>31 hours</td>
<td>1 terabyte</td>
</tr>
<tr>
<td>10</td>
<td>10^{11}</td>
<td>129 days</td>
<td>101 terabytes</td>
</tr>
<tr>
<td>12</td>
<td>10^{13}</td>
<td>35 years</td>
<td>10 petabytes</td>
</tr>
<tr>
<td>14</td>
<td>10^{15}</td>
<td>3,523 years</td>
<td>1 exabyte</td>
</tr>
</tbody>
</table>
Uniform Cost Search

Modification of breadth-first search to always expand the node with the lowest-cost $g(n)$.

Always finds the cheapest solution, given that $g(\text{successor}(n)) \geq g(n)$ for all n.
Depth-First Search

Always expands an unexpanded node at the greatest depth.

fringe = Enqueue-at-front (FIFO).

Example (Nodes at depth 3 are assumed to have no successors):
Iterative Deepening Search (1)

• Combines depth- and breadth-first searches
• Optimal and complete like breadth-first search, but requires less memory

```
function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution sequence
    inputs: problem, a problem
    for depth ← 0 to ∞ do
        if DEPTH-LIMITED-SEARCH(problem, depth) succeeds then return its result
    end
    return failure
```
Iterative Deepening Search (2)

Example

Limit = 0

Limit = 1

Limit = 2

Limit = 3
Iterative Deepening Search (3)

Number of expansions

<table>
<thead>
<tr>
<th>Method</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iterative Deepening Search</td>
<td>((d)b + (d-1)b^2 + \ldots + 3b^{d-2} + 2b^{d-1} + 1b^{d})</td>
</tr>
<tr>
<td>Breadth-First-Search</td>
<td>(b + b^2 + \ldots + b^{d-1} + b^d + b^{d+1} - b)</td>
</tr>
</tbody>
</table>

Example: \(b = 10, \ d = 5\)

<table>
<thead>
<tr>
<th>Method</th>
<th>Expansion Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breadth-First-Search</td>
<td>(10 + 100 + 1,000 + 10,000 + 999,990 = 1,111,100)</td>
</tr>
<tr>
<td>Iterative Deepening Search</td>
<td>(50 + 400 + 3,000 + 20,000 + 100,000 = 123,450)</td>
</tr>
</tbody>
</table>

For \(b = 10\), only 11% of the nodes expanded by breadth-first-search are generated, so that the memory requirement is considerably lower.

Time complexity: \(O(b^d)\) \hspace{1cm} **Memory complexity:** \(O(b \cdot d)\)

\(\rightarrow\) *Iterative deepening in general is the preferred uninformed search method when there is a large search space and the depth of the solution is not known.*
Bidirectional Search

As long as forwards and backwards searches are symmetric, search times of $O(2 \cdot b^{d/2}) = O(b^{d/2})$ can be obtained.

E.g., for $b=10$, $d=6$, instead of 111111 only 2222 nodes!
Comparison of Search Strategies

Time complexity, space complexity, optimality, completeness

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
<th>Bidirectional (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes(^a)</td>
<td>Yes(^{a,b})</td>
<td>No</td>
<td>No</td>
<td>Yes(^a)</td>
<td>Yes(^{a,d})</td>
</tr>
<tr>
<td>Time</td>
<td>(O(b^{d+1}))</td>
<td>(O(b^{[C^*/\epsilon]})</td>
<td>(O(b^m))</td>
<td>(O(b^\ell))</td>
<td>(O(b^d))</td>
<td>(O(b^{d/2}))</td>
</tr>
<tr>
<td>Space</td>
<td>(O(b^{d+1}))</td>
<td>(O(b^{[C^*/\epsilon]})</td>
<td>(O(bm))</td>
<td>(O(b\ell))</td>
<td>(O(bd))</td>
<td>(O(b^{d/2}))</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes(^c)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes(^c)</td>
<td>Yes(^{c,d})</td>
</tr>
</tbody>
</table>

\(b\) branching factor
\(d\) depth of solution,
\(m\) maximum depth of the search tree,
\(l\) depth limit,
\(C^*\) cost of the optimal solution,
\(\epsilon\) minimal cost of an action

Superscripts:

\(a\) b is finite
\(b\) if step costs not less than \(\epsilon\)
\(c\) if step costs are all identical
\(d\) if both directions use breadth-first search
Problems With Repeated States

