Introduction to Multi-Agent
Programming

11. Learning in Multi-Agent
Systems (Part A)

SDP, MDPs, Value lteration, Policy
lteration, RL

Alexander Kleiner, Bernhard Nebel

Contents

« Introduction
« Sequential decision problems

« Markov decision processes
— Value Iteration & Policy Iteration
— Reinforcement Learning (RL)

Introduction

« The importance of learning in MAS:

— Agents are typically deployed in complex domains, i.e., dynamic
domains with large state spaces, and uncertainty of action
execution

— Sometimes impossible to prepare agents for any situation

« Learning methods can be used to

— enable the agent to do rich decisions based on little experience
(generalization)

— enable the agent to change its behavior online according to
changes in the world (adaption)

- However, machine learning suffers under the “curse of
dimensionality”

— Exponential growth of the state space with an increasing
number of state variables

— Exponential growth of action space with an increasing number of
action (In MAS even harder)

Different Types Of Learning feedback

 The learning feedback indicates the
performance level achieved so far

« The following learning feedbacks are
distinguished:
— Supervised learning (teacher)
— Reinforcement learning (critic)
— Unsupervised learning (observer)

Unsupervised Learning

od Loami
Inputs ’UnSUpeg;zﬁgmearn'ng- Outputs

Example: clustering of texts on the Internet
according to counted word frequencies

Supervised Learning

Training Info = desired (target) outputs

}

Supervised Learni
Inputs P> uPeNS'Syiterfammg’ Outputs

Error = (target output — actual output)

Example: detecting faces in images

Reinforcement Learning

Training Info = evaluations (“rewards” / “penalties”)

}

Inputs P> SyEtLem Il Outputs (“actions”)

Objective: get as much reward as possible

Example: robot driving without collisions

The Agent-Environment Interface

| Agent
state action
S; d;
L. Vvt r .
: Stal l Environment
|

Agent and environment interact at discrete time steps: t =012,...
Agent observes state at stept: s,ES
producesaction at stept: a, € A(s,)

en

and resulting next state : s, ,

gets resulting reward : Vit

The Credit-Assignment Problem

« The problem of properly assigning feedback for an overall
performance change to each of the system activities that
contributed to that change

< Jt +1/\ @_4_1
L) a vat At +2 ar 4 +3

 Which actions were invariant, which were important?

« Can be decomposed into two sub-problems:
— The inter-agent CAP

« Assignment of credit for an overall performance change to
the external actions of the agents

— The intra-agent CAP

« Assignment of credit for a particular external action of an
agent to its internal modules

Sequential Decision Problems (1)

3

2 =11

1 START

1 2 3 4

« Beginning in the start state the agent must choose an
action at each time step.

« The interaction with the environment terminates if the
agent reaches one of the goal states (4, 3) (reward of +1)
or (4,2) (reward -1). Each other location has a reward of
-.04.

« In each location the available actions are Up, Down, Left,
Right.

Sequential Decision Problems (2)

« Deterministic version: All actions always lead to the
next square in the selected direction, except that
moving into a wall results in no change in position.

« Stochastic version: Each action achieves the intended
effect with probability 0.8, but the rest of the time, the
agent moves at right angles to the intended direction.

0.8

0.1 0.1

Markov Decision Problem (MDP)

Given a set of actions A, a set of states S in an accessible,
stochastic environment, an MDP is defined by

— Initial state S,
— Transition Model T(s,a,s’)
— Reward function R(s)

Transition model: T(s,a,s’) is the probability that state s’ is
reached, if action a is executed in state s.

Policy: Complete mapping = that specifies for each state s
which action n(s) to take.

Wanted: The optimal policy n* is the policy that maximizes
the expected utility.

Optimal Policies (1)

« Given the optimal policy, the agent uses its
current percept that tells it its current state.

« It then executes the action «*(s).

« We obtain a simple reflex agent that is
computed from the information used for a
utility-based agent.

Optimal policy for our MDP
when R(s) = -0.4 for non-
terminals:

f
#
/
B

B

Optimal Policies (2)

R(s) <-1.6248 -0.4278 < R(s) < -0.085

-0.0221 < R(s) < 0 0 < R(s)

How to compute optimal policies?

Finite and Infinite Horizon Problems

Performance of the agent is measured by the sum of
rewards for the states visited.

To determine an optimal policy we will first calculate the
utility of each state and then use the state utilities to
select the optimal action for each state.

The result depends on whether we have a finite or
infinite horizon problem.

Utility function for state sequences: U, ([Sg,S1/---sSn])

Finite horizon: U,([Sg,S1,---sSn+k]) = Un([Sq,S1,---,Sn]) for
all k > 0.

