Introduction to Multi-Agent Programming

4. Search algorithms and Pathfinding

Uninformed & informed search, online search, ResQ Freiburg path planner

Alexander Kleiner, Bernhard Nebel

Contents

- Problem-Solving Agents
- General Search (Uninformed search)
- Best-First Search (Informed search)
 Greedy Search & A*
- Online Search

– Real-Time Adaptive A*

- Case Study: ResQ Freiburg path planner
- Summary

Problem-Solving Agents

→ Goal-based agents

Formulation: goal and problem

Given: initial state

Goal: To reach the specified goal (a state) through the *execution of appropriate actions*.

→ Search for a suitable action sequence and execute the actions

A Simple Problem-Solving Agent

```
function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
  inputs: percept, a percept
  static: seq, an action sequence, initially empty
          state, some description of the current world state
          goal, a goal, initially null
          problem, a problem formulation
  state \leftarrow UPDATE-STATE(state, percept)
  if seq is empty then do
      goal \leftarrow FORMULATE-GOAL(state)
      problem \leftarrow FORMULATE-PROBLEM(state, goal)
      seq \leftarrow SEARCH(problem)
  action \leftarrow FIRST(seq)
  seq \leftarrow \text{REST}(seq)
  return action
```

Problem Formulation

- Goal formulation World states with certain properties
- Definition of the state space important: only the relevant aspects → abstraction
- Definition of the actions that can change the world state
- Determination of the search cost (search costs, offline costs) and the execution costs (path costs, online costs)

Note: The type of problem formulation can have a big influence on the difficulty of finding a solution.

Problem Formulation for the Vacuum Cleaner World

- World state space:
 2 positions, dirt or no dirt
 → 8 world states
- Successor function (Actions): Left (L), Right (R), or Suck (S)
- Goal state: no dirt in the rooms
- Path costs: one unit per action

The Vacuum Cleaner State Space

States for the search: The world states 1-8.

Example: Missionaries and Cannibals

Informal problem description:

•

- Three missionaries and three cannibals are on one side of a river that they wish to cross.
- A boat is available that can hold at most two people and at least one.
 - You must never leave a group of missionaries outnumbered by cannibals on the same bank.
 - → Find an action sequence that brings everyone safely to the opposite bank.

Formalization of the M&C Problem

State space: triple (x,y,z) with $0 \le x,y,z \le 3$, where x,y, and z represent the number of missionaries, cannibals and boats currently on the original bank.

Initial State: (3,3,1)

Successor function: From each state, either bring one missionary, one cannibal, two missionaries, two cannibals, or one of each type to the other bank.

Note: Not all states are attainable (e.g., (0,0,1)), and some are illegal.

Goal State: (0,0,0)

Path Costs: 1 unit per crossing

General Search

From the initial state, produce all successive states step by step \rightarrow search tree.

Implementing Search Algorithms

Data structure for nodes in the search tree:

State: state in the state space

Node: Containing a state, pointer to predecessor, depth, and path cost, action

Depth: number of steps along the path from the initial state

Path Cost: Cost of the path from the initial state to the node

Fringe: Memory for storing expanded nodes. For example, s stack or a queue

General functions to implement:

- Make-Node(state): Creates a node from a state
- Goal-Test(state): Returns true if state is a goal state
- Successor-Fn(state): Implements the successor function, i.e. expands a set of new nodes given all actions applicable in the state
- Cost(state, action): Returns the cost for executing action in state
- Insert(node, fringe): Inserts a new node into the fringe
- Remove-First(fringe): Returns the first node from the fringe

