Principles of AI Planning
5. State-space search: progression and regression

Malte Helmert
Albert-Ludwigs-Universität Freiburg

October 31st, 2008
Principles of AI Planning
October 31st, 2008 — 5. State-space search: progression and regression

Planning by state-space search
   Introduction
   Classification of state-space search algorithms

Progression
   Overview
   Example

Regression
   Overview
   Example
   Regression for STRIPS tasks
   Regression for general planning tasks
   Practical issues
State-space search

- **state-space search**: one of the big success stories of AI
- many planning algorithms based on state-space search (we’ll see some other algorithms later, though)
- will be the focus of this and the following topics
- we assume prior knowledge of basic search algorithms
  - uninformed vs. informed
  - systematic vs. local
- background on search: Russell & Norvig, Artificial Intelligence – A Modern Approach, chapters 3 and 4
Satisficing or optimal planning?

Must carefully distinguish two different problems:

- **satisficing planning**: any solution is OK (although shorter solutions typically preferred)
- **optimal planning**: plans must have shortest possible length

Both are often solved by search, but:

- details are very different
- almost no overlap between good techniques for satisficing planning and good techniques for optimal planning
- many problems that are trivial for satisficing planners are impossibly hard for optimal planners
Planning by state-space search

How to apply search to planning? \(\leadsto\) many choices to make!

Choice 1: Search direction

- **progression**: forward from initial state to goal
- **regression**: backward from goal states to initial state
- **bidirectional search**
Planning by state-space search

How to apply search to planning? \(\leadsto\) many choices to make!

Choice 2: Search space representation

- search nodes are associated with states
- search nodes are associated with sets of states
Planning by state-space search

How to apply search to planning? \( \leadsto \) many choices to make!

Choice 3: Search algorithm

- **uninformed search:**
  - depth-first, breadth-first, iterative depth-first, ...

- **heuristic search (systematic):**
  - greedy best-first, \( A^* \), Weighted \( A^* \), IDA\(^*\), ...

- **heuristic search (local):**
  - hill-climbing, simulated annealing, beam search, ...
Planning by state-space search

How to apply search to planning? \(\leadsto\) many choices to make!

Choice 4: Search control

- **heuristics** for informed search algorithms
- **pruning techniques:** invariants, symmetry elimination, helpful actions pruning, . . .
Search-based satisficing planners

FF (Hoffmann & Nebel, 2001)

- search direction: forward search
- search space representation: single states
- search algorithm: enforced hill-climbing (informed local)
- heuristic: FF heuristic (inadmissible)
- pruning technique: helpful actions (incomplete)

⇝ one of the best satisficing planners
Search-based optimal planners

Fast Downward + $h^{HHH}$ (Helmert, Haslum & Hoffmann, 2007)

- search direction: forward search
- search space representation: single states
- search algorithm: $A^*$ (informed systematic)
- heuristic: merge-and-shrink abstractions (admissible)
- pruning technique: none

⇝ one of the best optimal planners
Our plan for the next lectures

Choices to make:

1. search direction: progression/regression/both
   \(\rightarrow\) this chapter

2. search space representation: states/sets of states
   \(\rightarrow\) this chapter

3. search algorithm: uninformed/heuristic; systematic/local
   \(\rightarrow\) next chapter

4. search control: heuristics, pruning techniques
   \(\rightarrow\) following chapters
Progression: Computing the successor state $app_o(s)$ of a state $s$ with respect to an operator $o$.

Progression planners find solutions by forward search:

- start from initial state
- iteratively pick a previously generated state and progress it through an operator, generating a new state
- solution found when a goal state generated

pro: very easy and efficient to implement
Search space representation in progression planners

Two alternative search spaces for progression planners:

1. **search nodes correspond to states**
   - when the same state is generated along different paths, it is not considered again (**duplicate detection**)
   - **pro:** fast
   - **con:** memory intensive (must maintain **closed list**)

2. **search nodes correspond to operator sequences**
   - different operator sequences may lead to identical states (**transpositions**)
   - **pro:** can be very memory-efficient
   - **con:** much wasted work (often exponentially slower)

⇝ first alternative usually preferable
Progression planning example (depth-first search)
Forward search vs. backward search

Going through a transition graph in forward and backward directions is not symmetric:

- forward search starts from a single initial state;
  backward search starts from a set of goal states
- when applying an operator $o$ in a state $s$ in forward direction, there is a unique successor state $s'$;
  if we applied operator $o$ to end up in state $s'$, there can be several possible predecessor states $s$

$\Rightarrow$ most natural representation for backward search in planning associates sets of states with search nodes
Planning by backward search: regression

Regression: Computing the possible predecessor states $\text{regr}_o(S)$ of a set of states $S$ with respect to the last operator $o$ that was applied.

