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Introduction 
History of development
1956-1985:

 

Originally agents were mainly based on symbolic reasoning

–

 

Makes decisions about what actions to perform via symbolic 
reasoning, e.g., logical deduction

 

or theorem proving

–

 

The state of the world is represented by a database of predicates, 
e.g. Open(valve221)

–

 

Researches concluded the weakness of this approach for time-

 constrained

 

domains

1985-present:

 

Research on reactive agents

–

 

Decision making directly based on inputs

–

 

The idea that intelligent behavior is seen as innately linked to

 

the 
environment

 

an agent occupies -

 

intelligent behavior is not 
disembodied, but is a product of the interaction

 

the agent maintains 
with its environment

–

 

The idea that intelligent behavior emerges

 

from the interaction of 
various simpler behaviors

From 1990-present:

 

a number of alternatives proposed: hybrid 
architectures, combining the best of reasoning and reactive architectures



Logic-Based Architectures (1) 
Formal Model

•
 

Basic idea is to use logic to encode a theory
 

stating the 
best action to perform in any given situation

•
 

Let:
–

 
ρ

 
be this theory (typically a set of rules)

–
 

Δ
 

be a logical database
 

that describes the current state of 
the world

–
 

A be the set of actions
 

the agent can perform
–

 
Δ├ρ

 

φ
 

mean that φ,
 

e.g. Do(a), can be proved
 

from
 

Δ
 

using
 

ρ

•
 

We assume the automatic execution of the functions
–

 
see(s,p), which generates percepts from the current world 
state

–
 

next(Δ,
 

p), which updates the data base according to new 
percepts



Logic-Based Architectures (2) 
Action Selection Algorithm

function action {
//try to find an action explicitly prescribed
for each a ∈ A do {
if Δ

 
├ρ

 

Do(a) then
then return a

}

// try to find an action not excluded
for each a ∈

 
A do {

if Δ
 

├ρ

 

¬Do(a) then
then return a

}
return NULL

}

AD :)( ∈Δ



Logic-Based Architectures (3) 
Example: Vacuum World

•
 

Cleaning robot
 

with 
–

 
percepts P = {dirt, X,Y,θ}

–
 

Actions A = {turnRight, forward, 
suck}

•
 

Start: (0,0,North)
•

 
Goal: searching and cleaning dirt

•
 

Use of domain predicates
 

to solve 
problem:

In(x,y) agent is at (x, y)

Dirt(x,y) there is dirt at (x, y)

Facing(d) the agent is facing direction d



Logic-Based Architectures (4) 
Example: Vacuum World

•
 

Set of deduction rules
 

p for solving the problem: 
–

 
In(x,y) ∧

 
Dirt(x,y) Do(suck)

–
 

In(0,0) ∧
 

Facing(north) ∧ ¬Dirt(0,0) Do(forward)
–

 
In(0,1) ∧

 
Facing(north) ∧ ¬Dirt(0,1) Do(forward)

–
 

In(0,2) ∧
 

Facing(north) ∧ ¬Dirt(0,2) Do(turn)
–

 
In(0,2) ∧

 
Facing(east) ∧ ¬Dirt(0,2) Do(forward)

–
 

…

•
 

In order to ensure always one single
 

action, ¬Dirt(X,Y) 
has to be explicitly checked 



Logic-Based Architectures (5) 
Pros and Cons

•
 

Advantages
–

 
Pro-active behavior

 
(deliberation)

–
 

Elegant logical semantics
•

 
Problems:
–

 
How to convert

 
video camera input to Dirt(0, 1)?

–
 

Time complexity
 

for reasoning
–

 
During computation, the dynamic worlds

 
might change 

and thus the solution not valid anymore!
–

 
How to represent temporal information, e.g., how a 
situation changes over time?
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Reactive Architectures 
Brooks: Subsumption Architecture

•
 

Rodney Brooks´
 

Vision:
–

 
Intelligent behaviour can be generated without explicit 
representations

 
of the kind that symbolic AI proposes

–
 

Intelligent behaviour can be generated without explicit 
abstract reasoning

 
of the kind that symbolic AI proposes

–
 

Intelligence is an emergent property of certain complex 
systems

•
 

Two key ideas:
–

 
Situatedness and embodiment.

 
'Real' intelligence is 

situated in the world, not in disembodied systems such as 
theorem provers or expert systems.

–
 

Intelligence and emergence. 'Intelligent' behaviour arises 
as a result of an agent's interaction with its environment. 
Also, intelligence is 'in the eye of the beholder' -

 
it is not 

an innate, isolated property.