General Tree-Search Procedure

function TREE-SEARCH(problem, fringe) returns a solution, or failure

```
fringe \leftarrow \text{INSERT}(\text{MAKE-NODE}(\text{INITIAL-STATE}[problem]), fringe)
loop do
```

```
if EMPTY?(fringe) then return failure
```

```
node \leftarrow \text{REMOVE-FIRST}(fringe)
```

if GOAL-TEST[problem] applied to STATE[node] succeeds
 then return SOLUTION(node)

```
fringe \leftarrow \text{INSERT-ALL}(\text{EXPAND}(node, problem), fringe)
```

```
 \begin{aligned} & \textbf{function Expand}(\textit{node},\textit{problem}) \textbf{ returns} a \text{ set of nodes} \\ & successors \leftarrow \textbf{the empty set} \\ & \textbf{for each} \langle action,\textit{result} \rangle \textbf{ in SUCCESSOR-FN[problem](STATE[node]) } \textbf{do} \\ & s \leftarrow a \text{ new NODE} \\ & S \leftarrow a \text{ new NODE} \\ & S \text{ TATE}[s] \leftarrow \textit{result} \\ & \text{PARENT-NODE}[s] \leftarrow \textit{node} \\ & \text{ACTION}[s] \leftarrow action \\ & \text{PATH-COST}[s] \leftarrow \text{PATH-COST}[node] + \text{STEP-COST}(node, action, s) \\ & \text{DEPTH}[s] \leftarrow \text{DEPTH}[node] + 1 \\ & \text{add } s \text{ to } successors} \\ & \textbf{return } successors \end{aligned}
```

Search Strategies

Uninformed or blind searches:

No information on the length or cost of a path to the solution.

- breadth-first search, uniform cost search, depth-first search,
- depth-limited search, Iterative deepening search, and
- bi-directional search.

In contrast: informed or heuristic approaches

Criteria for Search Strategies

Completeness:

Is the strategy guaranteed to find a solution when there is one?

Time Complexity:

How long does it take to find a solution?

Space Complexity:

How much memory does the search require?

Optimality:

Does the strategy find the best solution (with the lowest path cost)?

Breadth-First Search (1)

Nodes are expanded in the order they were produced . *fringe* = Enqueue-at-end() (LIFO).

- Always finds the shallowest goal state first.
- Completeness.
- The solution is optimal, provided the path cost is a nondecreasing function of the depth of the node (e.g., when every action has identical, non-negative costs).

Breadth-First Search (2)

The costs, however, are very high. Let *b* be the maximal branching factor and *d* the depth of a solution path. Then the maximal number of nodes expanded is

 $b + b^2 + b^3 + \dots + b^d + (b^{d+1} - b) \in O(b^{d+1})$

Example: b = 10, 10,000 nodes/second, 1,000 bytes/node:

Depth	Nodes	Time	Memory	
2	1,100	.11 seconds	1 megabyte	
4	111,100	11 seconds	106 megabytes	
6	10 ⁷	19 minutes	10 gigabytes	
8	10 ⁹	31 hours	1 terabyte	
10	10 ¹¹	129 days	101 terabytes	
12	10 ¹³	35 years	10 petabytes	
14	10 ¹⁵	3,523 years	1 exabyte	

Uniform Cost Search

Modification of breadth-first search to always expand the node with the lowest-cost g(n).

Always finds the cheapest solution, given that g(successor(n)) > = g(n) for all n.

Depth-First Search

Always expands an unexpanded node at the greatest depth *fringe* = Enqueue-at-front (FIFO).

Example (Nodes at depth 3 are assumed to have no successors):

Iterative Deepening Search (1)

- Combines depth- and breadth-first searches
- Optimal and complete like breadth-first search, but requires less memory

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution sequence
inputs: problem, a problem

for $depth \leftarrow 0$ to ∞ do if DEPTH-LIMITED-SEARCH(*problem*, *depth*) succeeds then return its result end return failure

Iterative Deepening Search (2) Example

Iterative Deepening Search (3)

Number of expansions

Iterative Deepening Search	$(d)b + (d-1)b^2 + + 3b^{d-2} + 2b^{d-1} + 1b^d$
Breadth-First-Search	$b + b^2 + \dots + b^{d-1} + b^d + b^{d+1} - b$

Example: b = 10, d = 5

Breadth-First-Search	10 + 100 + 1,000 + 10,000 + 999,990		
	= 1,111,100		
Iterative Deepening Search	50 + 400 + 3,000 + 20,000 + 100,000		
	= 123,450		

For b = 10, only 11% of the nodes expanded by breadth-first-search are generated, so that the memory requirement is considerably lower.

Time complexity: O(b^d) Memory complexity: O(b·d)

 \rightarrow Iterative deepening in general is the preferred uninformed search method when there is a large search space and the depth of the solution is not known.