Regression planners find solutions by backward search:
- start from set of goal states
- iteratively pick a previously generated state set and regress it through an operator, generating a new state set
- solution found when a generated state set includes the initial state

Pro: can handle many states simultaneously
Con: basic operations complicated and expensive
identify state sets with **logical formulae**:

- **search nodes correspond to state sets**
- **each state set is represented by a logical formula:**
  \[ \phi \text{ represents } \{ s \in S \mid s \models \phi \} \]
- **many basic search operations like detecting duplicates are NP-hard or coNP-hard**
Regression planning example (depth-first search)
Regression planning example (depth-first search)
Regression planning example (depth-first search)

\[ \phi_1 = \text{regr}_\to(G) \]

\[ \phi_1 \to G \]
Regression planning example (depth-first search)

\[ \phi_1 = \text{regr}(G) \]
\[ \phi_2 = \text{regr}(\phi_1) \]
Regression planning example (depth-first search)

\[ \phi_1 = \text{regr}(G) \]
\[ \phi_2 = \text{regr}(\phi_1) \]
\[ \phi_3 = \text{regr}(\phi_2), I \models \phi_3 \]
Regression for STRIPS planning tasks

Definition (STRIPS planning task)
A planning task is a STRIPS planning task if all operators are STRIPS operators and the goal is a conjunction of literals.

Regression for STRIPS planning tasks is very simple:

- Goals are conjunctions of literals $l_1 \land \cdots \land l_n$.
- **First step**: Choose an operator that makes some of $l_1, \ldots, l_n$ true and makes none of them false.
- **Second step**: Remove goal literals achieved by the operator and add its preconditions.
- $\Rightarrow$ Outcome of regression is again conjunction of literals.
Definition
Let $\phi = \phi_1 \land \cdots \land \phi_k$, $\gamma = \gamma_1 \land \cdots \land \gamma_n$ and $\eta = \eta_1 \land \cdots \land \eta_m$ be non-contradictory conjunctions of literals.

The **STRIPS regression** of $\phi$ with respect to $o = \langle \gamma, \eta \rangle$ is

$$sregr_o(\phi) := \bigwedge \left( \left( \{\phi_1, \ldots, \phi_k\} \setminus \{\eta_1, \ldots, \eta_m\} \right) \cup \{\gamma_1, \ldots, \gamma_n\} \right)$$

provided that this conjunction is non-contradictory and that $\neg \phi_i \not\equiv \eta_j$ for all $i \in \{1, \ldots, k\}$, $j \in \{1, \ldots, m\}$.

(Otherwise, $sregr_o(\phi)$ is undefined.)

(A conjunction of literals is contradictory iff it contains two complementary literals.)
STRIPS regression example

NOTE: Predecessor states are in general not unique. This picture is just for illustration purposes.

\[
o_1 = \langle \text{on}, \text{clr}, \neg \text{on}, \text{onT}, \text{clr} \rangle \\
o_2 = \langle \text{on}, \text{clr}, \text{clr}, \neg \text{clr}, \neg \text{on}, \text{on}, \text{clr} \rangle \\
o_3 = \langle \text{onT}, \text{clr}, \text{clr}, \neg \text{clr}, \neg \text{onT}, \text{on} \rangle
\]

\[
G = \text{on} \land \text{on}
\]

\[
\phi_1 = \text{sregr}_{o_3}(G) = \text{on} \land \text{onT} \land \text{clr} \land \text{clr}
\]

\[
\phi_2 = \text{sregr}_{o_2}(\phi_1) = \text{onT} \land \text{clr} \land \text{on} \land \text{clr}
\]

\[
\phi_3 = \text{sregr}_{o_1}(\phi_2) = \text{onT} \land \text{on} \land \text{clr} \land \text{on}
\]
Regression for general planning tasks