Subsumption Architecture 
Brooks’

 
Vision (1)

The traditional model: 
cognition intermediates

 between perception and 
action

Original slides from R. Brooks held at the seminar “From Pixels to Predicates”

 

(1983)



Subsumption Architecture 
Brooks’

 
Vision (2)

The new model: 
perception and 
action is all there 
is. Cognition is only 
in the eye of the 
observer.

Original slides from R. Brooks held at the seminar “From Pixels to Predicates”

 

(1983)



Subsumption Architecture 
Behaviors and Layered control

•
 

Decision making by a set of task accomplishing behaviors
–

 
Behaviors are direct mappings

 
from states to actions

•
 

Processing of raw sensor data
•

 
Direct coupling between state and action, e.g. light switch 
pressed light on

•
 

Behaviors implemented as asynchronous finite state 
machines

•
 

Mechanism for action selection: subsumption hierarchy
–

 
Behaviors organized in layers

•
 

Behaviors “fire”
 

simultaneously
•

 
Higher layer behaviors inhibit

 
lower level ones 

•
 

E.g., „Avoid obstacles“
 

lower layer (higher priority) than 
„drive to goal“



Subsumption Architecture 
Layered Control

From Brooks, “A Robust Layered Control System for a 
Mobile Robot”, 1985

For Example:
• Level0: Avoid Obstacles
• Level1: Wander aimlessly around
• Level2: Heading towards goals points
• Level3: Select unexplored locations as goals



• A behavior fires
 

if the environment is in state 
s∈S and iff

Subsumption Architecture 
Formal Model

• A behavior  is       with             , where P is 
the set of percepts

 
and A the set of actions

AaPcacBehb ∈⊆∈ ,),(

cssee ∈)(

• The subsumption hierarchy is implemented by 
the inhibition

 
relation

 
, denoting “b1

 

inhibits 
b2

 

”
21 bb p



Subsumption Architecture 
Action Selection Algorithm

function action {

// Compute the set of firing behaviors 

FB =  

// find action with highest priority    

for each          do 

{ 
if such that     
then return a 

} 
return NULL

}

ASs :)( ∈

})(),(|),{( csseeBehacac ∈∧∈

FBac ∈),(

( )FBac ∈∃¬ )','( )),()','( acac p

Time complexity: O(n2)



Subsumption Architecture 
Steels’

 
Mars Explorer Experiment (1)

•
 

Steels 1990: Task of exploring
 

a distant planet, more 
concretely, to collect samples of a particular type of rock 
–

 
The location of the rock samples is not known

 
in advance, but 

they are typically clustered in certain spots. 
–

 
A number of autonomous vehicles are available that can drive 
around the planet collecting

 
samples and later reenter

 
a mother 

ship spacecraft to go back to Earth. 
–

 
There is no detailed map

 
of the planet available

–
 

No communication

 
between the vehicles due to obstacles, such 

as hills, valleys, etc.

•
 

Solution idea
–

 
Gradient field:

 
Direction and distance to the mother ship can be 

computed from an emitted radio signal
–

 
Indirect communication:

 
Robots release “radioactive crumbs”

 that can be detected by others (enables emergent

 
behavior)



Subsumption Architecture 
Steels’

 
Mars Explorer Experiment (2)

Individual agent‘s (goal-directed) behavior:

obstacle changeDirection                         (1)
carryingSamples ∧ atTheBase dropSamples          (2)
carrying Samples ∧ ¬ atTheBase travelUpGradient  (3)
detectSample pickUpSample                        (4)
TRUE moveRandomly (5)

Subsumption hierarchy:  (1) ≺
 

(2)
 

≺
 

(3)  ≺
 

(4)  ≺
 

(5)

Modification: Collaborative behavior: If sample is found, drop 
„crumb trail“

 
while returning to ship (as guide for other 

agents (special rocks appear in clusters!). Other agents will 
weaken trail on way to samples. If sample cluster is empty 

no trail reinforcement trail „dies“. 



Subsumption Architecture 
Steels’

 
Mars Explorer Experiment (3)

Modification: Collaborative behavior:

obstacle changeDirection                         (1)
carryingSamples ∧ atTheBase dropSamples          (2)
carrying Samples ∧ ¬ atTheBase 

drop_2_Crumbs ∧ travelUpGradient           (3‘)
detectSample pickUpSample                        (4)
senseCrumbs PickUp_1_Crumb ∧ travelDownGradient  (6)
TRUE moveRandomly (5)

subsumption hierarchy:  (1) ≺
 

(2)
 

≺
 

(3‘)  ≺
 

(4)  ≺
 (6) ≺

 
(5)



Subsumption Architecture 
Pros and Cons (1)

•
 

Is it here possible using the subsumption
 architecture for reaching the mother ship?

a wall



Subsumption Architecture 
Pros and Cons (2)

•
 

In practice, the subsumption architecture is not 
sufficiently modular:

…
 

Because the upper layers interfere with the internal 
functions of lower-level behaviors, they cannot be designed 
independently and become increasingly complex. This also 
means that even small changes to low-level behaviors or to 
the vehicle itself cannot be made without redesigning the 
whole system….