Bidirectional Search

As long as forwards and backwards searches are symmetric, search times of $O(2 \cdot b^{d/2}) = O(b^{d/2})$ can be obtained.

E.g., for b=10, d=6, instead of 111111 only 2222 nodes!

Comparison of Search Strategies

Time complexity, space complexity, optimality, completeness

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening	Bidirectional (if applicable)
Complete? Time	$\operatorname{Yes}^a O(b^{d+1})$	$\frac{\mathrm{Yes}^{a,b}}{O(b^{\lceil C^*/\epsilon\rceil})}$	No $O(b^m)$	No $O(b^{\ell})$	$\operatorname{Yes}^a O(b^d)$	$\mathrm{Yes}^{a,d} \ O(b^{d/2})$
Space Optimal?	$O(b^{d+1})$ Yes ^c	$O(b^{\lceil C^*/\epsilon \rceil})$ Yes	O(bm) No	$O(b\ell)$ No	O(bd) Yes ^c	$O(b^{d/2})$ $\mathrm{Yes}^{c,d}$

- b branching factor
- d depth of solution,
- m maximum depth of the search tree,
- I depth limit,
- C* cost of the optimal solution,
- \in minimal cost of an action

Superscripts:

- ^{a)} b is finite
- ^{b)} if step costs not less than \in
- $^{\rm c)}$ if step costs are all identical
- d) if both directions use breadthfirst search

Problems With Repeated States

- Tree search ignores what happens if nodes are repeatedly visited
 - For example, if actions lead back to already visited states
 - Consider path planning on a grid
- Repeated states may lead to a large (exponential) overhead

- (a) State space with d+1 states, were d is the depth
- (b) The corresponding search tree which has 2^d nodes corresponding to the two possible paths!
- (c) Possible paths leading to A

Graph Search

- Add a *closed* list to the tree search algorithm
- Ignore newly expanded state if already in closed list
- *Closed list* can be implemented as hash table
- Potential problems
 - Needs a lot of memory
 - Can ignore better solutions if a node is visited first on a suboptimal path (e.g. IDS is not optimal anymore)

Best-First Search

Search procedures differ in the way they determine the next node to expand.

Uninformed Search: Rigid procedure with no knowledge of the cost of a given node to the goal.

Informed Search: Knowledge of the cost of a given node to the goal is in the form of an *evaluation function f* or *h*, which assigns a real number to each node.

Best-First Search: Search procedure that expands the node with the "best" *f*- or *h*-value.

General Algorithm

function BEST-FIRST-SEARCH(problem, EVAL-FN) returns a solution sequence
inputs: problem, a problem
Eval-Fn, an evaluation function

Queueing- $Fn \leftarrow$ a function that orders nodes by EVAL-FN return GENERAL-SEARCH(*problem*, Queueing-Fn)

When *h* is always correct, we do not need to search!

Greedy Search

A possible way to judge the "worth" of a node is to estimate its distance to the goal.

h(n) = estimated distance from n to the goal

The only real condition is that h(n) = 0 if n is a goal.

A best-first search with this function is called a greedy search.

The evaluation function *h* in greedy searches is also called a *heuristic* function or simply a *heuristic*.

 \rightarrow In all cases, the heuristic is *problem-specific* and *focuses* the search!

Route-finding problem: h = straight-line distance between two locations.

Greedy Search Example

Greedy Search from Arad to Bucharest

A*: Minimization of the estimated path costs

A* combines the greedy search with the uniform-costsearch, i.e. taking costs into account.

g(n) = actual cost from the initial state to n.

h(n) = estimated cost from *n* to the next goal.

f(n) = g(n) + h(n), the estimated cost of the cheapest solution through *n*.

Let $h^*(n)$ be the true cost of the optimal path from *n* to the next goal.

h is *admissible* if the following holds for all *n* :

 $h(n) \leq h^*(n)$

We require that for optimality of A*, *h* is admissible (straight-line distance is admissible).

