Principles of AI Planning

3. Deterministic planning tasks

Malte Helmert

Albert-Ludwigs-Universität Freiburg

October 24th, 2008
Deterministic planning tasks

State variables
Propositional logic
Operators
Deterministic planning tasks

Normal forms

Normal form for effects
STRIPS operators
Succinct representation of transition systems

- More **compact** representation of actions than as relations is often
 - possible because of symmetries and other regularities,
 - unavoidable because the relations are too big.

- Represent different aspects of the world in terms of different state variables. \(\leadsto \) A state is a **valuation of state variables**.

- Represent actions in terms of changes to the state variables.
State variables

- The state of the world is described in terms of a finite set of finite-valued state variables.

Example

- hour: \(\{0, \ldots, 23\} = 13 \)
- minute: \(\{0, \ldots, 59\} = 55 \)
- location: \(\{51, 52, 82, 101, 102\} = 101 \)
- weather: \(\{\text{sunny}, \text{cloudy}, \text{rainy}\} = \text{cloudy} \)
- holiday: \(\{T, F\} = F \)

- Any \(n \)-valued state variable can be replaced by \(\lceil \log_2 n \rceil \) Boolean (2-valued) state variables.

- Actions change the values of the state variables.
Blocks world with state variables

State variables:

- **location-of-A**: \{B, C, table\}
- **location-of-B**: \{A, C, table\}
- **location-of-C**: \{A, B, table\}

Example

\[
\begin{align*}
 s(\text{location-of-A}) &= \text{table} \\
 s(\text{location-of-B}) &= A \\
 s(\text{location-of-C}) &= \text{table}
\end{align*}
\]

Not all valuations correspond to an intended blocks world state, e.g. \(s \) such that \(s(\text{location-of-A}) = B \) and \(s(\text{location-of-B}) = A \).
Blocks world with Boolean state variables

Example

\[
\begin{align*}
 s(A-on-B) &= 0 \\
 s(A-on-C) &= 0 \\
 s(A-on-table) &= 1 \\
 s(B-on-A) &= 1 \\
 s(B-on-C) &= 0 \\
 s(B-on-table) &= 0 \\
 s(C-on-A) &= 0 \\
 s(C-on-B) &= 0 \\
 s(C-on-table) &= 1
\end{align*}
\]
Logical representations of state sets

- n state variables with m values induce a state space consisting of m^n states (2^n states for n Boolean state variables)
- a language for talking about sets of states (valuations of state variables): propositional logic
- logical connectives \approx set-theoretical operations
Syntax of propositional logic

Let A be a set of atomic propositions (≈ state variables).

1. For all $a \in A$, a is a propositional formula.
2. If ϕ is a propositional formula, then so is $\neg\phi$.
3. If ϕ and ϕ' are propositional formulae, then so is $\phi \lor \phi'$.
4. If ϕ and ϕ' are propositional formulae, then so is $\phi \land \phi'$.
5. The symbols \bot and \top are propositional formulae.

The implication $\phi \rightarrow \phi'$ is an abbreviation for $\neg\phi \lor \phi'$.

The equivalence $\phi \leftrightarrow \phi'$ is an abbreviation for $(\phi \rightarrow \phi') \land (\phi' \rightarrow \phi)$.
Semantics of propositional logic

A valuation of A is a function $v : A \rightarrow \{0, 1\}$. Define the notation $v \models \phi$ for valuations v and formulae ϕ by

1. $v \models a$ if and only if $v(a) = 1$, for $a \in A$.
2. $v \models \neg \phi$ if and only if $v \not\models \phi$
3. $v \models \phi \lor \phi'$ if and only if $v \models \phi$ or $v \models \phi'$
4. $v \models \phi \land \phi'$ if and only if $v \models \phi$ and $v \models \phi'$
5. $v \models \top$
6. $v \not\models \bot$
Propositional logic terminology

- A propositional formula ϕ is **satisfiable** if there is at least one valuation v so that $v \models \phi$. Otherwise it is **unsatisfiable**.

