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Introduction 

•  The importance of learning in MAS: 
–  Agents are typically deployed in complex domains, i.e., dynamic 

domains with large state spaces, and uncertainty of action 
execution 

–  Sometimes impossible to prepare agents for any situation 
•  Learning methods can be used to  

–  enable the agent to do rich decisions based on little experience 
(generalization)  

–  enable the agent to change its behavior online according to 
changes in the world (adaption) 

•  However, machine learning suffers under the “curse of 
dimensionality” 
–  Exponential growth of the state space with an increasing 

number of state variables 
–  Exponential growth of action space with an increasing number of 

action (In MAS even harder)   



Different Types Of Learning feedback 

•  The learning feedback indicates the
 performance level achieved so far 

•  The following learning feedbacks are
 distinguished: 
– Supervised learning (teacher) 
– Reinforcement learning (critic) 
– Unsupervised learning (observer)   



Unsupervised Learning 

Unsupervised Learning  
System Inputs Outputs 

Example: clustering of texts on the Internet 
according to counted word frequencies 



Supervised Learning 

Supervised Learning  
System Inputs Outputs 

Training Info  =  desired (target) outputs 

Error  =  (target output  –  actual output) 

Example: detecting faces in images 



Reinforcement Learning 

RL 
System Inputs Outputs (“actions”) 

Training Info  =  evaluations (“rewards” / “penalties”) 

Objective:  get as much reward as possible 

Example: robot driving without collisions  



The Agent-Environment Interface 



The Credit-Assignment Problem 

•  The problem of properly assigning feedback for an overall
 performance change to each of the system activities that
 contributed to that change 

•  Which actions were invariant, which were important? 
•  Can be decomposed into two sub-problems: 

–  The inter-agent CAP 
•  Assignment of credit for an overall performance change to

 the external actions of the agents 
–  The intra-agent CAP 

•  Assignment of credit for a particular external action of an
 agent to its internal modules 



Sequential Decision Problems (1) 

•  Beginning in the start state the agent must choose an 
action at each time step. 

•  The interaction with the environment terminates if the 
agent reaches one of the goal states (4, 3) (reward of +1) 
or (4,2) (reward –1). Each other location has a reward of 
-.04. 

•  In each location the available actions are Up, Down, Left, 
Right. 



Sequential Decision Problems (2) 

•  Deterministic version: All actions always lead to the 
next square in the selected direction, except that 
moving into a wall results in no change in position. 

•  Stochastic version: Each action achieves the intended 
effect with probability 0.8, but the rest of the time, the 
agent moves at right angles to the intended direction.  

0.8 

0.1 0.1 



Markov Decision Problem (MDP) 

•  Given a set of actions A, a set of states S in an accessible,
 stochastic environment, an MDP is defined by  
–  Initial state S0 

–  Transition Model T(s,a,s’) 
–  Reward function R(s) 

•  Transition model: T(s,a,s’) is the probability that state s’ is
 reached, if action a is executed in state s. 

•  Policy: Complete mapping π that specifies for each state s
 which action π(s) to take. 

•  Wanted: The optimal policy π* is the policy that maximizes
 the expected utility. 



•  Given the optimal policy, the agent uses its 
current percept that tells it its current state. 

•  It then executes the action π*(s). 
•  We obtain a simple reflex agent that is 

computed from the information used for a 
utility-based agent. 

Optimal policy for our MDP 
when R(s) = -0.4 for non-
terminals: 

Optimal Policies (1) 



R(s) ≤ -1.6248 

-0.0221 < R(s) < 0 

-0.4278 < R(s) < -0.085 

0 < R(s) 

How to compute optimal policies? 

Optimal Policies (2) 



  Performance of the agent is measured by the sum of 
rewards for the states visited. 

  To determine an optimal policy we will first calculate the 
utility of each state and then use the state utilities to 
select the optimal action for each state. 

  The result depends on whether we have a finite or 
infinite horizon problem. 

  Utility function for state sequences: Uh([s0,s1,…,sn])  

  Finite horizon: Uh([s0,s1,…,sN+k]) = Uh([s0,s1,…,sN]) for 
all k > 0.  

  For finite horizon problems the optimal policy depends 
on the horizon N.  

  In infinite horizon problems the optimal policy only 
depends on the current state.  

Finite and Infinite Horizon Problems 



•  For finite horizon problems utilities for each state can be 
computed by summing-up rewards of each state:  

•  Uh([s0,s1 s2,…]) = R(s0) + R(s1) + R(s2) + … 

•  For infinite horizon problems utilities have to be 
computed by discounting future rewards:  

•  Uh([s0,s1 s2,…]) = R(s0) + γR(s1) + γ2R(s2) + …  

•  The term γ∈[0:1[ is called the discount factor. 

•  With discounted rewards the utility of an infinite state 
sequence is always finite. The discount factor expresses 
that future rewards have less value than current 
rewards. 

Assigning Utilities to State Sequences 



  The utility of a state depends on the utility of the 
state sequences that follow it. 

  Let Uπ(s) be the utility of a state under policy π.   

  Let st be the state of the agent after executing π 
for t steps. Thus, the utility of s under π is 

  The true utility U(s) of a state is Uπ*(s). 

