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Introduction

Introduction

I Earlier, we showed how deterministic Turing Machines with
polynomial space can be translated to deterministic planning tasks.

I Later, we saw how alternation in Turing Machines can be translated
into nondeterminism in the planning task.

I We also saw how exponential space in Turing Machines can be
modeled by using unobservable planning tasks.

Now, we will combine the latter two proof techniques to show that
nondeterministic planning with partial observability is 2-EXP-complete.
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Complexity Problem

The strong planning problem for partial observability

PartialPlanEx (plan existence for partial observability)
Given: nondeterministic planning task 〈A, I ,O,G ,V 〉
Question: Is there a strong plan for the task?

I We do not consider the analog of the bounded plan existence problem
(PlanLen).
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Complexity Membership

Membership in 2-EXP

PartialPlanEx ∈ 2-EXP
For input T :

I Use the reduction algorithm presented in the previous lecture to
generate an equivalent nondeterministic planning task with full
observability T ′ in exponential time.

I This requires exponential time and creates a task of exponential size in
‖T ‖.

I Solve the resulting task using an EXP algorithm.
I This requires exponential time in ‖T ′‖, which is doubly exponential in
‖T ‖.

Thus, the problem can be solved within 2-EXP.
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Complexity Reduction idea

Reduction idea

I We want to prove that PartialPlanEx is 2-EXP-hard.

I To do this, we need to reduce all problems in 2-EXP to
PartialPlanEx.

I A problem is in 2-EXP iff there exists a DTM that accepts instances
of the problem in doubly exponential time.

I Equivalently, by Chandra et al.’s theorem, a problem is in 2-EXP iff
there exists an ATM that accepts instances of the problem in
exponential space (since AEXPSPACE = 2-EXP).

I We exploit the latter relationship by providing a generic reduction
from word acceptance for ATMs with exponential space to
PartialPlanEx.
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Complexity Reduction idea

Proving hardness for 2-EXP
Overview

I For a fixed polynomial p, given ATM M and input w ,
generate planning task which is solvable by a strong plan
iff M accepts w in space 2p(|w |).

For simplicity, we only consider ATMs with two restrictions
(no loss of generality):

I ATM never moves to the left of the initial head position.

I If several ATM transitions are possible in universal state q reading the
symbol a, then the resulting state q′ is different for all these
transitions.

(The second restriction is so that the planning agent can know which
transition was taken by looking at the current state.)
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Complexity Reduction idea

Idea of the reduction
Dealing with alternation

I Existential states of the ATM are modeled by states of the planning
task where there are several applicable operators to choose from.

I Universal states of the ATM are modeled by states of the planning
task where there is a single applicable operator with a
nondeterministic effect.
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Complexity Reduction idea

Idea of the reduction
Dealing with exponential space

I Only keep track of the contents of one tape cell
 watched tape cell.

I Which tape cell is watched is unobservable.

I  Plan must work correctly for all possible choices.

I  Plan must remain faithful to the TM computation.
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Complexity Reduction

Reduction: state variables

Let p be a polynomial such that 2p(n) − 2 is a space bound for inputs of
size n.

Given: ATM 〈Σ,�,Q, q0, l , δ〉 and input w1 . . .wn.

State variables
Convention:
Use bars to denote vectors of p(n) state variables
encoding a number in the range 0 . . . , 2p(n) − 1.

I stateq for all q ∈ Q – current TM state

I head – head position

I watched – position of the watched tape cell

I contenta for all a ∈ Σ� – contents of the watched tape cell

The watched variables are unobservable.
All other variables are observable.
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Complexity Reduction

Spelling it out

I (head = 1) ≡ ¬head1 ∧ · · · ∧ ¬headp(n)−1 ∧ headp(n)

I (head = 5) ≡ ¬head1 ∧ · · · ∧ ¬headp(n)−3

∧ headp(n)−2 ∧ ¬headp(n)−1 ∧ headp(n)

I (head = watched) ≡
(¬head1 ∨ watched1) ∧ (head1 ∨ ¬watched1)

∧ (¬head2 ∨ watched2) ∧ (head2 ∨ ¬watched2)
∧ . . .

I head := head + 1 ≡
(¬headp(n) B headp(n))

∧ ((¬headp(n)−1 ∧ headp(n)) B (headp(n)−1 ∧ ¬headp(n)))
∧ . . .

I head := head− 1 ≡ . . .
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Complexity Reduction

Reduction: initial state formula

Initial state formula

I = stateq0 ∧
∧

q∈Q\{q0}

¬stateq

∧ head = 1

∧

(
n∧

i=1

((watched = i) → contentwi )

)
∧ (watched = 0 ∨ watched > n) → content�

∧
∧

a∈Σ�

∧
a′∈Σ�\{a}

¬(contenta ∧ contenta′)

Note: watched tape cell unspecified
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Complexity Reduction

Reduction: operators

Operators

For each transition rule ((q, a), (q′, a′,∆)) ∈ δ, define:

I precondition:
preq,a := stateq

∧ ((head = watched) → contenta)

∧ head > 0

∧ head < 2p(n) − 1

I effect:
effq,a,q′,a′,∆ := ¬stateq ∧ stateq′

∧ ((head = watched) B ¬contenta)

∧ ((head = watched) B contenta′)

∧ (head := head + ∆)
If q = q′, omit the effects in the first line.
If a = a′, omit the effects in the second and third line.
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Complexity Reduction

Reduction: operators (continued)

Operators (ctd.)

For existential states q ∈ Q∃, a ∈ Σ�:
Let (q′j , a

′
j ,∆j)j∈{1,...,k} be those triples with ((q, a), (q′j , a

′
j ,∆j)) ∈ δ.

For each j ∈ {1, . . . , k}, introduce one operator:

I precondition: preq,a

I effect: effq,a,q′
j ,a

′
j ,∆j
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Complexity Reduction

Reduction: operators (continued)

Operators (ctd.)

For universal states q ∈ Q∀, a ∈ Σ�:
Let (q′j , a

′
j ,∆j)j∈{1,...,k} be those triples with ((q, a), (q′j , a

′
j ,∆j)) ∈ δ.

Introduce only one operator:

I precondition: preq,a

I effect: effq,a,q′
1,a

′
1,∆1

| . . . |effq,a,q′
k ,a′

k ,∆k
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Complexity Reduction

Reduction: goal

Goal
G =

∨
q∈QY

stateq
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Complexity The proof

2-EXP-completeness of strong planning
with partial observability

Theorem (Rintanen, 2002)

PartialPlanEx is 2-EXP-complete.

Proof.
Membership in 2-EXP has been shown by providing doubly
exponential-time algorithms that generate strong plans (and decide if one
exists as a side effect).

Hardness follows from the previous generic reduction for ATMs with
exponential space bound and Chandra et al.’s theorem (showing
AEXPSPACE = 2-EXP).
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Summary

Summary

I Nondeterministic planning with partial observability
is very hard.
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