Andreas Karwath
&
Wolfram Burgard

(original slides by Peter Flach)

Simply Logical — Chapter 1 © Peter Flach 2000

" Prolog
" PROgramming in LOGic

" PROgramming Language Of God ©

" Why Prolog ?
® completely different programming paradigm

® a declarative programming language (as Haskell)

= focus on WHAT instead of HOW

® based on first order 1logic

® used especially in artificial intelligence, natural
language processing, search problems, expert systems,
databases,

" very elegant / powerful / compact

Simply Logical — Chapter 1

* What we shall do

" short introduction to logic

" Prolog as a programming language
" various programming techniques

" examples from artificial intelligence
" a bit of theory / a lot of practice

" some larger programs

© Peter Flach 2000

Simply Logical — Chapter 1 © Peter Flach 2000

" Materials

" Simply Logical“ by Peter Flach, Addison-Wiley, 1994. (printed on
demand) — 1t few chapters (free download:
http://www.cs.bris.ac.uk/~flach/SimplyLogical.html)

" PROLOG. Programming for Artificial Intelligence, by Ivan Bratko,
Addison-Wesley, Third Edition 2001 , next chapters ... (Old german
version might be availble)

"Prolog:

" YAP Prolog (http://sourceforge.net/projects/yap/ or
http://www.ncc.up.pt/~vsc/Yap/)

" SWI Prolog (http://www.swi-prolog.org/)
" Many more: GNU Prolog, Visual Prolog, ...

http://www.cs.bris.ac.uk/~flach/SimplyLogical.html
http://www.cs.bris.ac.uk/~flach/SimplyLogical.html
http://sourceforge.net/projects/yap/
http://www.ncc.up.pt/~vsc/Yap/
http://www.swi-prolog.org/

Simply Logical — Chapter 1 p.4

UNDERGROUND

© Peter Flach 2000
JUBILEE BAKERLOO NORTHERN
Oxford
Circus CENTRAL
Bond Tottenham
Street Court Road
® ® PICCADILLY
Piccadilly Leicester
Circus Square
[)
Charing
VICTORIA
LRT Registered User No. 94/1954

London Underground example

Simply Logical — Chapter 1 p.3 © Peter Flach 2000

connected (bond street,oxford circus,central).

connected (oxford circus,tottenham court road,central).
connected (bond street,green park, jubilee).

connected (green park,charing cross, jubilee).

connected (green park,piccadilly circus,piccadilly).
connected (piccadilly circus,leicester square,piccadilly).
connected (green park,oxford circus,victoria).

connected (oxford circus,piccadilly circus,bakerloo).
connected (piccadilly circus,charing cross,bakerloo).
connected (tottenham court road, leicester square,northern).
connected (leicester square,charing cross,northern).

London Underground in Prolog (1)

Simply Logical — Chapter 1p.3-4 © Peter Flach 2000

Two stations are nearby if they are on the same line with at most
one other station in between:

nearby (bond street,oxford circus).

nearby (oxford circus, tottenham court road).
nearby (bond street,tottenham court road)
nearby (bond street, green_park)

nearby (green park,charing cross).

nearby (bond street,charing cross).

nearby (green park,piccadilly circus).

or better

nearby (X,Y) :—-connected (X,Y,L) .
nearby (X,Y) :-connected (X,Z,L) ,connected (Z,Y,L) .

Facts: unconditional truths
Rules/Clauses: conditional truths

Both definitions are equivalent.

London Underground in Prolog (2)

Simply Logical — Chapter 1 © Peter Flach 2000

" Query:
which station is nearby Tottenham Court Road?

?- nearby(tottenham court road, W).

" Prefix 2- means it's a query and not a fact.

" Answer to query is:
{W -> leicester square}
a so-called substitution.

" When nearby defined by facts, substitution found by
simple matching.

Answering queries (1)

Simply Logical — Chapter 1 p.5 © Peter Flach 2000

Exercise 1.1:
Define a predicate not too far, which is true, if two
stations are one the same or a different line, with at most

one station in between.