  R(s) is the short-term reward for being in s and 
U(s) is the long-term total reward from s onwards. 

Utilities of States 



The agent simply chooses the action that maximizes the 
expected utility of the subsequent state: 

The utility of a state is the immediate reward for that state plus 
the expected discounted utility of the next state, assuming that 
the agent chooses the optimal action: 

Choosing Actions using the Maximum 
Expected Utility Principle 



The utilities of the states in our 4x3 world with γ=1 and 
R(s)=-0.04 for non-terminal states: 

Example 

Which action 
would an 
optimal agent 
choose here?  



•  The equation 

 is also called the Bellman-Equation. 
•  In our 4x3 world the equation for the state (1,1) is 

U(1,1) = -0.04 + γ max{           0.8 U(1,2) + 0.1 U(2,1) + 0.1 U(1,1),  (Up) 
   0.9 U(1,1) + 0.1 U(1,2),   (Left) 
   0.9 U(1,1) + 0.1 U(2,1),   (Down) 
   0.8 U(2,1) + 0.1 U(1,2) + 0.1 U(1,1) }  (Right) 

  Given the numbers for the optimal policy, Up is the 
optimal action in (1,1). 

Bellman-Equation 
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Value Iteration (1) 
An algorithm to calculate an optimal strategy. 

Basic Idea: Calculate the utility of each state. Then use 
the state utilities to select an optimal action for each 
state. 

How to calculate the utility of each state? 

The bellman equation can be used to build as system of n 
equations for n states  

However, due to the transition model and the therefore 
required max operator, the system is non-linear 

 Solution can not be computed in closed form (can only     
be done for deterministic problems) 



Solution: 

We can apply an iterative approach in which we replace  

the equality of the bellman equation by an assignment: 

Value Iteration (2) 
Iterative Procedure 



The Value Iteration Algorithm 

It can be shown that value iteration converges  



In practice the policy often becomes optimal before the utility has 
converged. 

Application Example 



Policy Iteration 
•  Value iteration computes the optimal policy even at a 

stage when the utility function estimate has not yet 
converged. 

•  If one action is better than all others, then the exact 
values of the states involved need not to be known.  

•  Policy iteration alternates the following two steps 
beginning with an initial policy π0: 

•  Policy evaluation: given a policy πt, calculate Ut= Uπt, 
the utility of each state if πt were executed.  

•  Policy improvement: calculate a new maximum 
expected utility policy πt+1 according to  



The Policy Iteration Algorithm 



Reinforcement Learning 

•  Learning from interaction with an external 
environment or other agents 

•  Goal-oriented learning 
•  Learning and making observations are 

interleaved  
•  Process is modeled as MDP or variants 



Key Features of RL 

•  Learner is not told which actions to take 
•  Possibility of delayed reward (sacrifice short

-term gains for greater long-term gains) 
•  Model-free: Models are learned online, i.e.,

 have not to be defined in advance! 
•  Trial-and-Error search 
•  The need to explore and exploit 



Some Notable RL Applications 

•  TD-Gammon: Tesauro 
•  world’s best backgammon program 

•  Elevator Control: Crites & Barto 
•  high performance down-peak elevator controller 

•  Dynamic Channel Assignment: Singh &
 Bertsekas, Nie & Haykin 

•  high performance assignment of radio channels to
 mobile telephone calls 

•  … 



Some Notable RL Applications 
TD-Gammon 

Start with a random network 
Play very many games against self 
Learn a value function from this simulated experience 

This produces arguably the best player in the world 

Action selection 
by 2–3 ply search 

Value 

TD error 

Tesauro, 1992–1995 

Effective branching factor 400 



Some Notable RL Applications 
Elevator Dispatching 

10 floors, 4 elevator cars 

STATES: button states;   positions, 
directions, and motion states of 
cars; passengers in cars & in 
halls 

ACTIONS:  stop at, or go by, next 
floor 

REWARDS: roughly, –1  per time 
step for each person waiting 

Conservatively about 10     states 22 

Crites and Barto, 1996 



Some Notable RL Applications 
Performance Comparison Elevator Dispatching 



Q-Learning (1) 



Q-Learning (2) 

•  At time t the agent performs the following
 steps: 
– Observe the current state st  
– Select and perform action at 

– Observe the subsequent state st+1 

– Receive immediate payoff rt 

– Adjust Q-value for state st 



Q-Learning (3) 
Update and Selection 

•  Update function: 

•  Where k denotes the version of the Q function, and α
 denotes a learning step size parameter that should decay
 over time   

•  Intuitively, actions can be selected by:  



Q-Learning (4) 
Algorithm 



The Exploration/Exploitation Dilemma 

•  Suppose you form estimates 

•  The greedy action at time t is: 

•  You can’t exploit all the time; you can’t explore all the time 
•  You can never stop exploring; but you should always reduce

 exploring 

action value estimates 



e-Greedy Action Selection 

•  Greedy action selection: 

•  e-Greedy: 

–  Continuously decrease of ε during each episode
 necessary! 

{

 the simplest way to try to balance 
exploration and exploitation 