• Tree search ignores what happens if nodes are repeatedly visited
 – For example, if actions lead back to already visited states
 – Consider path planning on a grid

• Repeated states may lead to a large (exponential) overhead

(a) State space with $d+1$ states, were d is the depth
(b) The corresponding search tree which has 2^d nodes
 corresponding to the two possible paths!
(c) Possible paths leading to A
Graph Search

• Add a *closed* list to the tree search algorithm
• *Ignore* newly expanded state if already in *closed* list
• *Closed list* can be implemented as *hash table*
• Potential problems
 – Needs a lot of memory
 – Can ignore better solutions if a node is visited first on a suboptimal path (e.g. IDS is not optimal anymore)
Best-First Search

Search procedures differ in the way they determine the next node to expand.

Uninformed Search: Rigid procedure with no knowledge of the cost of a given node to the goal.

Informed Search: Knowledge of the cost of a given node to the goal is in the form of an *evaluation function* f or h, which assigns a real number to each node.

Best-First Search: Search procedure that expands the node with the “best” f- or h-value.
General Algorithm

function BEST-FIRST-SEARCH(problem, EVAL-FN) returns a solution sequence
 inputs: problem, a problem
 Eval-Fn, an evaluation function

 Queueing-Fn ← a function that orders nodes by EVAL-FN
 return GENERAL-SEARCH(problem, Queueing-Fn)

When h is always correct, we do not need to search!
Greedy Search

A possible way to judge the “worth” of a node is to estimate its distance to the goal.

\[h(n) = \text{estimated distance from } n \text{ to the goal} \]

The only real condition is that \(h(n) = 0 \) if \(n \) is a goal.

A best-first search with this function is called a greedy search.

The evaluation function \(h \) in greedy searches is also called a \textit{heuristic} function or simply a \textit{heuristic}.

\(\text{Æ} \) In all cases, the heuristic is \textit{problem-specific} and \textit{focuses} the search!

Route-finding problem: \(h = \text{straight-line distance between two locations} \).
Greedy Search Example
Greedy Search from Arad to Bucharest
**A*: Minimization of the estimated path costs

A* combines the greedy search with the uniform-cost-search, i.e. taking costs into account.

\[g(n) = \text{actual cost from the initial state to } n. \]

\[h(n) = \text{estimated cost from } n \text{ to the next goal.} \]

\[f(n) = g(n) + h(n), \text{ the estimated cost of the cheapest solution through } n. \]

Let \(h^*(n) \) be the true cost of the optimal path from \(n \) to the next goal.

\(h \) is **admissible** if the following holds for all \(n \):

\[h(n) \leq h^*(n) \]

We require that for optimality of A*, \(h \) is admissible (straight-line distance is admissible).
A* Search Example

Straight-line distance to Bucharest

- Arad: 366
- Bucharest: 0
- Craiova: 160
- Dobrota: 242
- Eforie: 161
- Fagaras: 178
- Giurgiu: 77
- Hirsova: 151
- Iasi: 226
- Lugoj: 244
- Mehadia: 241
- Neamt: 234
- Oradea: 380
- Pitesti: 98
- Rimnicu Vilcea: 193
- Sibiu: 253
- Timisoara: 329
- Urziceni: 80
- Vaslui: 199
- Zerind: 374
A* Search from Arad to Bucharest

The diagram shows the A* search process from Arad to Bucharest. The calculation of the total cost function, f, for the path from Arad to Bucharest is given as $f = 220 + 193 = 413$. The diagram includes various cities and their respective costs, illustrating the path optimization process.
A* Grid World Example

S: Start state
G: Goal state
→: Parent pointer in the A* search tree

S: Start state
G: Goal state

f(s) = g(s) + h(s)
g(s): Accumulated path cost
h(s): Manhattan distance

courtesy of Sven Koenig
Heuristic Function Example

\[h_1 = \text{the number of tiles in the wrong position} \]
\[h_2 = \text{the sum of the distances of the tiles from their goal positions (Manhatten distance)} \]
Empirical Evaluation