A* Search Example

A* Search from Arad to Bucharest

A* Grid World Example

Heuristic Function Example

Start State

Goal State

- $h_1 =$ the number of tiles in the wrong position
- h₂ = the sum of the distances of the tiles from their goal positions (*Manhatten distance*)

Empirical Evaluation

- *d* = distance from goal
- Average over 100 instances

		Search Cost		Effective Branching Factor		
d	IDS	$\mathbf{A}^{*}(h_{1})$	$\mathbf{A}^{*}(h_{2})$	IDS	$A^{*}(h_{1})$	$A^*(h_2)$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	364404	227	73	2.78	1.42	1.24
14	3473941	539	113	2.83	1.44	1.23
16	-	1301	211	-	1.45	1.25
18	_	3056	363	_	1.46	1.26
20	_	7276	676	_	1.47	1.27
22		18094	1219	_	1.48	1.28
24	_	39135	1641	—	1.48	1.26
A* Implementation Details

- How to code A* efficiently?
- Costly operations are:
 - Insert & lookup an element in the closed list
 - Insert element & get minimal element (f-value) from open list
- The closed list can efficiently be implemented as a hash set
- The open list is typically implemented as a priority queue, e.g. as
 - Fibonacci heap, binomial heap, k-level bucket, etc.
 - binary-heap with O(log n) is normally sufficient
- Hint: see priority queue implementation in the "Java Collection Framework"

Online search

- Intelligent agents usually don't know the state space (e.g. street map) exactly in advance
 - True travel costs are experienced during execution
- Planning and plan execution are interleaved
- Example: RoboCup Rescue
 - The map is known, but roads might be blocked from building collapses
 - Limited drivability of roads depending on traffic volume
- Important issue: How to reduce computational cost of repeated A* searches!

Online search

- Incremental heuristic search
 - Repeated planning of the complete path from current state to goal
 - Planning under the free-space assumption
 - Optimized versions reuse information from previous planning episodes:
 - Focused Dynamic A* (D*) [Stenz95]
 - Used by DARPA and NASA
 - D* Lite [Koenig et al. 02]
 - Similar as D* but a bit easier to implement (claim)
 - In particular, these methods reuse closed list entries from previous searches
 - All Entries that have been compromised by weight updates (from observation) are adjusted accordingly
- Real-Time Heuristic search
 - Repeated planning with limited look-ahead (agent centered search)
 - Solutions are suboptimal but faster to compute
 - Updated of heuristic values of visited states
 - Learning Real-Time A* (LRTA*) [Korf90]
 - Real-Time Adaptive A* (RTAA*) [Koenig06]

Real-Time Adaptive A* (RTAA*)

- Executes A* plan with limited lookahead
- Learns better informed heuristic H(s) from experience (initially h(s), e.g. Euclidian distance)
- Lookahed defines tradeoff between optimality and computational cost

```
while (s<sub>curr</sub>∉GOAL)
        astar(lookahead);
        if (s' = FAILURE) then
                 return FAILURE;
        for all s \in CLOSED do
                H(s) :=
g(s')+h(s')-g(s);
        end;
        execute(plan);
end;
return SUCCESS;
s: last state expanded during
      previous A* search
```

Real-Time Adaptive A* (RTAA*) Example

After first A* planning with lookahead until s': g(s')=7, h(s')=6, f(s')=13

g(s)=2, h(s)=3

Update of each element in CLOSED list, e.g.:

H(s) = g(s') + h(s') - g(s)H(s) = 7 + 6 - 2 = 11

Real-Time Adaptive A* (RTAA*) A* vs. RTAA*

RTAA* expansion (inf. Lookahead)

Case Study: ResQ Freiburg path planner Requirements

- Rescue domain has some special features:
 - Interleaving between planning and execution is within large time cycles
 - Roads can be merged into "longroads"
- Planner is not used only for path finding, also for task assignment
 - For example, prefer high utility goals with low path costs
 - Hence, planner is frequently called for different goals
- Our decision: Dijkstra graph expansion on longroads

Case Study: ResQ Freiburg path planner Longroads

- RoboCup Rescue maps consist of buildings, nodes, and roads.
 - Buildings are directly connected to nodes
 - Roads are inter-connected by crossings
- For efficient path planning, one can extract a graph of longroads that basically consists of road segments that are connected by crossings