For finite horizon problems the optimal policy depends
on the horizon N.

In infinite horizon problems the optimal policy only
depends on the current state.

Assigning Utilities to State Sequences

« For finite horizon problems utilities for each state can be
computed by summing-up rewards of each state:

* Up([sg:s182---1) = R(sp) + R(sq) + R(sy) + ...

« For infinite horizon problems utilities have to be
computed by discounting future rewards:

* Un([s0,8152.--.1) = R(sg) + YR(s4) + v°R(s,) + ...
« The term y€[0:1] is called the discount factor.

« With discounted rewards the utility of an infinite state
sequence is always finite. The discount factor expresses
that future rewards have less value than current
rewards.

Utilities of States

= The utility of a state depends on the utility of the
state sequences that follow it.

= Let U™(s) be the utility of a state under policy .

= Let s, be the state of the agent after executing =
for t steps. Thus, the utility of s under = is

0
UT™(s) = E | > 7'R(st) | m,s0 =5
t=0

= The true utility U(s) of a state is U™ (s).

= R(s) is the short-term reward for being in s and
U(s) is the long-term total reward from s onwards.

Choosing Actions using the Maximum
Expected Utility Principle

The agent simply chooses the action that maximizes the
expected utility of the subsequent state:

m(s) = argmax Z T(s,a,s)U(s)

S

The utility of a state is the immediate reward for that state plus
the expected discounted utility of the next state, assuming that
the agent chooses the optimal action:

U(s) = R(s) +~ mC?XZT(s, a,sU(s")

Example

The utilities of the states in our 4x3 world with y=1 and

R(s)=-0.04 for non-terminal states:

3 0.812 0.868 0.918 + 1

2 0.762 0.660 -1

1 0.705 0.655 0.611 0.388
1 2 3 4

Which action
would an

optimal agent
choose here?

Bellman-Equation

 The equation

U(s) = R(s) +~ mc?xz T(s,a,s)U(s")

Is also called the Bellman-Equation.
* In our 4x3 world the equation for the state (1,1) is

U(1,1) = -0.04 + vy max{ 0.8U(1,2)+0.1U@,1)+0.1U(1,1), (Up)
0.9 U(1,1) + 0.1 U(1,2), (Left)
0.9 U(1,1) + 0.1 U(2,1), (Down)
0.8U(2,1)+0.1U(1,2) + 0.1 U(1,1)} (Right)

- Given the numbers for the optimal policy, Up is the
optimal action in (1,1).

Value Iteration (1)

An algorithm to calculate an optimal strateqgy.

Basic Idea: Calculate the utility of each state. Then use
the state utilities to select an optimal action for each
state.

How to calculate the utility of each state?

The bellman equation can be used to build as system of n
equations for n states

However, due to the transition model and the therefore
required max operator, the system is non-linear

- Solution can not be computed in closed form (can only
be done for deterministic problems)

14/21

Value Iteration (2)

Iterative Procedure

Solution:
We can apply an iterative approach in which we replace

the equality of the bellman equation by an assignment:

The Value Iteration Algorithm

function VALUE-ITERATION(mdp, €) returns a utility function
inputs: mdp, an MDP with states S, transition model 7', reward function £, discount ~
¢, the maximum error allowed in the utility of any state
local variables: U, U’, vectors of utilities for states in S, initially zero
d, the maximum change in the utility of any state in an iteration

repeat
U—U';00
for each state s in S do
U'[s] — R[s] + ~ max ZT(s,a, s') U[s']

if |U'[s] — Uls]| > 5th§né+—|U’[s] — Ulsl|
until 6 < €(1 —)/~

return U/

It can be shown that value iteration converges

Application Example

1 -
S R g;; Max error
08 4 - 2 0.8 1 Policy loss --=-----
i (e (1,1) =
— I T e 3,1)
g 0.6 :l () _(.3) 0.6
% 04 1 S ———— (4,1) %
> [T J
s 024 |/ 5 0
= g 5
01/} = 02
-0-2 1 ~
r Y r v v v 0 v + r T r r -
0 5 10 15 20 25 30 0 2 4 6 8 10 12 14

Number of iterations Number of iterations

In practice the policy often becomes optimal before the utility has
converged.

Policy Iteration

« Value iteration computes the optimal policy even at a
stage when the utility function estimate has not yet
converged.

« If one action is better than all others, then the exact
values of the states involved need not to be known.

« Policy iteration alternates the following two steps
beginning with an initial policy 7;:

« Policy evaluation: given a policy =, calculate U= U™,
the utility of each state if z were executed.