- With disjunctions and conditional effects, things become more tricky. How to regress $A \lor (B \land C)$ with respect to $\langle Q, D \triangleright B \rangle$?
- The story about goals and subgoals and fulfilling subgoals, as in the STRIPS case, is no longer useful.
- We present a general method for doing regression for any formula and any operator.
- Now we extensively use the idea of representing sets of states as formulae.
Effect preconditions

Definition (effect precondition)

The effect precondition $EPC_I(e)$ for literal $l$ and effect $e$ is defined as follows:

$$
EPC_I(l) = \top \\
EPC_I(l') = \bot \text{ if } l \neq l' \text{ (for literals } l') \\
EPC_I(e_1 \land \cdots \land e_n) = EPC_I(e_1) \lor \cdots \lor EPC_I(e_n) \\
EPC_I(c \triangleright e) = EPC_I(e) \land c
$$

Intuition: $EPC_I(e)$ describes the situations in which effect $e$ causes literal $l$ to become true.
Effect precondition examples

Example

\[ EPC_a(b \land c) = \bot \lor \bot \equiv \bot \]
\[ EPC_a(a \land (b \triangleright a)) = \top \lor (\top \land b) \equiv \top \]
\[ EPC_a((c \triangleright a) \land (b \triangleright a)) = (\top \land c) \lor (\top \land b) \equiv c \lor b \]
Effect preconditions: connection to change sets

Lemma (A)

Let $s$ be a state, $l$ a literal and $e$ an effect. Then $l \in [e]_s$ if and only if $s \models EPC_l(e)$.

Proof.
Induction on the structure of the effect $e$.
Base case 1, $e = l$: $l \in [l]_s = \{l\}$ by definition, and $s \models EPC_l(l) = \top$ by definition. Both sides of the equivalence are true.
Base case 2, $e = l'$ for some literal $l' \neq l$: $l \not\in [l']_s = \{l'\}$ by definition, and $s \not\models EPC_l(l') = \bot$ by definition. Both sides are false.
Effect preconditions: connection to change sets

Proof (ctd.)

Inductive case 1, \( e = e_1 \land \cdots \land e_n \):

\[
l \in [e]_s \text{ iff } l \in [e_1]_s \cup \cdots \cup [e_n]_s
\]

\[
\text{iff } l \in [e']_s \text{ for some } e' \in \{e_1, \ldots, e_n\}
\]

\[
\text{iff } s \models EPC_l(e') \text{ for some } e' \in \{e_1, \ldots, e_n\}
\]

\[
\text{iff } s \models EPC_l(e_1) \lor \cdots \lor EPC_l(e_n)
\]

\[
\text{iff } s \models EPC_l(e_1 \land \cdots \land e_n).
\]

(Def \([e_1 \land \cdots \land e_n]_s\))

Inductive case 2, \( e = c \triangleright e' \):

\[
l \in [c \triangleright e']_s \text{ iff } l \in [e']_s \text{ and } s \models c
\]

\[
\text{iff } s \models EPC_l(e') \text{ and } s \models c
\]

\[
\text{iff } s \models EPC_l(e') \lor c
\]

\[
\text{iff } s \models EPC_l(c \triangleright e').
\]

(Def \([c \triangleright e']_s\))

(Def \(EPC\))
Effect preconditions: connection to normal form

Remark
Notice that in terms of $EPC_a(e)$, any operator $\langle c, e \rangle$ can be expressed in normal form as

$$\left\langle c, \bigwedge_{a \in A} ((EPC_a(e) \triangleright a) \land (EPC_{\neg a}(e) \triangleright \neg a)) \right\rangle.$$
Regressing state variables

The formula $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$ expresses the value of state variable $a \in A$ after applying $o$ in terms of values of state variables before applying $o$.

Either:

- $a$ became true, or
- $a$ was true before and it did not become false.
Regressing state variables: examples

Example
Let $e = (b \triangleright a) \land (c \triangleright \neg a) \land b \land \neg d$.