- $d =$ distance from goal
- Average over 100 instances

<table>
<thead>
<tr>
<th>d</th>
<th>IDS</th>
<th>A*(${h}_1$)</th>
<th>A*(${h}_2$)</th>
<th>IDS</th>
<th>A*(${h}_1$)</th>
<th>A*(${h}_2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>2.45</td>
<td>1.79</td>
<td>1.79</td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td>13</td>
<td>12</td>
<td>2.87</td>
<td>1.48</td>
<td>1.45</td>
</tr>
<tr>
<td>6</td>
<td>680</td>
<td>20</td>
<td>18</td>
<td>2.73</td>
<td>1.34</td>
<td>1.30</td>
</tr>
<tr>
<td>8</td>
<td>6384</td>
<td>39</td>
<td>25</td>
<td>2.80</td>
<td>1.33</td>
<td>1.24</td>
</tr>
<tr>
<td>10</td>
<td>412</td>
<td>93</td>
<td>39</td>
<td>2.79</td>
<td>1.58</td>
<td>1.22</td>
</tr>
<tr>
<td>12</td>
<td>364404</td>
<td>227</td>
<td>73</td>
<td>2.78</td>
<td>1.42</td>
<td>1.24</td>
</tr>
<tr>
<td>14</td>
<td>3473941</td>
<td>539</td>
<td>113</td>
<td>2.83</td>
<td>1.44</td>
<td>1.23</td>
</tr>
<tr>
<td>16</td>
<td>–</td>
<td>1301</td>
<td>211</td>
<td>–</td>
<td>1.45</td>
<td>1.25</td>
</tr>
<tr>
<td>18</td>
<td>–</td>
<td>3056</td>
<td>363</td>
<td>–</td>
<td>1.46</td>
<td>1.26</td>
</tr>
<tr>
<td>20</td>
<td>–</td>
<td>7276</td>
<td>676</td>
<td>–</td>
<td>1.47</td>
<td>1.27</td>
</tr>
<tr>
<td>22</td>
<td>–</td>
<td>18094</td>
<td>1219</td>
<td>–</td>
<td>1.48</td>
<td>1.28</td>
</tr>
<tr>
<td>24</td>
<td>–</td>
<td>39135</td>
<td>1641</td>
<td>–</td>
<td>1.48</td>
<td>1.26</td>
</tr>
</tbody>
</table>
A* Implementation Details

• How to code A* efficiently?
• Costly operations are:
 – Insert & lookup an element in the closed list
 – Insert element & get minimal element (f-value) from open list
• The closed list can efficiently be implemented as a hash set
• The open list is typically implemented as a priority queue, e.g. as
 – Fibonacci heap, binomial heap, k-level bucket, etc.
 – binary-heap with $O(\log n)$ is normally sufficient
• Hint: see priority queue implementation in the “Java Collection Framework”
Online search

- Intelligent agents usually don’t know the state space (e.g. street map) exactly in advance
 - True travel costs are experienced during execution
- Planning and plan execution are interleaved
- Example: RoboCup Rescue
 - The map is known, but roads might be blocked from building collapses
 - Limited drivability of roads depending on traffic volume
- Important issue: How to reduce computational cost of repeated A* searches!
Online search

• **Incremental heuristic search**
 – Repeated planning of the complete path from current state to goal
 – Planning under the **free-space** assumption
 – Optimized versions reuse information from previous planning episodes:
 • Focused Dynamic A* (D*) [Stenz95]
 – Used by DARPA and NASA
 • **D* Lite** [Koenig et al. 02]
 – Similar as D* but a bit easier to implement (claim)
 – In particular, these methods reuse closed list entries from previous searches
 – All Entries that have been compromised by weight updates (from observation) are adjusted accordingly

• **Real-Time Heuristic search**
 – Repeated planning with limited look-ahead (agent centered search)
 – Solutions are suboptimal but faster to compute
 – Updated of heuristic values of visited states
 • Learning Real-Time A* (LRTA*) [Korf90]
 • Real-Time Adaptive A* (RTAA*) [Koenig06]
Real-Time Adaptive A* (RTAA*)

- Executes A* plan with limited lookahead
- Learns better informed heuristic $H(s)$ from experience (initially $h(s)$, e.g. Euclidian distance)
- Lookahead defines trade-off between optimality and computational cost

```plaintext
while $(s_{curr} \not\in \text{GOAL})$
    $a\text{star}(\text{lookahead})$;
    if $(s' = \text{FAILURE})$ then
        return FAILURE;
    for all $s \in \text{CLOSED}$ do
        $H(s) := g(s') + h(s') - g(s)$;
    end;
    execute(plan);
end;
return SUCCESS;
```

s': last state expanded during previous A* search
Real-Time Adaptive A* (RTAA*)

