
3. Fundamental Agent
Architectures

Logic-Based, Reactive, and Hybrid
Architectures, CS-Freiburg Case Study

Alexander Kleiner, Bernhard Nebel

Introduction to Multi-Agent
Programming

Contents

•

Introduction

•

Logic-Based

Architectures

•

Reactive

Architectures
–

Subsumption Architecture

•

Hybrid

Architectures

•

Behavior Networks

•

Case Study: Action Selection of the CS-Freiburg

soccer
team

•

Summary

Introduction
History of development
1956-1985:

Originally agents were mainly based on symbolic reasoning

–

Makes decisions about what actions to perform via symbolic
reasoning, e.g., logical deduction

or theorem proving

–

The state of the world is represented by a database of predicates,
e.g. Open(valve221)

–

Researches concluded the weakness of this approach for time-

 constrained

domains

1985-present:

Research on reactive agents

–

Decision making directly based on inputs

–

The idea that intelligent behavior is seen as innately linked to

the
environment

an agent occupies -

intelligent behavior is not
disembodied, but is a product of the interaction

the agent maintains
with its environment

–

The idea that intelligent behavior emerges

from the interaction of
various simpler behaviors

From 1990-present:

a number of alternatives proposed: hybrid
architectures, combining the best of reasoning and reactive architectures

Logic-Based Architectures (1)
Formal Model

•

Basic idea is to use logic to encode a theory

stating the
best action to perform in any given situation

•

Let:
–

ρ

be this theory (typically a set of rules)

–

Δ

be a logical database

that describes the current state of
the world

–

A be the set of actions

the agent can perform
–

Δ├ρ

φ

mean that φ,

e.g. Do(a), can be proved

from

Δ

using

ρ

•

We assume the automatic execution of the functions
–

see(s,p), which generates percepts from the current world
state

–

next(Δ,

p), which updates the data base according to new
percepts

Logic-Based Architectures (2)
Action Selection Algorithm

function action {
//try to find an action explicitly prescribed
for each a ∈ A do {
if Δ

├ρ

Do(a) then
then return a

}

// try to find an action not excluded
for each a ∈

A do {

if Δ

├ρ

¬Do(a) then
then return a

}
return NULL

}

AD :)(∈Δ

Logic-Based Architectures (3)
Example: Vacuum World

•

Cleaning robot

with
–

percepts P = {dirt, X,Y,θ}

–

Actions A = {turnRight, forward,
suck}

•

Start: (0,0,North)
•

Goal: searching and cleaning dirt

•

Use of domain predicates

to solve
problem:

In(x,y) agent is at (x, y)

Dirt(x,y) there is dirt at (x, y)

Facing(d) the agent is facing direction d

Logic-Based Architectures (4)
Example: Vacuum World

•

Set of deduction rules

p for solving the problem:
–

In(x,y) ∧

Dirt(x,y) Do(suck)

–

In(0,0) ∧

Facing(north) ∧ ¬Dirt(0,0) Do(forward)
–

In(0,1) ∧

Facing(north) ∧ ¬Dirt(0,1) Do(forward)

–

In(0,2) ∧

Facing(north) ∧ ¬Dirt(0,2) Do(turn)
–

In(0,2) ∧

Facing(east) ∧ ¬Dirt(0,2) Do(forward)

–

…

•

In order to ensure always one single

action, ¬Dirt(X,Y)
has to be explicitly checked

Logic-Based Architectures (5)
Pros and Cons

•

Advantages
–

Pro-active behavior

(deliberation)

–

Elegant logical semantics
•

Problems:
–

How to convert

video camera input to Dirt(0, 1)?

–

Time complexity

for reasoning
–

During computation, the dynamic worlds

might change

and thus the solution not valid anymore!
–

How to represent temporal information, e.g., how a
situation changes over time?

9

Reactive Architectures
Brooks: Subsumption Architecture

•

Rodney Brooks´

Vision:
–

Intelligent behaviour can be generated without explicit
representations

of the kind that symbolic AI proposes

–

Intelligent behaviour can be generated without explicit
abstract reasoning

of the kind that symbolic AI proposes

–

Intelligence is an emergent property of certain complex
systems

•

Two key ideas:
–

Situatedness and embodiment.