<table>
<thead>
<tr>
<th>variable</th>
<th>$EPC_\ldots(e) \lor (\cdots \land \neg EPC_{\neg\ldots}(e))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a$</td>
<td>$b \lor (a \land \neg c)$</td>
</tr>
<tr>
<td>$b$</td>
<td>$\top \lor (b \land \neg \bot) \equiv \top$</td>
</tr>
<tr>
<td>$c$</td>
<td>$\bot \lor (c \land \neg \bot) \equiv c$</td>
</tr>
<tr>
<td>$d$</td>
<td>$\bot \lor (d \land \neg \top) \equiv \bot$</td>
</tr>
</tbody>
</table>
Regressing state variables: correctness

Lemma (B)

Let \( a \) be a state variable, \( o = \langle c, e \rangle \) an operator, \( s \) a state, and \( s' = app_o(s) \).

Then \( s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e)) \) if and only if \( s' \models a \).

Proof.

(\( \Rightarrow \)): Assume \( s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e)) \).

Do a case analysis on the two disjuncts.

1. Assume that \( s \models EPC_a(e) \). By Lemma A, we have \( a \in [e]_s \) and hence \( s' \models a \).

2. Assume that \( s \models a \land \neg EPC_{\neg a}(e) \). By Lemma, we have \( A \neg a \notin [e]_s \).
   
   Hence \( a \) remains true in \( s' \).
Regressing state variables: correctness

Proof (ctd.)

$(\Leftarrow)$: We showed that if the formula is true in $s$, then $a$ is true in $s'$. For the second part, we show that if the formula is false in $s$, then $a$ is false in $s'$.

So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$.

Then $s \models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ (de Morgan).

Analyze the two cases: $a$ is true or it is false in $s$.

1. Assume that $s \models a$. Now $s \models EPC_{\neg a}(e)$ because $s \models \neg a \lor EPC_{\neg a}(e)$. Hence by Lemma A $\neg a \in [e]_s$ and we get $s' \not\models a$.

2. Assume that $s \not\models a$. Because $s \models \neg EPC_a(e)$, by Lemma A we get $a \notin [e]_s$ and hence $s' \not\models a$.

Therefore in both cases $s' \not\models a$. □
Regression: general definition

We base the definition of regression on formulae $EPC_l(e)$.

**Definition (general regression)**

Let $\phi$ be a propositional formula and $o = \langle c, e \rangle$ an operator. The regression of $\phi$ with respect to $o$ is

$$regr_o(\phi) = c \land \phi_r \land f$$

where

1. $\phi_r$ is obtained from $\phi$ by replacing each $a \in A$ by $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$, and
2. $f = \bigwedge_{a \in A} \neg (EPC_a(e) \land EPC_{\neg a}(e))$.

The formula $f$ says that no state variable may become simultaneously true and false.
Regression examples

- \( \text{regr}_{a,b}(b) \equiv a \land (\top \lor (b \land \neg \bot)) \land \top \equiv a \)
- \( \text{regr}_{a,b}(b \land c \land d) \equiv a \land (\top \lor (b \land \neg \bot)) \land (\bot \lor (c \land \neg \bot)) \land (\bot \lor (d \land \neg \bot)) \land \top \equiv a \land c \land d \)
- \( \text{regr}_{a,c \triangleright b}(b) \equiv a \land (c \lor (b \land \neg \bot)) \land \top \equiv a \land (c \lor b) \)
- \( \text{regr}_{a,(c \triangleright b) \land (b \triangleright \neg b)}(b) \equiv a \land (c \lor (b \land \neg b)) \land \neg(c \land b) \equiv a \land c \land \neg b \)
- \( \text{regr}_{a,(c \triangleright b) \land (d \triangleright \neg b)}(b) \equiv a \land (c \lor (b \land \neg d)) \land \neg(c \land d) \equiv a \land (c \lor b) \land (c \lor \neg d) \land (\neg c \lor \neg d) \)
Regression example: blocks world

Consider blocks world operators to move blocks $A$ and $B$ onto the table from the other block if they are clear:

\[
o_1 = \langle \top, (A-on-B \land A-clear) \triangleright (A-on-T \land B-clear \land \neg A-on-B) \rangle \\
o_2 = \langle \top, (B-on-A \land B-clear) \triangleright (B-on-T \land A-clear \land \neg B-on-A) \rangle
\]

