Introduction to Multi-Agent Programming

12. Swarm Intelligence

Flocking, Foraging, Ant Systems, TSP solving

Alexander Kleiner, Bernhard Nebel
Contents

• Introduction
• Swarming & Flocking
• Foraging strategies in ants
• Ant System: Solving TSPs
• Case-study: Team coordination of virtual robots
• Summary
Introduction

• What is swarm intelligence?
• Swarm intelligence is motivated from insects
 – Colonies of social insects can achieve flexible, intelligent, and complex system level performance from stereotyped, unreliable, unintelligent, and simple elements
 – Insects follow simple rules, use simple local communication (scent trails, sound, touch) with low computational demands
 – Global structure (e.g. nest) reliably emerges from the unreliable actions of many
• The modeling of social insects by means of self-Organization can be utilized to motivate the design of methods for distributed problem solving, known as Swarm Intelligent Systems
Introduction
Biological Inspiration

• Bees:
 – Communicate the distance and bearing of food sources by dancing
 – Food sources are exploited according to quality and distance from the hive

• Termites
 – Build large cone-shaped outer walls with ventilation ducts

• Ants
 – Leafcutter ants (*Atta*) cut leaves from plants to grow fungi
 – Weaver ant (*Oecophylla*) workers form chains of their own bodies, allowing them to cross wide gaps and to generate enough force to join leaves together. When the leaves are in place, the ants connect both edges with a continuous thread of silk emitted by a mature larva held by a worker
Introduction
Self-organization in social insects

• Relies on four basic ingredients:
 – Positive feedback (amplification)
 • Recruitment to a food source by laying or following a trail (e.g. ant pheromones or bee dance)
 – Negative feedback
 • Counterbalances the positive feedback
 • In form of saturation (limited number of workers), exhaustion (of the food source), or competition (crowding at the food source)
 – Fluctuation
 • Random walks, errors, random task switching
 • Can be seen as “exploration” for finding unexploited food sources
 – Multiple interactions / Stigmergy
 • Direct: antennation, food or liquid exchange, visual contact, chemical contact (the odor of nestmates), ...
 • Indirect: Two individuals interact indirectly if one modifies the environment and the other one responds to this modification later in time (Stigmergy)
Stigmergy Example

Pillar construction by termites:

1. Assume the architecture reaches state A that triggers action R from worker S (i.e. drop a soil pellet) transforming the architecture into A_1

2. A_1 stimulates another response R_1 from S or any other worker S_N and so forth.
Swarming & Flocking
Real-world example

Anchovies
Swarming & Flocking

- **Aggregation** of similar animals that travel into the **same** direction
- **Applications**: Movie effects (Lord of the rings, Lion King), Network routing, swarm robotics, computer games
- In the late 80’s Craig Reynolds created a simple **model** of animal motion that he called **Boids**.
 - **Flock** is a group of objects that exhibit the general class of polarized (aligned), non-colliding, aggregate motion
 - **Boid** is a simulated bird-like object, i.e., it exhibits this type of behavior. It can be a fish, bee, dinosaur, etc.
- The boids model can be implemented **by only 3 rules** defining a boid’s steering behavior
Boids model
Only 3 simple rules needed

Separation: steer to avoid crowding local mates

Alignment: steer towards the average heading and speed of local mates

Cohesion: steer to move toward the average position of local mates
Foraging Strategies in Ants
How ants solve the shortest path problem

• Ants establish indirect communication based on the deposition of pheromone over the path they follow.
 – A single ant moves at random, but when it finds a pheromone trail, there is a high probability to follow the trail.
 – Ants foraging for food deposit pheromones over their routes. When finding a food source, they return to the nest reinforcing their trails.
 – By this, other ants have greater probability to start following such trails and thereby reinforcing it by more pheromones.
 – This process works as a positive feedback loop system because the higher the intensity of the pheromone over a trail, the higher the probability that ants start traveling through it.

Ants exploring two paths to a food source. The shorter path finally wins due to a higher density of pheromones
Ant Colony Optimization
Solving TSPs

• Can be used to solve graph problems such as the Traveling Salesman Problem (TSP)
 – For finding *good* but not necessarily *optimal* solutions!

