
Action Languages and Planning Techniques
Golog and PDDL

Gabi Röger

Department of Computer Science
University of Freiburg



Motivation

Dynamic Domains

Planning Techniques
PDDL

Efficiency
low-level

Action Languages
Golog

Expressive Power
high-level

Planning
Flexible

representation

In recent years:
Convergence of Expressiveness

An integration of both fields would provide great advantages:

Flexible description of a system’s behaviour

Efficient planning of actual low-level actions

Gabi Röger Action Languages and Planning Techniques



Compilation Schemes

Framework to compare the expressive power of planning
formalisms

arbitrary
compilation

polynomial
compilation

polynomial
compilation

Ξ

Ξ′

I G

I′ G′

X

Planning

Y

Planning

∆

∆′

Gabi Röger Action Languages and Planning Techniques



The Action Language Golog

Logic programming language

Used for dynamic worlds
One can constrain a system’s (e.g. a robot’s) behaviour on
a high level, e.g. with

Nondeterministic choice of actions
Nondeterministic choice of arguments
Nondeterministic iteration (execute a command zero or
more times)
if and while statements
Procedures

Advantage: As Golog is based on the situation calculus (using
macros), there is a formal theory.

Gabi Röger Action Languages and Planning Techniques



Situation Calculus

A way to represent dynamically changing worlds with logic
Changes of the world are the result of actions and each
action leads to a new situation.

initial situation s0

function do(a, s)

Predicate Poss(a, s) states whether it is possible to perform
action a in situation s.
Fluents are relations and functions whose values vary from
one situation to the next

situation term as last argument
e.g. switchedOn(lamp, s), primeMinister(Italy, s)

Situation-independent predicates and fluents keep the
same value in all situations, e.g. mathematician(Gauss)

Gabi Röger Action Languages and Planning Techniques



Example: Blocksworld
Domain Structure

Poss(move(b, f , t), s) ≡ on(b, f , s) ∧ clear(b, s) ∧ clear(t, s)

Poss(moveToTable(b, f ), s) ≡ on(b, f , s) ∧ clear(b, s)

clear(b, do(a, s)) ≡ ∃b′, b′′(a = move(b′, b, b′′)) ∨

∃b′(a = moveToTable(b′, b)) ∨

clear(b, s) ∧ ¬(∃b′, b′′(a = move(b′, b′′, b)))

on(b1, b2, do(a, s)) ≡ ∃b(a = moveToTable(b1, b) ∧ b2 = table) ∨

∃b(a = move(b1, b, b2)) ∨ on(b1, b2, s) ∧

¬(∃b(a = move(b1, b2, b)) ∨

a = moveToTable(b1, b2))

Gabi Röger Action Languages and Planning Techniques



Example: Blocksworld
Initial Situation and Goal Description

Initial Situation:

A

B C D

on(b1, b2, s0) ≡ (b1 = A ∧ b2 = B) ∨ (b1 = B ∧ b2 = table) ∨

(b1 = C ∧ b2 = table) ∨ (b1 = D ∧ b2 = table)

clear(b, s0) ≡ b = A ∨ b = C ∨ b = D

Goal:
on(C, B, s) ∧ on(D, A, s)

Gabi Röger Action Languages and Planning Techniques



Integration of planning techniques
and action languages

Task

Create a common semantic basis in the situation calculus

Analyze expressive power by means of compilation
techniques

Implement a system

Necessary skills for bachelor/master/diploma theses or student
projects

Courses:
Logic for computer scientists
Theoretical computer science (Informatik III)

Programming skills

Interest in complexity issues

Gabi Röger Action Languages and Planning Techniques