Proof by regression that $o_2, o_1$ puts both blocks onto the table from any blocks world state:

\[
G = A-on-T \land B-on-T \\
\phi_1 = \text{regr}_{o_1}(G) \equiv ((A-on-B \land A-clear) \lor A-on-T) \land B-on-T \\
\phi_2 = \text{regr}_{o_2}(\phi_1) \\
\equiv ((A-on-B \land ((B-on-A \land B-clear) \lor A-clear)) \lor A-on-T) \\
\land ((B-on-A \land B-clear) \lor B-on-T)
\]

All three legal 2-block states satisfy $\phi_2$. Similar plans exist for any number of blocks.
Regression example: binary counter

\[
(\neg b_0 \triangleright b_0) \land \\
((\neg b_1 \land b_0) \triangleright (b_1 \land \neg b_0)) \land \\
((\neg b_2 \land b_1 \land b_0) \triangleright (b_2 \land \neg b_1 \land \neg b_0))
\]

\[
\begin{align*}
EPC_{b_2}(e) &= \neg b_2 \land b_1 \land b_0 \\
EPC_{b_1}(e) &= \neg b_1 \land b_0 \\
EPC_{b_0}(e) &= \neg b_0 \\
EPC_{\neg b_2}(e) &= \bot \\
EPC_{\neg b_1}(e) &= \neg b_2 \land b_1 \land b_0 \\
EPC_{\neg b_0}(e) &= (\neg b_1 \land b_0) \lor (\neg b_2 \land b_1 \land b_0) \equiv (\neg b_1 \lor \neg b_2) \land b_0
\end{align*}
\]

Regression replaces state variables as follows:

\[
\begin{align*}
b_2 \quad &\text{by} \quad (\neg b_2 \land b_1 \land b_0) \lor (b_2 \land \neg \bot) \equiv (b_1 \land b_0) \lor b_2 \\
b_1 \quad &\text{by} \quad (\neg b_1 \land b_0) \lor (b_1 \land \neg(\neg b_2 \land b_1 \land b_0)) \\
&\quad \equiv (\neg b_1 \land b_0) \lor (b_1 \land (b_2 \lor \neg b_0)) \\
b_0 \quad &\text{by} \quad \neg b_0 \lor (b_0 \land \neg((\neg b_1 \lor \neg b_2) \land b_0)) \equiv \neg b_0 \lor (b_1 \land b_2)
\end{align*}
\]
General regression: correctness

Theorem (correctness of $\text{regr}_o(\phi)$)

Let $\phi$ be a formula, $o$ an operator, $s$ any state and $s' = \text{app}_o(s)$. Then $s \models \text{regr}_o(\phi)$ if and only if $s' \models \phi$.

Proof.
Let $e$ be the effect of $o$. We show by structural induction over subformulae $\phi'$ of $\phi$ that $s \models \phi'_r$ iff $s' \models \phi'$, where $\phi'_r$ is $\phi'$ with every $a \in A$ replaced by $\text{EPC}_a(e) \lor (a \land \neg \text{EPC}_{\neg a}(e))$.

The rest of $\text{regr}_o(\phi)$ just states that $o$ is applicable in $s$.

**Induction hypothesis** $s \models \phi'_r$ if and only if $s' \models \phi'$.

**Base cases 1 & 2** $\phi' = \top$ or $\phi' = \bot$: trivial, as $\phi'_r = \phi'$.

**Base case 3** $\phi' = a$ for some $a \in A$:
Then $\phi'_r = \text{EPC}_a(e) \lor (a \land \neg \text{EPC}_{\neg a}(e))$.
By Lemma B, $s \models \phi'_r$ iff $s' \models \phi'$.
General regression: correctness

Proof (ctd.)

Inductive case 1 $\phi' = \neg \psi$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the logical semantics of $\neg$.

Inductive case 2 $\phi' = \psi \lor \psi'$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$, and $s \models \psi'_r$ iff $s' \models \psi'$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the logical semantics of $\lor$.

Inductive case 3 $\phi' = \psi \land \psi'$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$, and $s \models \psi'_r$ iff $s' \models \psi'$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the logical semantics of $\land$. 

□
Emptiness and subsumption testing

The following two tests are useful when performing regression searches, to avoid exploring unpromising branches:

- Testing that a formula $\text{regr}_o(\phi)$ does not represent the empty set ($\equiv$ search is in a dead end).
  For example, $\text{regr}_{\langle a, \neg p \rangle}(p) \equiv a \land \bot \equiv \bot$.