'Real' intelligence is

situated in the world, not in disembodied systems such as
theorem provers or expert systems.

–

Intelligence and emergence. 'Intelligent' behaviour arises
as a result of an agent's interaction with its environment.
Also, intelligence is 'in the eye of the beholder' -

it is not

an innate, isolated property.

Subsumption Architecture
Brooks’

Vision (1)

The traditional model:
cognition intermediates

 between perception and
action

Original slides from R. Brooks held at the seminar “From Pixels to Predicates”

(1983)

Subsumption Architecture
Brooks’

Vision (2)

The new model:
perception and
action is all there
is. Cognition is only
in the eye of the
observer.

Original slides from R. Brooks held at the seminar “From Pixels to Predicates”

(1983)

Subsumption Architecture
Behaviors and Layered control

•

Decision making by a set of task accomplishing behaviors
–

Behaviors are direct mappings

from states to actions

•

Processing of raw sensor data
•

Direct coupling between state and action, e.g. light switch
pressed light on

•

Behaviors implemented as asynchronous finite state
machines

•

Mechanism for action selection: subsumption hierarchy
–

Behaviors organized in layers

•

Behaviors “fire”

simultaneously
•

Higher layer behaviors inhibit

lower level ones

•

E.g., „Avoid obstacles“

lower layer (higher priority) than
„drive to goal“

Subsumption Architecture
Layered Control

From Brooks, “A Robust Layered Control System for a
Mobile Robot”, 1985

For Example:
• Level0: Avoid Obstacles
• Level1: Wander aimlessly around
• Level2: Heading towards goals points
• Level3: Select unexplored locations as goals

• A behavior fires

if the environment is in state
s∈S and iff

Subsumption Architecture
Formal Model

• A behavior is with , where P is
the set of percepts

and A the set of actions

AaPcacBehb ∈⊆∈ ,),(

cssee ∈)(

• The subsumption hierarchy is implemented by
the inhibition

relation

, denoting “b1

inhibits
b2

”
21 bb p

Subsumption Architecture
Action Selection Algorithm

function action {

// Compute the set of firing behaviors

FB =

// find action with highest priority

for each do

{
if such that
then return a

}
return NULL

}

ASs :)(∈

})(),(|),{(csseeBehacac ∈∧∈

FBac ∈),(

()FBac ∈∃¬)','()),()','(acac p

Time complexity: O(n2)

Subsumption Architecture
Steels’

Mars Explorer Experiment (1)

•

Steels 1990: Task of exploring

a distant planet, more
concretely, to collect samples of a particular type of rock
–

The location of the rock samples is not known

in advance, but

they are typically clustered in certain spots.
–

A number of autonomous vehicles are available that can drive
around the planet collecting

samples and later reenter

a mother

ship spacecraft to go back to Earth.
–

There is no detailed map

of the planet available

–

No communication

between the vehicles due to obstacles, such

as hills, valleys, etc.

•

Solution idea
–

Gradient field:

Direction and distance to the mother ship can be

computed from an emitted radio signal
–

Indirect communication:

Robots release “radioactive crumbs”

 that can be detected by others (enables emergent

behavior)

Subsumption Architecture
Steels’

Mars Explorer Experiment (2)

Individual agent‘s (goal-directed) behavior:

obstacle changeDirection (1)
carryingSamples ∧ atTheBase dropSamples (2)
carrying Samples ∧ ¬ atTheBase travelUpGradient (3)
detectSample pickUpSample (4)
TRUE moveRandomly (5)

Subsumption hierarchy: (1) ≺

(2)

≺

(3) ≺

(4) ≺

(5)

Modification: Collaborative behavior: If sample is found, drop
„crumb trail“

while returning to ship (as guide for other

agents (special rocks appear in clusters!). Other agents will
weaken trail on way to samples. If sample cluster is empty

no trail reinforcement trail „dies“.