Case Study: ResQ Freiburg path planner Approach

- Reduction of street network to longroad network
- Caching of planning queries (useful if same queries are repeated)
- Each agent computes two Dijkstra graphs, one for each nearby longroad node
- Selection of optimal path by considering all 4 possible plans
- Dijkstra graphs are recomputed after each perception update (either via direct sensing or communication)
- Additional features:
 - Parameter for favoring unknown roads (for exploration)
 - Two more Dijkstra graphs for sampled time cost (allows time prediction)

Case Study: ResQ Freiburg path planner Dijkstra's Algorithm (1)

Single Source Shortest Path, i.e. finds the shortest path from a single node to all other nodes

Worst case runtime $O(|E| \log |V|)$, assuming E > V, where E is the set of edges and V the set of vertices

– Requires efficient priority queue

Case Study: ResQ Freiburg path planner Dijkstra's Algorithm (2)

Graph expansion

	1 1 2 3 4 5 6 7 8	<pre>function Dijkstra(Graph, source): for each vertex v in Graph: // Initializations dist[v] := infinity // Unknown distance function from source to v previous[v] := undefined // Previous node in optimal path from source dist[source] := 0 // Distance from source to source Q := the set of all nodes in Graph // All nodes in the graph are unoptimized - thus are in Q while Q is not empty: // The main loop</pre>
	8	u := node in Q with smallest dist[]
	9	remove u from Q
	10	for each neighbor v of u: // where v has not yet been removed from Q.
	11	alt := dist[u] + dist_between(u, v) // be careful in 1st step - dist[u] is infinity yet
1	12	<pre>if alt < dist[v] // Relax (u,v)</pre>
	13	dist[v] := alt
	14	previous[v] := u
1	15	return previous[]

Pseudo code taken from Wikipedia

Extracting path to target

1 S := empty sequence 2 u := target 3 while defined previous[u] 4 insert u at the beginning of S 5 u := previous[u]

Pseudo code taken from Wikipedia

Summary

٠

٠

- Before an agent can start searching for solutions, it must formulate a goal and then use that goal to formulate a problem.
- A problem consists of five parts: The state space, initial situation, actions, goal test, and path costs. A path from an initial state to a goal state is a solution.
- A general search algorithm can be used to solve any problem. Specific variants of the algorithm can use different search strategies.
- Search algorithms are judged on the basis of completeness, optimality, time complexity, and space complexity.
- Heuristics focus the search
- Best-first search expands the node with the highest worth (defined by any measure) first.
- With the minimization of the evaluated costs to the goal *h* we obtain a greedy search.
- The minimization of f(n) = g(n) + h(n) combines uniform and greedy searches. When h(n) is admissible, i.e., h^* is never overestimated, we obtain the A* search, which is complete and optimal.
- Online search provides method that are computationally more efficient when planning and plan execution are tightly coupled

Literature

- On my homepage:
 - A. Kleiner, M. Brenner, T. Bräuer, C. Dornhege, M. Göbelbecker, M. Luber, J. Prediger, J. Stückler, and B. Nebel Successful Search and Rescue in Simulated Disaster Areas Robocup 2005: Robot Soccer World Cup IX pp. 323-334, 2005
- Homepage of Tony Stentz:
 - A. Stentz **The focussed D* algorithm for real-time replanning** *Proc. of the Int. Join Conference on Artificial Intelligence*, p. 1652-1659, 1995.
- Homepage of Sven Koenig:
 - S. Koenig and X. Sun. Comparing Real-Time and Incremental Heuristic Search for Real-Time Situated Agents Journal of Autonomous Agents and Multi-Agent Systems, 2009
 - S. Koenig and M. Likhachev Real-Time Adaptive A* Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), 281-288, 2006
 - S. Koenig and M. Likhachev. **Fast Replanning for Navigation in Unknown Terrain** *Transactions on Robotics*, 21, (3), 354-363, 2005.
- Harder to find, also explained in the AIMA book (2nd ed.):
 - R. Korf. Real-time heuristic search. Artificial Intelligence, 42(2-3):189-211, 1990.
- Demo search code in Java on the AIMA webpage http://aima.cs.berkeley.edu/