- Testing that a regression step does not make the set of states smaller ($\equiv$ more difficult to reach).
  For example, $\text{regr}_{\langle b, c \rangle}(a) \equiv a \land b$.

Both of these problems are NP-hard.
Formula growth

The formula $\text{regr}_{o_1}(\text{regr}_{o_2}(\ldots \text{regr}_{o_{n-1}}(\text{regr}_{o_n}(\phi))))$ may have size $O(|\phi||o_1||o_2| \ldots |o_{n-1}||o_n|)$, i.e., the product of the sizes of $\phi$ and the operators.

$\Rightarrow$ worst-case exponential size $O(m^n)$

Logical simplifications

- $\bot \land \phi \equiv \bot, \top \land \phi \equiv \phi, \bot \lor \phi \equiv \phi, \top \lor \phi \equiv \top$
- $a \lor \phi \equiv a \lor \phi[\bot/a], \neg a \lor \phi \equiv \neg a \lor \phi[\top/a], a \land \phi \equiv a \land \phi[\top/a], \neg a \land \phi \equiv \neg a \land \phi[\bot/a]$
- idempotency, absorption, commutativity, associativity, ...
Restricting formula growth in search trees

**Problem** very big formulae obtained by regression

**Cause** disjunctivity in the formulae: formulae without disjunctions easily convertible to small formulae $l_1 \land \cdots \land l_n$ where $l_i$ are literals and $n$ is at most the number of state variables.

**Idea** handle disjunctivity when generating search trees

**Alternatives:**
1. Do nothing. (May lead to very big formulae!)
2. Always eliminate all disjunctivity.
3. Reduce disjunctivity if formula becomes too big.
Unrestricted regression: search tree example

Reach goal $a \land b$ from state $l = \{a \mapsto 0, b \mapsto 0, c \mapsto 0\}$.

\[ G = a \land b \]

\[ (\neg c \lor a) \land b \]

\[ (\neg c \lor a) \land b \]

\[ (\neg c \lor a) \land \neg a \]

\[ (\neg c \lor a) \land b \]

\[ (\neg c \lor a) \land b \]

\[ (\neg c \lor a) \land \neg a \]
Full splitting

- Planners for STRIPS operators only need to use formulae $l_1 \land \cdots \land l_n$ where $l_i$ are literals.

- Some general planners also restrict to this class of formulae. This is done as follows:
  1. Transform $\text{regr}_o(\phi)$ to disjunctive normal form (DNF):
     \[
     (l_1^1 \land \cdots \land l_{n_1}^1) \lor \cdots \lor (l_{1}^{m} \land \cdots \land l_{n_m}^{m}).
     \]
  2. Generate one subtree of the search tree for each disjunct $l_i^1 \land \cdots \land l_i^{n_i}$.

- The DNF formulae need not exist in its entirety explicitly: can generate one disjunct at a time.

  $\leadsto$ branching is both on the choice of operator and on the choice of the disjunct of the DNF formula.

  $\leadsto$ increased branching factor and bigger search trees, but avoids big formulae.
Full splitting: search tree example

Reach goal $a \land b$ from state $I = \{a \mapsto 0, b \mapsto 0, c \mapsto 0\}$.

$(\neg c \lor a) \land b$ in DNF: $(\neg c \land b) \lor (a \land b)$

$\leadsto$ split into $\neg c \land b$ and $a \land b$
General splitting strategies

- With full splitting search tree can be exponentially bigger than without splitting. (But it is not necessary to construct the DNF formulae explicitly!)
- Without splitting the formulae may have size that is exponential in the number of state variables.
- A compromise is to split formulae only when necessary: combine benefits of the two extremes.
- There are several ways to split a formula $\phi$ to $\phi_1, \ldots, \phi_n$ such that $\phi \equiv \phi_1 \lor \cdots \lor \phi_n$. For example:
  - Transform $\phi$ to $\phi_1 \lor \cdots \lor \phi_n$ by equivalences like distributivity: 
    $$(\phi \lor \phi') \land \psi \equiv (\phi \land \psi) \lor (\phi' \land \psi).$$
  - Choose state variable $a$, set $\phi_1 = a \land \phi$ and $\phi_2 = \neg a \land \phi$, and simplify with equivalences like $a \land \psi \equiv a \land [T/a]$. 

M. Helmert (Universität Freiburg)