Subsumption Architecture
Steels’

Mars Explorer Experiment (3)

Modification: Collaborative behavior:

obstacle changeDirection (1)
carryingSamples ∧ atTheBase dropSamples (2)
carrying Samples ∧ ¬ atTheBase

drop_2_Crumbs ∧ travelUpGradient (3‘)
detectSample pickUpSample (4)
senseCrumbs PickUp_1_Crumb ∧ travelDownGradient (6)
TRUE moveRandomly (5)

subsumption hierarchy: (1) ≺

(2)

≺

(3‘) ≺

(4) ≺
 (6) ≺

(5)

Subsumption Architecture
Pros and Cons (1)

•

Is it here possible using the subsumption
 architecture for reaching the mother ship?

a wall

Subsumption Architecture
Pros and Cons (2)

•

In practice, the subsumption architecture is not
sufficiently modular:

…

Because the upper layers interfere with the internal
functions of lower-level behaviors, they cannot be designed
independently and become increasingly complex. This also
means that even small changes to low-level behaviors or to
the vehicle itself cannot be made without redesigning the
whole system….

Hartley „Experiments with the Subsumption
Architecture“, ICRA 1991

21

Subsumption Architecture
Pros and Cons (3)

•

Pro
–

Simplicity, i.e. modules
have high expressiveness

–

Computational tractability

–

Robustness

against

failure, i.e. possibility of
modeling redundancies

–

Overall behavior emerges

 from interactions

•

Cons
–

Behaviors are hard-coded

 with respect to the
environment

–

Behavior emerges from
interactions How to
engineer the system in
the general case?

–

How to model long-term

 decisions?

–

Design approach does not
scale-up

for large

systems

Hybrid Architectures
Introduction

•

Neither completely deliberative nor completely reactive
approaches are suitable for building agents
–

Researchers concluded using hybrid systems, which attempt to
combine classical and alternative approaches

•

An obvious approach is to build agents out of two (or more)
subsystems:

–

a deliberative one, containing a symbolic world model, which
develops plans and makes decisions in the way proposed by
symbolic AI

–

a reactive one, which is capable of reacting to events without
complex reasoning

•

The combination of reactive and proactive behavior leads to
a class of architectures in which the various subsystems are
arranged into a hierarchy of interacting layers

Hybrid Architectures
Types of layers

• Horizontal layering
Layers are each directly connected to the sensory input and
action output. In effect, each layer itself acts like an agent,
producing suggestions as to what action to perform.

• Vertical layering
Sensory input and action output are each dealt with by at
most one layer each (mostly used nowadays)

Hybrid Architectures
Example Horizontal Layering: “TouringMachines”

(1)

(Ferguson 1992)

Hybrid Architectures
Example Horizontal Layering: “TouringMachines”

(2)

•

Reactive Layer. Subsumption-Architecture rules, e.g.:
rule-1: kerb-avoidance

if
is-in-front(Kerb, Observer) and
speed(Observer) > 0 and
separation(Kerb, Observer) < KerbThreshHold

then
change-orientation(KerbAvoidanceAngle)

•

Planning Layer. Long-term behavior, e.g. plans trajectories (paths) to
goals

•

Modeling layer. Keeps and modifies environment model; selects new
goals for planning layer

•

Control subsystem. Exceeds control (e.g. by suppressing information
input to certain layers („censorship“)
censor-rule-1:

if
entity(obstacle-6) in perception-buffer

then
remove-sensory-record(layer-R, entity(obstacle-6))

Hybrid Architectures
Example Vertical Layering: “InteRRaP”

• Bottom-Up-Activation:

If
lower level layer is not
competent for situation
pass control to higher level

• Top-Down-Execution:
 Higher level layers make

use of “facilities”

provided
by lower level layer

cooperation layer

plan layer

reactive layer

social knowledge

planning knowledge

world model

world interface

perceptual input action output

(Mueller 1995)

Behavior Networks
Introduction

•

Composed of a set of competence
modules (Maes 1989)

