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Introduction

Nondeterministic planning with partial observability

Planning with partial observability is harder than both the fully observable
and unobservable cases:

I Memoryless plans (where the next action to take only depends on the
current situation) as in the fully observable case are not sufficient.

I Of course, we cannot define a memoryless plan based on individual
states because limited observability makes some states
indistinguishable.

I It is also not sufficient to consider memoryless plans where the action
to take is based on the current observation class.

I Conformant (i.e., non-branching) plans as in the unobservable case
are also clearly not powerful enough.
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Introduction

Strong planning

I We will (mostly) consider the strong planning problem.

I Generalizations to the strong cyclic planning are similar to the fully
observable case.
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Introduction

Algorithms

Similar to other variants of the planning problem, there are three major
approaches to nondeterministic planning with partial observability:

I Reduction to another problem

I Forward search

I Backward search

We will consider one example for each of these.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 5 / 50



Introduction

Algorithms
Three approaches

Reduction to another problem:

I Reduce to planning with full observability.

Forward search (progression):

I Define the search space as an AND/OR tree.

I Define a heuristic function for such trees.

I Use a tree search algorithm such as AO∗ or Proof Number Search.

Backward search (regression):

I Start from the set of goal states.

I Find state sets from which already generated state sets can be
reached by applying operators and making observations.
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Reduction Idea

Reduction to fully observable case

I Memoryless plans are not sufficient for the partially observable case
because a plan must take into account the knowledge collected in
previous observations etc.

I During plan execution, this knowledge is represented in the current
belief state.

I One idea for solving a partially observable task T is to map it to a
fully observable task T ′ where each belief state of T corresponds to a
state of T ′.
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Reduction Basic translation

Reduction to fully observable case
State variables

Let T = 〈A, I ,O,G ,V 〉 be the input task with state set S .
We define the fully observable task T ′ = 〈A′, I ′,O ′,G ′,A′〉.

State variables

I For each state s ∈ S , there is one state variable vs ∈ A′.

I Intuition: vs is true in a state of T ′ iff it is possible that we are
currently in s.

I Formally: A′ := { vs | s ∈ S }

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 8 / 50



Reduction Basic translation

Reduction to fully observable case
Initial state formula

Let T = 〈A, I ,O,G ,V 〉 be the input task with state set S .
We define the fully observable task T ′ = 〈A′, I ′,O ′,G ′,A′〉.

Initial state formula

I The initial state of T ′ is fully deterministic (in terms of A′), as there
is only one possible initial belief state in T .

I For all states s in the initial belief state of T , variable vs is initially
true. Other variables are initially false.

I Formally: I ′ :=
∧

s∈S ,s|=I vs ∧
∧

s∈S ,s 6|=I ¬vs .
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Reduction Basic translation

Reduction to fully observable case
Initial state formula

Let T = 〈A, I ,O,G ,V 〉 be the input task with state set S .
We define the fully observable task T ′ = 〈A′, I ′,O ′,G ′,A′〉.

Goal formula

I A goal belief state of T is one where all possible states satisfy G .

I This is equivalent to saying that no state in the current belief state
violates G .

I We can express that by saying that none of the variables vs for states
s violating G are true.

I Formally: G ′ :=
∧

s∈S ,s 6|=G ¬vs .
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Reduction Basic translation

Reduction to fully observable case
Initial state formula

Let T = 〈A, I ,O,G ,V 〉 be the input task with state set S .
We define the fully observable task T ′ = 〈A′, I ′,O ′,G ′,A′〉.

Operators (preconditions)

I Each operator o = 〈c , e〉 ∈ O is translated to an operator
o ′ = 〈c ′, e ′〉 ∈ O ′.

I To test whether operator o is applicable, we must verify that all
states in the current belief state satisfy c .

I Again, this is equivalent to saying that no state in the current belief
state violates c .

I Formally: c ′ :=
∧

s∈S ,s 6|=c ¬vs .
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Reduction Basic translation

Reduction to fully observable case
Initial state formula

Let T = 〈A, I ,O,G ,V 〉 be the input task with state set S .
We define the fully observable task T ′ = 〈A′, I ′,O ′,G ′,A′〉.

Operators (effects)

I Each operator o = 〈c , e〉 ∈ O is translated to an operator
o ′ = 〈c ′, e ′〉 ∈ O ′.

I After applying operator o, we can possibly be in state s ∈ S iff we
were previously in some state in which o is applicable and from which
applying o can lead to s.

I This is modeled by an effect
((

∨
t∈preimgo(s) vt) B vs) ∧ (¬(

∨
t∈preimgo(s) vt) B ¬vs).

I Formally: e ′ :=
∧

s∈S(((
∨

t∈preimgo(s) vt) B vs) ∧
(¬(

∨
t∈preimgo(s) vt) B ¬vs)).
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Reduction Caveat

Reduction to fully observable case
Done?