« Policy improvement: calculate a new maximum
expected utility policy =, according to

mi41(s) = argmax) T(s,a, SHYU(s")
/

S

The Policy Iteration Algorithm

function POLICY-ITERATION(mdp) returns a policy
inputs: mdp, an MDP with states S, transition model 7'
local variables: U, U’, vectors of utilities for states in S, initially zero
7, a policy vector indexed by state, initially random

repeat
U +— PoLICY-EVALUATION(m, U, mdp)
unchanged? «— true
for each state s in S do
if max, Z Tis,a,8") Uld] > Z T(s,m[s],s") Uls'] then

7|s] +—argmaxa Z T(s,a, e) Uls']

unchanged? — fd]%C
until unchanged?
return P

Reinforcement Learning

« Learning from interaction with an external
environment or other agents

« Goal-oriented learning

« Learning and making observations are
interleaved

* Process is modeled as MDP or variants

Key Features of RL

« Learner is not told which actions to take

« Possibility of delayed reward (sacrifice short
-term gains for greater long-term gains)

« Model-free: Models are learned online, i.e.,
have not to be defined in advance!

* Trial-and-Error search
« The need to explore and exploit

Some Notable RL Applications

TD-Gammon: Tesauro
» world’s best backgammon program

Elevator Control: Crites & Barto

« high performance down-peak elevator controller
 Dynamic Channel Assignment: Singh &
Bertsekas, Nie & Haykin

« high performance assignment of radio channels to
mobile telephone calls

Some Notable RL Applications

TD-Gammon
Tesauro, 1992-1995

§ % B @\
El 9 o " Value Action selection
= T by 2-3 ply search
318 3| § |
] ¢t 4 8 & D N [I P TD error

Effective branching factor 400 Via -V

Start with a random network
Play very many games against self
Learn a value function from this simulated experience

This produces arguably the best player in the world

Some Notable RL Applications

Elevator Dispatching

10 floors, 4 elevator cars

Crites and Barto, 1996

STATES: button states; positions,
directions, and motion states of
cars; passengers in cars & in
halls

ACTIONS: stop at, or go by, next
floor

REWARDS: roughly, =1 per time
step for each person waiting

Conservatively about 10 22 states

Some Notable RL Applications

Performance Comparison Elevator Dispatching

80 — 800
60 - 600
vereee LN o
g 40 % Waltlng Sq uared .
and i . 400
>1 mlnute Wa|t|ng
system 1 _ time
times 20 = 200
L SEERE R 0 = E‘%’%@gﬁ' 0TzmTEoo
POETEE 28R OCREQEE 38== SEEJEEZHE
C 2 2 4 O 2 2 94 S T £ 4
1% 7 v

Dispatcher Dispatcher Dispatcher

RLI
RL2

Q-Learning (1)

Very common Reinforcement Leaning method

Maintains a table of Q-values

— Q(s,a) - "what is the outcome of action a is in
state s”?

Since values are with respect to states and
actions, no explicit transition model T needed

Updates are performed with a step size
parameter in order to prevent value
overwriting during different traces

Converges to the optimum Q-values with
probability 1

Q-Learning (2)

« At time t the agent performs the following
steps:

— Observe the current state s,

— Select and perform action a

— Observe the subsequent state s,
— Receive immediate payoff r

— Adjust Q-value for state s,

Q-Learning (3)

Update and Selection

« Update function:

Qr+1 (St, at) = (1 — Oé) Qr (St, at) +a|R (St, Clt) + ’YTEGX Qr (St+1, at+1)

« Where k denotes the version of the Q function, and a
denotes a learning step size parameter that should decay
over time

« Intuitively, actions can be selected by:

T (s¢) = argmax Q (s¢, @)
acA

Q-Learning (4)
Algorithm

Initialise ()(s,a) arbitrary for all s€S and a€A
Repeat
select best action a; with the greedy policy:
a; =1 (s5¢) = argmaa:Q (s¢,a)
apply a; in the world and %bserve sir1and immediate reward 7
St =7 St+1

Tt
adapt the value function for state s;

Qi1 (51, ar) = (1 — @) Qk (s,) + « {'Tt + 7'727»&17 Qk (St41, Gt+1)]
Until (Qx+1-Q < €) or (s is terminal)

The Exploration/Exploitation Dilemma

Suppose you form estimates

Qt (a) = Q* (a) action value estimates

The greedy action at time t is:)
a, =argmaxQ (a)

a. =a, = exploitation

a =a = exploration

You can't exploit all the time; you can’t explore all the time

You can never stop exploring; but you should always reduce
exploring

e-Greedy Action Selection

« Greedy action selection:
a =a =argmaxQ,(a)

« e-Greedy:

4 a, with probability 1 — ¢

t random action with probability &

— Continuously decrease of € during each episode
necessary!

-> the simplest way to try to balance
exploration and exploitation