•

Each module resembles behaviors

like in
the subsumption architecture

•

Modules are defined
–

in terms of pre-

and post-conditions

(similar to STRIPS

formalisms)
–

A real-value activation

level (giving the

relevance within particular situations)

•

Modules are compiled into a spreading
 network

accordingly

•

P is a set of propositional

atoms

generated
from the world state

•

Behavior networks are tuples (P, G, M, Π),
where
–

G ⊆

P is the goal

specification

–

M is a finite set of competence modules, where
m∈M is a tuple (pre, eff+, eff-, beh) with

•

pre ⊆

P denoting the preconditions
•

eff+, eff- ⊆

P denoting the positive and negative

effects

(with eff+ ∩

eff- = ∅)
•

beh an executable behavior

Behavior Networks
Definition (1)

Behavior Networks
Definition (2)

•

Competence modules are connected

in a
network; “activation energy”

goes from goals

to modules
•

A positive effect link connects a positive effect
p of a competence module to the precondition
p of another competence module

•

A negative effect link connects a negative
effect p of one competence module to the
precondition p of another competence module.

Behavior Networks
Activation flow (1)

∑
∩∈ ⋅tSprep kp

t
ek,

k
preM

=α 1φ

∑
∩∈

+
+ ⋅tGeffe ke

t
gpk,

k
effN

=α 1γ

Module activation from situation

Activation of module k by satisfied
preconditions

prek ∩St , where Mp is the
set of modules activated by p and |prek

|
the number of k’s inputs.

Module activation from goals

Activation by goals Gt

satisfying positive

 effects

eff+

(or suppression from
negative effects

eff-

deleting goal
propositions Rt

that are already active),
where Ne is the set of modules
generating

effect e.

∑
∩∈

−
− ⋅

−
tReffe ke

t
gnk,

k
effN

=α 1δ

Fan effect Input normalization

Behavior Networks
Activation flow (2)

t
sk,

t
pk,

t
gnk,

t
gpk,

t
ek,

t
k, ααααα=α ++++Σ

| | | |()
∑ ∑

∈ ∩∈ + ⋅}\{ \

1
kEl Seffprep kp

t
pk,

t
lk

preM
=α

γ
φ

Module activation from predecessors

Activation of module k from activated
modules E, where p is input of k and
also positive effect of predecessor l

Module activation from successors

Activation of module k from effect e that
satisfy precondition of successor l

Overall activation of module k:

| | | |()
∑ ∑

∈ ∩∈

−

+ ⋅}\{\ \

1

kEKl Spreeffe ke

t
kt

sk,
t

lk
preN

α=α

Behavior Networks
Action selection

1.

Calculation of activation from goals

end
situation

2.

Computation of inter-module

activation
3.

Uniform reduction of activation of each
module to keep ∑ak

constant
4.

Select module with highest

activation abest

5.

If abest

>θ

then execute

behavior
6.

If not, reduce

θ

by 10%, restart at 1.)

Behavior Networks (7)
Network example

Competence module

Proposition

Legend:

Goal with importance

Negated (right) and
non-negated (left)
preconditions (bottom)
and effects
(top) with probability

Conjunction of relevance
conditions

Disjunction of relevance
conditions

Extended Behavior Networks (K. Dorer)

•

Modeling of continuous state variables
–

For example: “near goal”, goalDist= 1.2m

•

Decision theoretic action selection, i.e. actions
are selected according to utility X probability
–

Combine purely reactive acting with deliberation

•

No fan effect
•

Computational more expensive

•

Used for the CS-Freiburg soccer team

Case study: CS Freiburg Action Selection
Player architecture

100ms cycle

Case study: CS Freiburg Action Selection
Skill example: Dribbling

• Consider points on arc around the
robot’s location

• Compute utility according to
– Distance to obstacles (+)
– Heading angle difference (-)
– Remaining angle to goal (-)

• Select best angle

Case study: CS Freiburg Action Selection
Skill example: Inbound-shot

• Consider possible shoot directions
with predicted reflections

• Compute utility based on
– Distance to obstacles (-)
– Heading angle difference (-)
– Distance to goal at end of line (-)

Case study: CS Freiburg Action Selection
Propositions (1)