I We have translated state variables, initial state formula, goal formula
and operators.

Is that it?

I So far, our translation is independent of the set of observable
variables V !

I Moreover, the resulting planning task is deterministic!

Is there an error in our modeling?
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Reduction Caveat

Reduction to fully observable case
Not done

Is there an error in our modeling?

I No, but it is not complete yet: There are solvable partially observable
tasks T for which T ′ (as defined so far) is unsolvable.

I The reason for this is that he have not yet modeled the possibility of
observing state variables.

Modeling observations requires introducing nondeterminism in T ′.
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Reduction Observations

Reduction to fully observable case
Observations

Let T = 〈A, I ,O,G ,V 〉 be the input task with state set S .
We define the fully observable task T ′ = 〈A′, I ′,O ′,G ′,A′〉.

Observations

I In general, our formalism allows observations to be general formulas
over V . However, it is sufficient to only consider atomic observations
u ∈ V .

I If we observe u in a belief state b, we can end up in two different
belief states: one containing exactly the states of b where u is true,
and one containing exactly the states of b where u is false.

I In other words, either the belief states where u is false or the belief
states where u is true are ruled out.

I Formally: Translate observation of u ∈ V into an operator
〈>, e ′u〉 ∈ O ′ with e ′u := (

∧
s∈S ,s 6|=u ¬vs) |(

∧
s∈S ,s|=u ¬vs).
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Reduction Discussion

Reduction to fully observable case
Discussion

I Note that the reduction works both for strong and for strong cyclic
planning.

I The reduction has a significant drawback: Since it introduces as
many state variables as there are states in the original task, the
resulting problem is exponentially larger than the original one.

I This will usually not be practical.

I On the other hand, there does not really exist any truly “practical”
algorithm for nondeterministic planning with partial observability.
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Reduction Discussion

Reduction to fully observable case
Complexity result

I Using an exponential-time planning algorithm for fully observable
planning, T ′ can be solved in time O(c‖T ′‖), and ‖T ′‖ = O(c‖T ‖).

I Thus, we have a double-exponential (O(cc‖T ‖
)) algorithm for

nondeterministic planning for partial observability.

I We will later prove that this is worst-case optimal.
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Forward search Idea

Search in AND/OR trees

In forward search, plans are represented as trees whose nodes represent the
situations arising during plan execution.

I The root node represents the initial situation.
I OR nodes correspond to choosing and applying operators.

I Note how these relate to operators in T ′ in the earlier reduction.

I AND nodes correspond to making observations.
I Note how these relate to nondeterminism in T ′ in the earlier reduction.
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Forward search Idea

Search in AND/OR trees
Example

OR

AND

bI

imgo1(bI ) imgo2(bI ) . . . imgon(bI )

{ s ∈ imgo2(bI ) | s |= ϕ } { s ∈ imgo2(bI ) | s 6|= ϕ }

o1 o2 on

ϕ ¬ϕ
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Forward search Algorithm

AND/OR trees
Formal definition

Definition
An AND/OR tree is a labeled rooted tree where

I internal nodes are labeled with (∧) or (∨)
(AND nodes/OR nodes), and

I leaves are labeled with (>) or (⊥)
(true leaves/false leaves).
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Forward search Algorithm

AND/OR trees
Truth value

Definition
An AND/OR tree evaluates to true iff

I it is a true leaf,

I it is an OR node with a child that evaluates to true, or

I it is an AND node whose children all evaluate to true.
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Forward search Algorithm

Partial plan trees

Definition
A partial plan tree for a nondeterministic planning task 〈A, I ,O,G ,V 〉
with state set S is an AND/OR tree with the following properties:

I Each node n has an associated belief state b(n).

I If n is the root node, then b(n) = { s ∈ S | s |= I }.
I A leaf node n is labeled with (>) iff b(n) |= G . In this case it is called

a goal node, otherwise an open node.

I . . .

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 22 / 50



Forward search Algorithm

Partial plan trees

Definition (ctd.)

A partial plan tree for a nondeterministic planning task 〈A, I ,O,G ,V 〉
with state set S is an AND/OR tree with the following properties:

I . . .

I An OR node n (also called an operator node) has one child no for
each operator o ∈ O applicable in b(n), with associated belief state
b(no) = appo(b(n)).

I An AND node n (also called an observation node) has an associated
formula ϕ(n) over V . It has two children:

I n> with b(n>) = { s ∈ b(n) | s |= ϕ}
I n⊥ with b(n⊥) = { s ∈ b(n) | s 6|= ϕ}.
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Forward search Algorithm

Forward planning as search in partial plan trees

I Clearly, a partial plan tree represents a strategy.

I This strategy is a strong plan iff the tree evaluates to true.