- A propositional formula ϕ is **valid** or a **tautology** if $v \models \phi$ for all valuations v. We write this as $\models \phi$.

- A propositional formula ϕ is a **logical consequence** of a propositional formula ϕ', written $\phi' \models \phi$ if $v \models \phi$ for all valuations v with $v \models \phi'$.

- Two propositional formulae ϕ and ϕ' are **logically equivalent**, written $\phi \equiv \phi'$, if $\phi \models \phi'$ and $\phi' \models \phi$.
Propositional logic terminology (ctd.)

- A propositional formula that is a proposition \(a \) or a negated proposition \(\neg a \) for some \(a \in A \) is a literal.

- A formula that is a disjunction of literals is a clause. This includes unit clauses / consisting of a single literal, and the empty clause \(\bot \) consisting of zero literals.

Normal forms: NNF, CNF, DNF
Formulae vs. sets

<table>
<thead>
<tr>
<th>Sets</th>
<th>Formulae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Those $\frac{2^n}{2}$ states in which a is true</td>
<td>$a \in A$</td>
</tr>
<tr>
<td>$E \cup F$</td>
<td>$E \lor F$</td>
</tr>
<tr>
<td>$E \cap F$</td>
<td>$E \land F$</td>
</tr>
<tr>
<td>$E \setminus F$ (set difference)</td>
<td>$E \land \neg F$</td>
</tr>
<tr>
<td>\overline{E} (complement)</td>
<td>$\neg F$</td>
</tr>
<tr>
<td>The empty set \emptyset</td>
<td>\perp</td>
</tr>
<tr>
<td>The universal set</td>
<td>\top</td>
</tr>
</tbody>
</table>

Question about sets

- $E \subseteq F$?
- $E \subset F$?
- $E = F$?

Question about formulae

- $E \models F$?
- $E \models F$ and $F \not\models E$?
- $E \models F$ and $F \models E$?
Operators

Actions for a state set with propositional state variables A can be concisely represented as operators $\langle c, e \rangle$ where

- the **precondition** c is a propositional formula over A describing the set of states in which the action can be taken (*states in which an arrow starts*), and

- the **effect** e describes the successor states of states in which the action can be taken (*where the arrows go*). Effect descriptions are procedural: how do the values of the state variable change?
Effects (for deterministic operators)

Definition (effects)

(Deterministic) effects are recursively defined as follows:

1. If $a \in A$ is a state variable, then a and $\neg a$ are effects (atomic effects).
2. If e_1, \ldots, e_n are effects, then $e_1 \land \cdots \land e_n$ is an effect (conjunctive effects). The special case with $n = 0$ is the empty conjunction \top.
3. If c is a propositional formula and e is an effect, then $c \triangleright e$ is an effect (conditional effects).

Atomic effects a and $\neg a$ are best understood as assignments $a := 1$ and $a := 0$, respectively.
Effect example

c ⊳ e means that change e takes place if c is true in the current state.

Example
Increment 4-bit number $b_3 b_2 b_1 b_0$ represented as four state variables b_0, \ldots, b_3.

$$(\neg b_0 ⊳ b_0) \land$$
$$((\neg b_1 \land b_0) ⊳ (b_1 \land \neg b_0)) \land$$
$$((\neg b_2 \land b_1 \land b_0) ⊳ (b_2 \land \neg b_1 \land \neg b_0)) \land$$
$$((\neg b_3 \land b_2 \land b_1 \land b_0) ⊳ (b_3 \land \neg b_2 \land \neg b_1 \land \neg b_0))$$
Blocks world operators

In addition to state variables likes A-on-T and B-on-C, for convenience we also use state variables A-$clear$, B-$clear$, and C-$clear$ to denote that there is nothing on the block in question.