• Are either binary p∈{true,
false} or continuous
p∈[0..1]
– Continuous propositions

are generated by simple
fuzzification

• Some examples:
– Ball_present

[0,1] true

ball position is known

double StraightUp(double x, double min,
double max)

{

if(max == min)

return 0.0;

if(x < min)

return 0.0;

if(x > max)

return 1.0;

return((x - min) / (max - min));

}

Case study: CS Freiburg Action Selection
Propositions (2)

•

Only non-conflicting

goals; depending on role of player (e.g.
active soccergoal, support cooperate

•

Propositions
–

ball_present [0,1] true ball position is known

–

ball_near_own_goal as more active as ball is close to goal
–

…

•

Reflex behaviors
–

Some simple but important

functionality can easier be realized

by reactive situation-action rules
•

Robot gets stuck FreeFromStall

•

10 seconds rule GoToPos(FieldCenter)
•

Flexibility vs. Persistent
–

Persistence is necessary for successful soccer playing!

–

Achieved by intentionally disallowing undesired action
sequences, such as ShootGoal TribbleBall (see network
graph)

Case study: CS Freiburg Action Selection
The complete network

Literature

•

T. Weigel, J.-S. Gutmann, M. Dietl, A. Kleiner and B. Nebel CS-
Freiburg: Coordinating Robots for Successful Soccer Playing
IEEE Transactions on Robotics and Automation 18(5):685-699,
2002

•

K. Müller

Roboterfußball: Multiagentensystem CS Freiburg,

Univ. Freiburg, 2001

•

K. Dorer

Behavior Networks for Continuous Domains using

Situation-Dependent Motivations Proceedings of the 16th
International Joint Conference on Artificial Intelligence (IJCAI'99),
p. 1233-1238, Morgan Kaufmann, Stockholm

www.cs-freiburg.de

	Foliennummer 1
	Contents
	Foliennummer 3
	Logic-Based Architectures (1)�Formal Model
	Logic-Based Architectures (2)�Action Selection Algorithm
	Logic-Based Architectures (3)�Example: Vacuum World
	Logic-Based Architectures (4)�Example: Vacuum World
	Logic-Based Architectures (5)�Pros and Cons
	Reactive Architectures�Brooks: Subsumption Architecture
	Subsumption Architecture�Brooks’ Vision (1)
	Subsumption Architecture�Brooks’ Vision (2)
	Subsumption Architecture�Behaviors and Layered control
	Subsumption Architecture�Layered Control
	Subsumption Architecture�Formal Model
	Subsumption Architecture�Action Selection Algorithm
	Subsumption Architecture�Steels’ Mars Explorer Experiment (1)
	Subsumption Architecture�Steels’ Mars Explorer Experiment (2)
	Subsumption Architecture�Steels’ Mars Explorer Experiment (3)
	Subsumption Architecture �Pros and Cons (1)
	Subsumption Architecture �Pros and Cons (2)
	Subsumption Architecture �Pros and Cons (3)
	Hybrid Architectures �Introduction
	Hybrid Architectures �Types of layers
	Hybrid Architectures �Example Horizontal Layering: “TouringMachines” (1)
	Hybrid Architectures �Example Horizontal Layering: “TouringMachines” (2)
	Hybrid Architectures �Example Vertical Layering: “InteRRaP”
	Behavior Networks�Introduction
	Behavior Networks�Definition (1)
	Behavior Networks�Definition (2)
	Behavior Networks�Activation flow (1)
	Behavior Networks�Activation flow (2)
	Behavior Networks�Action selection
	Behavior Networks (7)�Network example
	Extended Behavior Networks (K. Dorer)
	Case study: CS Freiburg Action Selection�Player architecture
	Case study: CS Freiburg Action Selection�Skill example: Dribbling
	Case study: CS Freiburg Action Selection�Skill example: Inbound-shot
	Case study: CS Freiburg Action Selection�Propositions (1)
	Case study: CS Freiburg Action Selection�Propositions (2)
	Case study: CS Freiburg Action Selection�The complete network
	Literature