Hartley „Experiments with the Subsumption 
Architecture“, ICRA 1991
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Subsumption Architecture 
Pros and Cons (3)

•
 

Pro
–

 
Simplicity, i.e. modules 
have high expressiveness

–
 

Computational tractability

–
 

Robustness

 
against 

failure, i.e. possibility of 
modeling redundancies

–
 

Overall behavior emerges

 from interactions

•
 

Cons
–

 
Behaviors are hard-coded

 with respect to the 
environment 

–
 

Behavior emerges from 
interactions How to 
engineer the system in 
the general case?

–
 

How to model long-term

 decisions?

–
 

Design approach does not 
scale-up

 
for large 

systems



Hybrid Architectures 
Introduction

•
 

Neither completely deliberative nor completely reactive 
approaches are suitable for building agents
–

 
Researchers concluded using hybrid systems, which attempt to 
combine classical and alternative approaches

•
 

An obvious approach is to build agents out of two (or more) 
subsystems:

–
 

a deliberative one, containing a symbolic world model, which 
develops plans and makes decisions in the way proposed by 
symbolic AI

–
 

a reactive one, which is capable of reacting to events without 
complex reasoning

•
 

The combination of reactive and proactive behavior leads to 
a class of architectures in which the various subsystems are 
arranged into a hierarchy of interacting layers



Hybrid Architectures 
Types of layers

• Horizontal layering 
Layers are each directly connected to the sensory input and 
action output. In effect, each layer itself acts like an agent, 
producing suggestions as to what action to perform.

• Vertical layering 
Sensory input and action output are each dealt with by at 
most one layer each (mostly used nowadays)



Hybrid Architectures 
Example Horizontal Layering: “TouringMachines”

 
(1)

(Ferguson 1992)



Hybrid Architectures 
Example Horizontal Layering: “TouringMachines”

 
(2)

•
 

Reactive Layer. Subsumption-Architecture rules, e.g.:
rule-1: kerb-avoidance 

if 
is-in-front(Kerb, Observer) and 
speed(Observer) > 0 and 
separation(Kerb, Observer) < KerbThreshHold 

then 
change-orientation(KerbAvoidanceAngle)

•
 

Planning Layer. Long-term behavior, e.g. plans trajectories (paths) to 
goals

•
 

Modeling layer. Keeps and modifies environment model; selects new 
goals for planning layer

•
 

Control subsystem. Exceeds control (e.g. by suppressing information 
input to certain layers („censorship“)
censor-rule-1: 

if 
entity(obstacle-6) in perception-buffer 

then 
remove-sensory-record(layer-R, entity(obstacle-6))



Hybrid Architectures 
Example Vertical Layering: “InteRRaP”

• Bottom-Up-Activation:
 

If 
lower level layer is not 
competent for situation 
pass control to higher level

• Top-Down-Execution:
 Higher level layers make 

use of “facilities”
 

provided 
by lower level layer

cooperation layer

plan layer

reactive layer

social knowledge

planning knowledge

world model

world interface

perceptual input action output

(Mueller 1995)



Behavior Networks 
Introduction

•
 

Composed of a set of competence 
modules (Maes 1989)

•
 

Each module resembles behaviors
 

like in 
the subsumption architecture

•
 

Modules are defined 
–

 
in terms of pre-

 
and post-conditions 

(similar to STRIPS
 

formalisms)
–

 
A real-value activation

 
level (giving the 

relevance within particular situations)

•
 

Modules are compiled into a spreading
 network

 
accordingly 



•
 

P is a set of propositional
 

atoms
 

generated 
from the world state

•
 

Behavior networks are tuples (P, G, M, Π), 
where
–

 
G ⊆

 
P is the goal

 
specification

–
 

M is a finite set of competence modules, where 
m∈M is a tuple (pre, eff+, eff-, beh) with 

•
 

pre ⊆
 

P denoting the preconditions
•

 
eff+, eff- ⊆

 
P denoting the positive and negative 

effects
 

(with eff+ ∩
 

eff- =  ∅)
•

 
beh an executable behavior

Behavior Networks 
Definition (1)



Behavior Networks 
Definition (2)

•
 

Competence modules are connected
 

in a 
network; “activation energy”

 
goes from goals 

to modules
•

 
A positive effect link connects a positive effect 
p of a competence module to the precondition 
p of another competence module

•
 

A negative effect link connects a negative 
effect p of one competence module to the 
precondition p of another competence module.