\[
\langle A$-$clear \land A$-$on$-$T \land B$-$clear, \quad A$-$on$-$B \land \neg A$-$on$-$T \land \neg B$-$clear \rangle
\]
\[
\langle A$-$clear \land A$-$on$-$T \land C$-$clear, \quad A$-$on$-$C \land \neg A$-$on$-$T \land \neg C$-$clear \rangle
\]
\[
\langle A$-$clear \land A$-$on$-$B, \quad A$-$on$-$T \land \neg A$-$on$-$B \land B$-$clear \rangle
\]
\[
\langle A$-$clear \land A$-$on$-$C, \quad A$-$on$-$T \land \neg A$-$on$-$C \land C$-$clear \rangle
\]
\[
\langle A$-$clear \land A$-$on$-$B \land C$-$clear, \quad A$-$on$-$C \land \neg A$-$on$-$B \land B$-$clear \land \neg C$-$clear \rangle
\]
\[
\langle A$-$clear \land A$-$on$-$C \land B$-$clear, \quad A$-$on$-$B \land \neg A$-$on$-$C \land C$-$clear \land \neg B$-$clear \rangle
\]
\[
\ldots
\]
Operator semantics

Changes caused by an operator
For each effect e and state s, we define the change set of e in s, written $[e]_s$, as the following set of literals:

1. $[a]_s = \{a\}$ and $[\neg a]_s = \{\neg a\}$ for atomic effects a, $\neg a$
2. $[e_1 \land \cdots \land e_n]_s = [e_1]_s \cup \cdots \cup [e_n]_s$
3. $[c \triangleright e]_s = [e]_s$ if $s \models c$ and $[c \triangleright e]_s = \emptyset$ otherwise

Applicability of an operator
Operator $\langle c, e \rangle$ is applicable in a state s iff $s \models c$ and $[e]_s$ is consistent.
Operator semantics (ctd.)

Definition (successor state)

The successor state $\text{app}_o(s)$ of s with respect to operator $o = \langle c, e \rangle$ is the state s' with $s' \models [e]_s$ and $s'(v) = s(v)$ for all state variables v not mentioned in $[e]_s$.

This is defined only if o is applicable in s.

Example

Consider the operator $\langle a, \neg a \land (\neg c \triangleright \neg b) \rangle$ and the state $s = \{a \mapsto 1, b \mapsto 1, c \mapsto 1, d \mapsto 1\}$.

The operator is applicable because $s \models a$ and $[\neg a \land (\neg c \triangleright \neg b)]_s = \{\neg a\}$ is consistent.

Applying the operator results in the successor state $\text{app}_{\langle a, \neg a \land (\neg c \triangleright \neg b) \rangle}(s) = \{a \mapsto 0, b \mapsto 1, c \mapsto 1, d \mapsto 1\}$.
Deterministic planning tasks

Definition (deterministic planning task)

A deterministic planning task is a 4-tuple $\Pi = \langle A, I, O, G \rangle$ where

- A is a finite set of state variables,
- I is an initial state over A,
- O is a finite set of operators over A, and
- G is a formula over A describing the goal states.

Note: We will omit the word “deterministic” where it is clear from context.
Mapping planning tasks to transition systems

From every deterministic planning task $\Pi = \langle A, I, O, G \rangle$ we can produce a corresponding transition system $\mathcal{T}(\Pi) = \langle S, I, O', G' \rangle$:

1. S is the set of all valuations of A,
2. $O' = \{ R(o) \mid o \in O \}$ where $R(o) = \{ (s, s') \in S \times S \mid s' = app_o(s) \}$, and
3. $G' = \{ s \in S \mid s \models G \}$.
Equivalence of operators and effects

Definition (equivalent effects)
Two effects e and e' over state variables A are \textbf{equivalent}, written $e \equiv e'$, if for all states s over A, $[e]_s = [e']_s$.

Definition (equivalent operators)
Two operators o and o' over state variables A are \textbf{equivalent}, written $o \equiv o'$, if they are applicable in the same states, and for all states s where they are applicable, $app_o(s) = app_{o'}(s)$.