Exercise 1.1

Simply Logical — Chapter 1 p.5 © Peter Flach 2000

Remember nearby:

nearby (X,Y) : -connected (X,Y,L) .
nearby (X,Y) : -connected (X,Z,L) ,connected (Z,Y,L) .

Then not too faris:

not_too_far(X,Y):—connected(X,Y,L).
not_too_far(X,Y):—connected(X,Z,Ll),connected(Z,Y,LZ).

This can be rewritten with don’t cares:

not too far (X,Y):-connected(X,Y,).
not too far (X,Y):-connected(X,Z,),connected(Z,Y,).

10

Exercise 1.1

Simply Logical — Chapter 1 © Peter Flach 2000

" |f clauses are involved, then answering a query can take several
steps.

" ?- nearby(tottenham court road, W).
matches conclusion (head) of clause
nearby (X,Y) :- connected(X,Y,L).
with the substitution
{X -> tottenham court road, Y -> W}

" Subsequently,
?- connected(tottenham court road, W, L).
IS to prove.

" Here, looking up the facts is sufficient for answering the query:
{W -> leicester square, L-> northern}

" Result:
{W -> leicester square}
11

Answering queries (2)

query
l clause
?-nearbyj(tottenham court_road,W) l

nearby(X1,Y1) : -connected (X1,Y1,L1)

{X1->totte —court_road, Y1->W}
v

?-connected (tottenham court road,W,L1)

connected (fottenham_court_road,
leicepster square,northern)

{W->leices —square, Lil->norfhern}

[] t

‘ answer substitution fact

empty query substitution

12

Simply Logical — Chapter 1 © Peter Flach 2000

" To answer a query

?- Q1, Q2, ..., On.
findaclauseA :- B1,..., Bmsuch that A matches 01, and
then answer the query ?- B1,...,Bm,02,...,0n.

" Adds a procedural interpretation to the declarative interpretation
of a logical formula

" Resolution proof: reductio ad absurdum; proof by refutation

= Start: clause with empty head (conclusion), e.g.:
: - nearby (tottenham court road, W).
(= negation of nearby (...))

" Contradiction is found, if empty clause is derived. Empty clause:

premise (body) is always true, because non-existing. 3

Resolution

Simply Logical — Chapter 1 © Peter Flach 2000

" Up to now: rules (clauses) and facts

" Particular kind of rules; rules that are defined by
recurring to themselves: recursion

"IF N = 0 THEN FAC:
ELSE FAC:

1
N*FAC (N-1)

" Recursion is (except for failure-driven loops) the only
construct for loops in Prolog.

" Example relation reachable
Could be defined by enumeration of facts or by non-
recursive rules for routes of length 1, 2, etc.

14

Recursion (1)

Simply Logical — Chapter 1 p.8 © Peter Flach 2000

A station is reachable from another if they are on the
same line, or with one, two, ... changes:

reachable (X,Y) :—connected (X,Y,L) .
reachable (X,Y) :—connected (X,Z,L1) ,connected(Z,Y,L2) .
reachable (X,Y) : -
connected (X,Z1,L1) ,connected (Z21,22,L2),
connected (Z22,Y,L3) .

or better

reachable (X,Y) : —connected (X,Y,L) .
reachable (X,Y) : —connected (X,Z,L) ,reachable(Z,Y) .

15

Recursion (2)

Simply Logical — Chapter 1 © Peter Flach 2000

" Recursive definition:
reachable (X, Y) :- connected (X, Y, L).

reachable (X, Y) :- connected(X, z, L),
reachable (Z, Y).

" Examples so far have shown:
Prolog performs search in order to answer queries

" Backtracking: returning to previous choice points, if
proof fails at some point.