Behavior Networks 
Activation flow (1)

∑
∩∈ ⋅tSprep kp

t
ek,

k
preM

=α 1φ

∑
∩∈

+
+ ⋅tGeffe ke

t
gpk,

k
effN

=α 1γ

Module activation from situation

Activation of module k by satisfied 
preconditions

 

prek ∩St , where Mp is the 
set of modules activated by p and |prek

 

| 
the number of k’s inputs.

Module activation from goals

Activation by goals Gt

 

satisfying positive

 effects

 

eff+

 

(or suppression from  
negative effects

 

eff-
 

deleting goal 
propositions Rt

 

that are already active), 
where Ne is the set of modules 
generating

 

effect e.

∑
∩∈

−
− ⋅

−
tReffe ke

t
gnk,

k
effN

=α 1δ

Fan effect Input normalization



Behavior Networks 
Activation flow (2)

t
sk,

t
pk,

t
gnk,

t
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t
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t
k, ααααα=α ++++Σ

| | | |( )
∑ ∑

∈ ∩∈ + ⋅}\{ \

1
kEl Seffprep kp

t
pk,

t
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preM
=α

γ
φ

Module activation from predecessors

Activation of module k from activated 
modules E, where p is input of k and 
also positive effect of predecessor l

Module activation from successors

Activation of module k from effect e that 
satisfy precondition of successor l

Overall activation of module k:

| | | |( )
∑ ∑

∈ ∩∈

−

+ ⋅}\{\ \

1

kEKl Spreeffe ke

t
kt

sk,
t

lk
preN

α=α



Behavior Networks 
Action selection

1.
 

Calculation of activation from goals
 

end 
situation

2.
 

Computation of inter-module
 

activation
3.

 
Uniform reduction of activation of each 
module to keep ∑ak

 

constant
4.

 
Select module with highest

 
activation abest

5.
 

If abest

 

>θ
 

then execute
 

behavior
6.

 
If not, reduce

 
θ

 
by 10%, restart at 1.)



Behavior Networks (7) 
Network example

Competence module

Proposition

Legend:

Goal with importance

Negated (right) and 
non-negated (left) 
preconditions (bottom) 
and effects 
(top) with probability

Conjunction of relevance 
conditions

Disjunction of relevance 
conditions



Extended Behavior Networks (K. Dorer)

•
 

Modeling of continuous state variables
–

 
For example: “near goal”, goalDist= 1.2m

•
 

Decision theoretic action selection, i.e. actions 
are selected according to utility X probability 
–

 
Combine purely reactive acting with deliberation

•
 

No fan effect
•

 
Computational more expensive

•
 

Used for the CS-Freiburg soccer team



Case study: CS Freiburg Action Selection 
Player architecture

100ms cycle



Case study: CS Freiburg Action Selection 
Skill example: Dribbling

• Consider points on arc around the 
robot’s location

• Compute utility according to
– Distance to obstacles (+)
– Heading angle difference (-)
– Remaining angle to goal (-)

• Select best angle



Case study: CS Freiburg Action Selection 
Skill example: Inbound-shot

• Consider possible shoot directions 
with predicted reflections

• Compute utility based on 
– Distance to obstacles (-)
– Heading angle difference (-)
– Distance to goal at end of line (-)



Case study: CS Freiburg Action Selection 
Propositions (1)

• Are either binary p∈{true, 
false} or continuous 
p∈[0..1]
– Continuous propositions 

are generated by simple 
fuzzification

• Some examples:
– Ball_present

 
[0,1] true 

ball position is known

double StraightUp(double x, double min, 
double max)

{

if(max == min)

return 0.0;

if(x < min)

return 0.0;

if(x > max)

return 1.0;

return((x - min) / (max - min));

}



Case study: CS Freiburg Action Selection 
Propositions (2)

•
 

Only non-conflicting
 

goals; depending on role of player (e.g. 
active soccergoal, support cooperate

•
 

Propositions
–

 
ball_present [0,1] true ball position is known

–
 

ball_near_own_goal as more active as ball is close to goal
–

 
…

•
 

Reflex behaviors
–

 
Some simple but important

 
functionality can easier be realized 

by reactive situation-action rules
•

 
Robot gets stuck FreeFromStall

•
 

10 seconds rule GoToPos(FieldCenter) 
•

 
Flexibility vs. Persistent
–

 
Persistence is necessary for successful soccer playing!

–
 

Achieved by intentionally disallowing undesired action 
sequences, such as ShootGoal TribbleBall (see network 
graph)



Case study: CS Freiburg Action Selection 
The complete network
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