We thus obtain a (nondeterministic) forward search algorithm:

Forward search in partial plan trees

def expand-tree(T ):
Set T to the partial plan tree for T that consists

of a single leaf, labeled with the initial belief state.
while T evaluates to false:

Choose some open leaf n in T .
Replace n by an operator or observation node,

adding the necessary children to T .
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Forward search Algorithm

Search in AND/OR trees
Issues

I There is a conflict between plan size and observing:
I With many observations, plans become very big.
I With few observations, it may be impossible to find a plan.

Trying out all possible ways to branch is not feasible.
No good general solutions to this problem exist.

I AND-OR search algorithms use heuristics for making branching
decisions.

I But they do not really work well. . .
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Backward search Idea

Backward search algorithms

I Backward search algorithms are similar in flavour to the ones for fully
observable problems.

I Backward steps with operator application:
I Compute strong preimages.

I Backward steps with observations:
I Compute union of belief states from disjoint observational classes.
I Note: Can always take subsets of solved belief states to make them

disjoint.
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Backward search Idea

Backward search algorithms
Regression: strong preimages

S

spreimg(S)
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Backward search Observations

Observations in backward search

I Let C1, . . . ,Cn be different observational classes.

I Let B1, . . . ,Bn be belief states with Bi ⊆ Ci for all i = 1, . . . , n for
which we have a solution plan.

I Then we can find a plan for B = B1 ∪ · · · ∪ Bn by first observing in
which class Ci we are and then applying the corresponding plan for Bi .
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Backward search Observations

Observations in backward search
Example: Combining two belief states

S2

o1 o2 o3 o4 o5 o6 o7

S1
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Backward search Observations

Observations in backward search
Example: Combining two belief states, option 1

S2

o1 o2 o3 o4 o5 o6 o7

S1
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Backward search Observations

Observations in backward search
Example: Combining two belief states, option 2

S2

o1 o2 o3 o4 o5 o6 o7

S1
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Backward search Observations

Observations in backward search
Example: Combining two belief states, option 3

S2

o1 o2 o3 o4 o5 o6 o7

S1

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 32 / 50



Backward search Observations

Observations in backward search
Example: Combining two belief states, option 4

S2

o1 o2 o3 o4 o5 o6 o7

S1
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Backward search Observations

No observability ⇒ no branching
Only one observational class: no choice between subplans

S2

S1

o1
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Backward search Observations

No observability ⇒ no branching
No choice between subplans during execution: option 1

S2

S1

o1
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Backward search Observations

No observability ⇒ no branching
No choice between subplans during execution: option 2

S2

S1

o1

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 36 / 50



Backward search Observations

Full observability ⇒ arbitrary branching
A different plan can be used for every state

S2

o1 o2 o3 o4 o5 o6 o7

S1
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Backward search Algorithm

A systematic backward algorithm

Idea: always split belief states into all observational classes.

Initially, the set of solved belief states includes the set bG ∩ Ci for each
observational class Ci , where bG is the belief state containing all states
satisfying the goal.

Then iterate the following steps:

1. Pick one belief state bi for each observational class and compute their
union b.

2. If b includes all initial states  solution.

3. Otherwise, compute the strong preimage of b with respect to some
operator o.

4. Split the resulting set of states to belief states for different
observational classes and add them to the set of solved belief states.
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Backward search Example

Backward search
Example

I Blocks world with three blocks

I Goal: all blocks are on the table

I Only the variables clear(X ) are observable.

I A block can be moved onto the table if the block is clear.

I 8 observational classes corresponding to the 8 valuations of {clear(A),
clear(B), clear(C)} (one of the valuations does not correspond to a
blocks world state).
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Backward search Example

Plan construction by backward search
Example: goal belief state
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Backward search Example

Plan construction by backward search
Example: backward step with red-block-onto-table
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Backward search Example

Plan construction by backward search
Example: backward step with green-block-onto-table
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Backward search Example

Plan construction by backward search
Example: backward step with blue-block-onto-table
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Backward search Example

Plan construction by backward search
Example: backward step with red-block-onto-table
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Backward search Example

Plan construction by backward search
Example: backward step with green-block-onto-table

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 45 / 50



Backward search Example

Plan construction by backward search
Example: backward step with blue-block-onto-table
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Backward search Example

Plan construction by backward search
Example: backward step with red-block-onto-table
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Backward search Example

Plan construction by backward search
Example: backward step with green-block-onto-table
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Backward search Example

Plan construction by backward search
Example: backward step with blue-block-onto-table
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Summary

Summary

I Planning with partial observability in general requires more general
classes of plans than the fully observable and unobservable special
cases.

I It appears to be significantly harder.
I Algorithmic ideas are similar to the simpler cases:

I Reduction to full observability by viewing belief states as states.
I Forward search in AND/OR trees.
I Dynamic-programming style backward construction of solvable belief

states, starting from goal belief states.
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