Example

After first A* planning with lookahead until \(s' \):

- \(g(s') = 7 \), \(h(s') = 6 \), \(f(s') = 13 \)
- \(g(s) = 2 \), \(h(s) = 3 \)

Update of each element in CLOSED list, e.g.:

\[
H(s) = g(s') + h(s') - g(s)
\]

\[
H(s) = 7 + 6 - 2 = 11
\]
Real-Time Adaptive A* (RTAA*)

A* vs. RTAA*

A* expansion

RTAA* expansion (inf. Lookahead)
Case Study: ResQ Freiburg path planner
Requirements

- Rescue domain has some special features:
 - **Interleaving** between planning and execution is within large time cycles
 - Roads can be merged into “longroads”

- Planner is not used only for path finding, also for task assignment
 - For example, prefer high utility goals with low path costs
 - Hence, planner is frequently called for different goals

- Our decision: Dijkstra graph expansion on longroads
Case Study: ResQ Freiburg path planner
Longroads

- RoboCup Rescue maps consist of buildings, nodes, and roads.
 - Buildings are directly connected to nodes
 - Roads are inter-connected by crossings

- For efficient path planning, one can extract a graph of longroads that basically consists of road segments that are connected by crossings
Case Study: ResQ Freiburg path planner

Approach

- Reduction of street network to longroad network
- **Caching** of planning queries (useful if same queries are repeated)
- Each agent computes **two** Dijkstra graphs, one for each nearby longroad node
- Selection of optimal path by considering all **4 possible plans**
- Dijkstra graphs are **recomputed** after each perception update (either via direct sensing or communication)
- Additional features:
 - Parameter for favoring unknown roads (for exploration)
 - Two more Dijkstra graphs for sampled time cost (allows time prediction)
Case Study: ResQ Freiburg path planner
Dijkstra’s Algorithm (1)

Single Source Shortest Path, i.e. finds the shortest path from a single node to all other nodes

Worst case runtime $O(|E| \log |V|)$, assuming $E > V$, where E is the set of edges and V the set of vertices

- Requires efficient priority queue
Case Study: ResQ Freiburg path planner
Dijkstra’s Algorithm (2)

Graph expansion

```
1 function Dijkstra(Graph, source):
2     for each vertex v in Graph: // Initializations
3         dist[v] := infinity // Unknown distance function from source to v
4         previous[v] := undefined // Previous node in optimal path from source
5         dist[source] := 0 // Distance from source to source
6     Q := the set of all nodes in Graph // All nodes in the graph are unoptimized - thus are in Q
7     while Q is not empty: // The main loop
8         u := node in Q with smallest dist[]
9             remove u from Q
10            for each neighbor v of u: // where v has not yet been removed from Q.
11                alt := dist[u] + dist_between(u, v) // be careful in 1st step - dist[u] is infinity yet
12                if alt < dist[v] // Relax (u,v)
13                    dist[v] := alt
14                    previous[v] := u
15     return previous[]
```

Pseudo code taken from Wikipedia

Extracting path to target

```
1 S := empty sequence
2 u := target
3 while defined previous[u]
4     insert u at the beginning of S
5     u := previous[u]
```

Pseudo code taken from Wikipedia
Before an agent can start searching for solutions, it must formulate a goal and then use that goal to formulate a problem.

A problem consists of five parts: The state space, initial situation, actions, goal test, and path costs. A path from an initial state to a goal state is a solution.

A general search algorithm can be used to solve any problem. Specific variants of the algorithm can use different search strategies.

Search algorithms are judged on the basis of completeness, optimality, time complexity, and space complexity.

Heuristics focus the search

Best-first search expands the node with the highest worth (defined by any measure) first.

With the minimization of the evaluated costs to the goal h we obtain a greedy search.

The minimization of $f(n) = g(n) + h(n)$ combines uniform and greedy searches. When $h(n)$ is admissible, i.e., h^* is never overestimated, we obtain the A* search, which is complete and optimal.

Online search provides method that are computationally more efficient when planning and plan execution are tightly coupled.
Literature

• On my homepage:

• Homepage of Tony Stentz:

• Homepage of Sven Koenig:

• Harder to find, also explained in the AIMA book (2nd ed.):

• Demo search code in Java on the AIMA webpage
 http://aima.cs.berkeley.edu/