Theorem
Let $o = \langle c, e \rangle$ and $o' = \langle c', e' \rangle$ be operators with $c \equiv c'$ and $e \equiv e'$. Then $o \equiv o'$.

\textbf{Note:} The converse is not true. (Why not?)
Equivalence transformations for effects

\[e_1 \land e_2 \equiv e_2 \land e_1 \] \hspace{1cm} (1)

\[(e_1 \land e_2) \land e_3 \equiv e_1 \land (e_2 \land e_3) \] \hspace{1cm} (2)

\[\top \land e \equiv e \] \hspace{1cm} (3)

\[c \triangleright e \equiv c' \triangleright e \quad \text{if } c \equiv c' \] \hspace{1cm} (4)

\[\top \triangleright e \equiv e \] \hspace{1cm} (5)

\[\bot \triangleright e \equiv \top \] \hspace{1cm} (6)

\[c_1 \triangleright (c_2 \triangleright e) \equiv (c_1 \land c_2) \triangleright e \] \hspace{1cm} (7)

\[c \triangleright (e_1 \land \cdots \land e_n) \equiv (c \triangleright e_1) \land \cdots \land (c \triangleright e_n) \] \hspace{1cm} (8)

\[(c_1 \triangleright e) \land (c_2 \triangleright e) \equiv (c_1 \lor c_2) \triangleright e \] \hspace{1cm} (9)
Normal form for effects

Similarly to normal forms in propositional logic (DNF, CNF, NNF, . . .) we can define a normal form for effects. This is useful because algorithms (and proofs) then only need to deal with effects in normal form.

▶ Nesting of conditionals, as in $a \triangleright (b \triangleright c)$, can be eliminated.
▶ Effects e within a conditional effect $\phi \triangleright e$ can be restricted to atomic effects (a or $\neg a$).

Transformation to normal form only gives a small polynomial size increase. **Compare:** transformation to CNF or DNF may increase formula size exponentially.
Normal form for operators and effects

Definition
An operator $\langle c, e \rangle$ is in normal form if for all occurrences of $c' \triangleright e'$ in e the effect e' is either a or $\neg a$ for some $a \in A$, and there is at most one occurrence of any atomic effect in e.

Theorem
For every operator there is an equivalent one in normal form.
Proof is constructive: we can transform any operator into normal form using the equivalence transformations for effects.
Normal form example

Example

\[(a \triangleright (b \land (c \triangleright (\neg d \land e))))) \land \neg b \triangleright e)\]

transformed to normal form is

\[(a \triangleright b) \land ((a \land c) \triangleright \neg d) \land ((\neg b \lor (a \land c)) \triangleright e)\]
STRIPS operators

Definition
An operator \(\langle c, e \rangle \) is a STRIPS operator if

1. \(c \) is a conjunction of literals, and
2. \(e \) is a conjunction of atomic effects.

Hence every STRIPS operator is of the form

\[
\langle l_1 \land \cdots \land l_n, \; l'_1 \land \cdots \land l'_m \rangle
\]

where \(l_i \) are literals and \(l'_j \) are atomic effects.

Note: Many texts also require that all literals in \(c \) are positive.

STRIPS
STanford Research Institute Planning System
(Fikes & Nilsson, 1971)
Why STRIPS is interesting

- STRIPS operators are particularly simple, yet expressive enough to capture general planning problems.
- In particular, STRIPS planning is no easier than general planning problems.
- Most algorithms in the planning literature are only presented for STRIPS operators (generalization is often, but not always, obvious).
Transformation to STRIPS

- Not every operator is equivalent to a STRIPS operator.
- However, each operator can be transformed into a set of STRIPS operators whose “combination” is equivalent to the original operator. (How?)
- However, this transformation may exponentially increase the number of required operators. There are planning tasks for which such a blow-up is unavoidable.
- There are polynomial transformations of planning tasks to STRIPS, but these do not preserve the structure of the transition system (e.g., length of shortest plans may change).