Principles of Al Planning

Malte Helme

Principles of Al Planning Thesis and project topics

Malte Helmert

Albert-Ludwigs-Universität Freiburg

February 14, 2007

What I did earlier

Principles of Al Planning

Malte Helme

I mostly worked in classical (deterministic) planning, with an emphasis on

- heuristic search algorithms and
- complexity results for specific planning domains.

- 1999 invariant synthesis algorithm for STRIPS
- 1999 automatic translation from STRIPS to multi-valued encodings
- 2000 deterministic planning system based on BDD exploration (MIPS); participated in IPC 2
- 2004 "causal graph heuristic" for planning tasks with multi-valued encodings
- 2004 automatic translation from general PDDL2.2 to multi-valued encodings
- 2004 deterministic planning system based on the causal graph heuristic; participated in IPC 4

What I did earlier

Work on planning: complexity

Principles of Al Planning

Malte Helme

2001 complexity of planning in the IPC 1/2 domains
2002 decidability for planning with numbers
2006 complexity of planning in the IPC 3/4 domains
2006 approximation properties of the IPC 1–4 domains

Supervision Supervised semester projects

Principles of Al Planning

Malte Helmei

- 2003 Untersuchung von Zustandsräumen in Zwei-Personen-Spielen
- 2005 Approximationsverfahren für Planungsprobleme in den Domänen Satellite, Depots und DriverLog
- 2005 Approximatives Planen in der Grid-Domäne
- 2006 A Generic Reasoner for Qualitative Calculi
- 2006 Natürlichere Problemspezifikation in PDDL
- now Zielordnungen und Landmarken für SAS⁺-Planer

Supervision Supervised diploma theses

Principles of Al Planning

Malte Helme

- 2003 Entwicklung eines Double-Dummy Skat Solvers mit einer Anwendung für verdeckte Skatspiele
- 2005 Pfadplanung unter Unsicherheit
- 2006 Approximationseigenschaften von Transportproblemen in der Handlungsplanung
 - now Eine automatentheoretische Heuristik für klassische Planungsprobleme
 - now Algorithmen für teilerfüllendes Planen

What I do currently

Principles of Al Planning

Malte Helme

Current interests:

- optimal sequential planning with pattern databases
- automatic problem simplification
- relationship between SAT planning and heuristic planning
- limitations of relaxation heuristics for optimal planning
- IPC 6

Current thesis and project opportunities

Principles of Al Planning

Malte Helme

State of the art in optimal sequential planning

Literature survey and experimental study

- What are the main approaches for optimal sequential planning?
- How can they be classified?
- How do they perform on the standard benchmarks?

Current thesis and project opportunities

Principles of Al Planning

Malte Helmer

Compact encodings of monotonic Boolean functions

Design and comparison of synthesis heuristics

- How can we efficiently synthesize circuits for monotonic Boolean functions?
- → relaxation heuristics
- → disjunctive pattern database heuristics
- → line of sight algorithms

Current thesis and project opportunities

Principles of Al Planning

Malte Helmer

What is the difference between SAT and heuristic planning?

Explain SAT planner behaviour

- How does a SAT planner behave when restricted to progression or regression search?
- How does a SAT planner behave when using a standard planning heuristic to guide the variable selection process?
- How can this data explain differences in performance between SAT planners and heuristic planners?