16

Recursion (3)

:-reachable (bond_street,W) reachable (X1,Y1) : -connected (X1,Z1,L1),
reachable (Z1,Y1)

{X1->bond_street, Y1->W}

:-connected (bond_street,z1,L1), connected (bond_street,
reachable (Z1,W) oxford circus,
central)

{Z1->oxford_circus, Ll->central}

:—reachable(oxford_circus,W) reachable (X2,Y2) : -connected (X2,2Z2,L2),
reachable (Z2,Y2)

{X2->oxford_circus, Y2->W}

: -connected (oxford_circus,Z2,L2), connected (oxford_circus,
reachable (Z2,W) tottenham court_road,
central)

{Z2->tottenham court_road, L2->central}

:-reachable (tottenham court_road,W) reachable (X3,Y3) : -connected (X3,Y3,L3)

{X3->tottenham court_road, Y3->W}

: -connected (tottenham court_road,W,L3) connected (tottenham_court_road,
leicester_square,

northern)
{W->leicester_ square, L3->northern}

[] 17

Simply Logical — Chapter 1 © Peter Flach 2000

reachableO (X,Y) : -
connected (X,Y,L) .

reachablel (X,Y,Z) : —
connected (X,Z,L1),
connected (Z,Y,L2) .

reachable2 (X,Y,Z1,7Z2) : -
connected (X,zZ1,L1),
connected (Z1,7z2,L2),
connected (Z22,Y,L3) .

One clause for each route of length n.
Solution: functors
Are used to construct complex objects out of simpler ones.

e.g., route (oxford circus, tottenham court road) 18

Structured terms (1)

reachable (X,Y,noroute) : —-connected (X,Y,L) .
reachable (X,Y,route(Z,R)) : —connected (X,Z,L) ,
reachable(Z,Y,R) .

?-reachable (oxford circus,charing cross,R).

R route (tottenham court road,route(leicester_square,noroute)) ;
R route(piccadilly circus,noroute);

R = route(picadilly circus,route(leicester_ square,noroute))

route
/ \ ~_ functor
tottenham court road route
leicester_square noroute

19

Simply Logical — Chapter 1 © Peter Flach 2000

" Built-in data type in Prolog

" Functor: .

" Tree notation with functor as well as linear notation possible
" Empty list: []

".(a, .(b, .(c, [1)))

" Linear: [a, b, c]

" .(First, Rest)

" [First |Rest]

" [First,Second,Third|Rest]
20

This list can be
written in many ways:

/\ = (a,.(b,.(c,[1)))

a - “[al[bl[cl[1]1]1]

/\ "[a|[b]|[c]]]
' "[a|[b,c]]
/\ ®"[a,b,c]
“[a,b|[c]]

21

reachable (X,Y,[]) : —connected (X,Y,L) .
reachable (X,Y,[Z|R]) : —connected (X,Z,L),

reachable(Z,Y,R) .

?-reachable (oxford circus,charing cross,R).

R
R
R

[tottenham court road, leicester square];
[piccadilly circus];
[picadilly circus,leicester_square]

SN =

tottenham court road

/\

leicester_square

list functor

22

Simply Logical — Chapter 1

Definition of predicate append:

append (X, Y, Z) istrue, if appending lists x and v gives list z:

append ([]1, X, X).

append ([X|R], Y, [X]|Z])
?- append([1,2], [3,4],
ves

?- append([1,2], B, [1,2,
B = [3]

?- append (A, [2,3], [1,2,
A = [1]

?- append (A, B, [1,2]).

A =1[], B=1[1,2] ;
A = [1], B = [2] ;
A = [1,2], B = []

:— append (R, Y, Z).

[1,2,3,4]).

3]).

3]).

© Peter Flach 2000

23

Simple list processing

Simply Logical — Chapter 1

" Prolog has very simple syntax

" constants, variables, and structured terms refer to objects
" variables start with uppercase character

* functors are never evaluated, but are used for naming
" predicates express relations between objects

" clauses express true statements

" each clause independent of other clauses

" Queries are answered by matching with head of clause

" there may be more than one matching clause

" query answering is search process
" gquery may have 0, 1, or several answers

" no pre-determined input/output pattern (usually)

© Peter Flach 2000

24

Summary