• **Goal**: find a closed tour of *minimal length* connecting *n* given cities, while visiting every city only once

• **Ant colony solution concept**:
 – Using a *positive feedback* mechanism based on an analogy with the trail laying/following behavior, to reinforce to keep good solutions
 – Negative feedback by *pheromone evaporation*
Traveling Salesman Problem (TSP)

Example 40-node TSP with solution

Note TSPs are NP-Complete problems, i.e. finding solutions with increasing number of cities becomes intractable.
Ant System (1)
Solution to the TSP

• Ants move on the problem graph from one city to another until completing a tour

• Each transition depends on:
 – Whether the city has already been visited (tabu list). We denote the set of cities not visited by ant \(k \) when located at city \(i \) with \(J^k_i \)
 – The inverse of the distance \(\eta_{ij} = 1/d_{ij} \), called visibility. Can be seen as heuristic for choosing city \(j \) when in city \(i \).
 – The amount of virtual pheromone \(\tau_{ij}(t) \) on the edge connecting city \(i \) with city \(j \)
The transition rule, i.e. probability for ant k to go to city j while building its kth tour is given by:

$$p_{ij}^k(t) = \frac{[\tau_{ij}(t)]^\alpha \cdot [n_{ij}]^\beta}{\sum_{l \in J_i^k} [\tau_{il}(t)]^\alpha \cdot [n_{il}]^\beta} \quad \text{if } j \in J_i^k, \text{else } 0$$

Where α and β are parameters controlling the trade-off between trail intensity and visibility.
Ant System (3)

Trail update

• After completing a tour (episode), each ant k lays a quantity of pheromone $\Delta \tau_{ij}(t)$ on each visited edge (i,j)

• The quantity depends on the ant’s performance during tour T^k at iteration t:

$$\Delta \tau_{ij}^k = \frac{Q}{L_k(t)} \text{ if } (i,j) \in T^k(t), \text{ else } 0$$

• Where $L_k(t)$ is the length, and Q is a parameter which should be set close to the optimal tour length

• Pheromone decay (evaporation): controlled by parameter ρ, $0 \leq \rho < 1$

• Resulting update rule: $\tau_{ij}(t) \leftarrow (1 - \rho) \cdot \tau_{ij}(t) + \Delta \tau_{ij}(t)$

$$\Delta \tau_{ij}(t) = \sum_{k=1}^{m} \Delta \tau_{ij}^k(t)$$
Ant System (4)

Elitist ants

- Idea borrowed from genetic algorithms: always keep the best n solutions in the genetic pool.
- An elitist ant is an ant that reinforces the edge belonging to T^+ (the best tour found so far) by the quantity Q/L^+, where L^+ is the length of T^+.
- During each iteration we add e elitist ants to the usual ants.
- Hence, the edge belonging to T^+ gets an extra reinforcement of $e*Q/L^+$.
Ant System (5)

Complete algorithm

/* Initialization */
For every edge \((i, j)\) do
 \(\tau_{ij}(0) = \tau_0\)
End For
For \(k = 1\) to \(m\) do
 Place ant \(k\) on a randomly chosen city
End For
Let \(T^+\) be the shortest tour found from beginning and \(L^+\) its length
/* Main loop */
For \(t = 1\) to \(t_{max}\) do
 For \(k = 1\) to \(m\) do
 Build tour \(T^k(t)\) by applying \(n - 1\) times the following step:
 Choose the next city \(j\) with probability
 \[
 p_{ij}^k(t) = \frac{[\tau_{ij}(t)]^\alpha \cdot \eta_{ij}^\beta}{\sum_{i \in J} [\tau_{ii}(t)]^\alpha \cdot \eta_{ii}^\beta},
 \]
 where \(i\) is the current city
 End For
 For \(k = 1\) to \(m\) do
 Compute the length \(L^k(t)\) of the tour \(T^k(t)\) produced by ant \(k\)
 End For
 If an improved tour is found then
 update \(T^+\) and \(L^+\)
 End If
End For
For every edge \((i, j)\) do
 Update pheromone trails by applying the rule:
 \[
 \tau_{ij}(t) \leftarrow (1 - \rho) \cdot \tau_{ij}(t) + \Delta \tau_{ij}(t) + \epsilon \cdot \Delta \tau_{ij}^e(t)
 \]
 where
 \[
 \Delta \tau_{ij}(t) = \sum_{k=1}^{m} \Delta \tau_{ij}^k(t),
 \]
 and
 \[
 \Delta \tau_{ij}^k(t) = \begin{cases}
 Q/L^k(t) & \text{if } (i, j) \in T^k(t); \\
 0 & \text{otherwise}.
 \end{cases}
 \]
 and
 \[
 \Delta \tau_{ij}^e(t) = \begin{cases}
 Q/L^+ & \text{if } (i, j) \in T^+; \\
 0 & \text{otherwise}.
 \end{cases}
 \]
End For
For every edge \((i, j)\) do
 \(\tau_{ij}(t+1) = \tau_{ij}(t)\)
End For
End For
Print the shortest tour \(T^+\) and its length \(L^+\)
Stop
/* Values of parameters used in experiments */
\(\alpha = 1, \beta = 5, \rho = 0.5, m = n, Q = 100, \tau_0 = 10^{-6}, \epsilon = 5\)

Notes: \(t_{\text{max}}\) is the number of episodes
TSP Solving Examples
Oliver30 Problem

 Episodes: 342
 Length: 420

\[\alpha = 1 \]
\[\beta = 5 \]
\[\rho = 0.5 \]
Case-study: Team coordination of virtual robots
USARSim: A simulator for emergency response

