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Introduction

Earlier, we showed how deterministic Turing Machines
with polynomial space can be translated to deterministic
planning tasks.

Later, we saw how alternation in Turing Machines can be
translated into nondeterminism in the planning task.

We also saw how exponential space in Turing Machines
can be modeled by using unobservable planning tasks.

Now, we will combine the latter two proof techniques to show
that nondeterministic planning with partial observability is
2-EXP-complete.
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The strong planning problem for partial
observability

PartialPlanEx (plan existence for partial observability)

Given: nondeterministic planning task 〈A, I, O, G, V 〉
Question: Is there a strong plan for the task?

We do not consider the analog of the bounded plan
existence problem (PlanLen).
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Membership in 2-EXP

PartialPlanEx ∈ 2-EXP

For input T :

Use the reduction algorithm presented in the previous
lecture to generate an equivalent nondeterministic planning
task with full observability T ′ in exponential time.

This requires exponential time and creates a task of
exponential size in ‖T ‖.

Solve the resulting task using an EXP algorithm.

This requires exponential time in ‖T ′‖, which is doubly
exponential in ‖T ‖.

Thus, the problem can be solved within 2-EXP.
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Reduction idea

We want to prove that PartialPlanEx is 2-EXP-hard.

To do this, we need to reduce all problems in 2-EXP to
PartialPlanEx.

A problem is in 2-EXP iff there exists a DTM that accepts
instances of the problem in doubly exponential time.

Equivalently, by Chandra et al.’s theorem, a problem is in
2-EXP iff there exists an ATM that accepts instances of
the problem in exponential space (since
AEXPSPACE = 2-EXP).

We exploit the latter relationship by providing a generic
reduction from word acceptance for ATMs with
exponential space to PartialPlanEx.
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Proving hardness for 2-EXP
Overview

For a fixed polynomial p, given ATM M and input w,
generate planning task which is solvable by a strong plan
iff M accepts w in space 2p(|w|).

For simplicity, we only consider ATMs with two restrictions
(no loss of generality):

ATM never moves to the left of the initial head position.

If several ATM transitions are possible in universal state q
reading the symbol a, then the resulting state q′ is
different for all these transitions.

(The second restriction is so that the planning agent can know
which transition was taken by looking at the current state.)
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Idea of the reduction
Dealing with alternation

Existential states of the ATM are modeled by states of the
planning task where there are several applicable operators
to choose from.

Universal states of the ATM are modeled by states of the
planning task where there is a single applicable operator
with a nondeterministic effect.
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Idea of the reduction
Dealing with exponential space

Only keep track of the contents of one tape cell
 watched tape cell.

Which tape cell is watched is unobservable.

 Plan must work correctly for all possible choices.

 Plan must remain faithful to the TM computation.
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Reduction: state variables

Let p be a polynomial such that 2p(n) − 2 is a space bound for
inputs of size n.

Given: ATM 〈Σ,�, Q, q0, l, δ〉 and input w1 . . . wn.

State variables

Convention:
Use bars to denote vectors of p(n) state variables
encoding a number in the range 0 . . . , 2p(n) − 1.

stateq for all q ∈ Q – current TM state

head – head position

watched – position of the watched tape cell

contenta for all a ∈ Σ� – contents of the watched tape cell

The watched variables are unobservable.
All other variables are observable.
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Spelling it out

(head = 1) ≡ ¬head1 ∧ · · · ∧ ¬headp(n)−1 ∧ headp(n)

(head = 5) ≡ ¬head1 ∧ · · · ∧ ¬headp(n)−3

∧ headp(n)−2 ∧ ¬headp(n)−1 ∧ headp(n)

(head = watched) ≡
(¬head1 ∨ watched1) ∧ (head1 ∨ ¬watched1)

∧ (¬head2 ∨ watched2) ∧ (head2 ∨ ¬watched2)
∧ . . .

head := head + 1 ≡
(¬headp(n) B headp(n))

∧ ((¬headp(n)−1 ∧ headp(n)) B (headp(n)−1 ∧ ¬headp(n)))
∧ . . .

head := head− 1 ≡ . . .
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Reduction: initial state formula

Initial state formula

I = stateq0 ∧
∧

q∈Q\{q0}

¬stateq

∧ head = 1

∧

(
n∧

i=1

((watched = i) → contentwi)

)
∧ (watched = 0 ∨ watched > n) → content�

∧
∧

a∈Σ�

∧
a′∈Σ�\{a}

¬(contenta ∧ contenta′)

Note: watched tape cell unspecified
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Reduction: operators

Operators

For each transition rule ((q, a), (q′, a′,∆)) ∈ δ, define:

precondition:
preq,a := stateq

∧ ((head = watched) → contenta)
∧ head > 0
∧ head < 2p(n) − 1

effect:
effq,a,q′,a′,∆ := ¬stateq ∧ stateq′

∧ ((head = watched) B ¬contenta)
∧ ((head = watched) B contenta′)
∧ (head := head + ∆)

If q = q′, omit the effects in the first line.
If a = a′, omit the effects in the second and third line.
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Reduction: operators (continued)

Operators (ctd.)

For existential states q ∈ Q∃, a ∈ Σ�:
Let (q′j , a

′
j ,∆j)j∈{1,...,k} be those triples with

((q, a), (q′j , a
′
j ,∆j)) ∈ δ.

For each j ∈ {1, . . . , k}, introduce one operator:

precondition: preq,a

effect: effq,a,q′
j ,a′

j ,∆j
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Reduction: operators (continued)

Operators (ctd.)

For universal states q ∈ Q∀, a ∈ Σ�:
Let (q′j , a

′
j ,∆j)j∈{1,...,k} be those triples with

((q, a), (q′j , a
′
j ,∆j)) ∈ δ.

Introduce only one operator:

precondition: preq,a

effect: effq,a,q′
1,a′

1,∆1
| . . . |effq,a,q′

k,a′
k,∆k



AI Planning

M. Helmert,
B. Nebel

Introduction

Complexity

Problem

Membership

Reduction idea

Reduction

The proof

Summary

Reduction: goal

Goal

G =
∨

q∈QY
stateq
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2-EXP-completeness of strong planning
with partial observability

Theorem (Rintanen, 2002)

PartialPlanEx is 2-EXP-complete.

Proof.

Membership in 2-EXP has been shown by providing doubly
exponential-time algorithms that generate strong plans (and
decide if one exists as a side effect).

Hardness follows from the previous generic reduction for ATMs
with exponential space bound and Chandra et al.’s theorem
(showing AEXPSPACE = 2-EXP).
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2-EXP-completeness of strong planning
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Theorem (Rintanen, 2002)

PartialPlanEx is 2-EXP-complete.

Proof.

Membership in 2-EXP has been shown by providing doubly
exponential-time algorithms that generate strong plans (and
decide if one exists as a side effect).

Hardness follows from the previous generic reduction for ATMs
with exponential space bound and Chandra et al.’s theorem
(showing AEXPSPACE = 2-EXP).
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Summary

Nondeterministic planning with partial observability
is very hard.
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