• Based on the Unreal game engine (UT2004, Epic Games)
• Realistic models for
 – USAR environments, indoor & outdoor
 – Robots, such as Pioneer2 DX, Sony AIBO, …
 – Sensors, such as Laser Range Finder, Color Camera, IMU, Wheel Odometry, RFID
• Agents connect via a TCP/IP interface
• Path loss simulation (e.g. WLAN)
• Research challenges:
 – Autonomous control of large robot teams (up to 12)
 – Multi-robot disaster area mapping
 – Coordination of heterogeneous robots with different manipulation and sensing capabilities
RFID-based exploration
Hybrid: local exploration and global planning

- **Local exploration (LE):**
 - Indirect communication
 - Scales-up with # of robots and environment size
 - Inefficient exploration due to local minima

- **Global task assignment and path planning:**
 - Based on node graph abstraction of the environment
 - Monitors LE and computes new agent-node assignment If exploration overlap is high
 - Requires communication
Local Exploration
Navigation

• Local trajectory planning:
 – Based on evidence grid, e.g. limited to 4X4 meters
 – Exploration targets taken from extracted frontier Cells
 – Efficient A* planning to selected FP
 – Cost function considering path length and occupancy:

\[c(s_{i+1}) = c(s_i) + d(s_{i+1}, s_i) \times (1 + \alpha \times occ(s_{i+1})) \]
Local exploration
Coordination & Frontier Cell Selection

• RFID tag distribution and detection:
 – Deployment of new RFIDs with respect to the detected RFID density
 – Detection of nearby RFIDs and consequent update of Local RFID Set (LRS)
 – Programming of RFID memory with visited locations (relative position)

• Coordination:
 – Automatic node deployment w. r. t. a pre-defined density
 – Discretization of node vicinity into equally sized patches
 – Node memory for counting visits of each patch [Svennebring and Koenig, 2004]

• Frontier selection by minimizing the following cost function:

\[
F_v(l_{fj}) = \sum_{r \in LRS} \sum_{p \in Pr} \frac{\text{count}(p)}{d(l_{fj}, p)}
\]

- \(l_{fj}\): frontier cell location,
- LRS: set of nodes within range,
- Pr: set of patches around node r,
- \(d(., .)\): the Euclidean distance

This models ant pheromones!
Local exploration cont.
Discretization of the node’s vicinity π

Relative addressing!
Results Local Team Coordination
Virtual rescue scenarios from NIST (RoboCup’06)

<table>
<thead>
<tr>
<th></th>
<th>RRFreiburg</th>
<th>GROK</th>
<th>IUB</th>
<th>SPQR</th>
<th>STEEL</th>
<th>UVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>SemiFinal 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area [m²]</td>
<td>579</td>
<td>27</td>
<td>227</td>
<td>96</td>
<td>134</td>
<td>262</td>
</tr>
<tr>
<td># Robots</td>
<td>8</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Tot. Length</td>
<td>250,325</td>
<td>39.81</td>
<td>257,7</td>
<td>143.91</td>
<td>190.59</td>
<td>365.51</td>
</tr>
<tr>
<td>SemiFinal 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area [m²]</td>
<td>1276</td>
<td>82</td>
<td>139</td>
<td>123</td>
<td>139</td>
<td>286</td>
</tr>
<tr>
<td># Robots</td>
<td>8</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Tot. Length</td>
<td>1,991.86</td>
<td>79.64</td>
<td>152.91</td>
<td>124,226</td>
<td>271.69</td>
<td>401.45</td>
</tr>
<tr>
<td>Final 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area [m²]</td>
<td>1203</td>
<td>210</td>
<td>210</td>
<td>224,667</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td># Robots</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tot. Length</td>
<td>2,536.55</td>
<td>224,667</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Final 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area [m²]</td>
<td>350</td>
<td>136</td>
<td>136</td>
<td>136</td>
<td>136</td>
<td>136</td>
</tr>
<tr>
<td># Robots</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tot. Length</td>
<td>1,761.63</td>
<td>254,681</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Largest explored area (by 8 robots)

Each color denotes the path of a single robot
Rescue Virtual Competition
Videos from RoboCup’06

Semi-Final’06

Final’06
Summary

- **Flocking** is a very simple mechanism that has been used quite successfully in many applications.

- The **foraging behavior** of ants has motivated many solutions to complex problems:
 - Although sub-optimal, they are powerful to find fast good solutions.
 - Numerous extensions to the presented approach have been proposed.
 - Other problems that have been solved: Task Allocation, Graph Partitioning, Transport problems, ...

- **RFIDs** might be a good choice for **simulating** pheromones (at least if they are getting cheaper).
Literature

• V.A. Ziparo, A. Kleiner, B. Nebel, and D. Nardi, **RFID-Based Exploration for Large Robot Teams**, In *Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA)*, 2007