
Principles of AI Planning
February 7th, 2007 — Nondeterministic planning with partial observability
Introduction

Reduction to fully observable case
Idea
Basic translation
Caveat
Observations
Discussion

Forward search
Idea
Algorithm

Backward search
Idea
Observations
Algorithm
Example

Summary
M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 1 / 50

Principles of AI Planning
Nondeterministic planning with partial observability

Malte Helmert Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

February 7th, 2007

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 2 / 50

Introduction

Nondeterministic planning with partial observability

Planning with partial observability is harder than both the fully observable
and unobservable cases:

I Memoryless plans (where the next action to take only depends on the
current situation) as in the fully observable case are not sufficient.

I Of course, we cannot define a memoryless plan based on individual
states because limited observability makes some states
indistinguishable.

I It is also not sufficient to consider memoryless plans where the action
to take is based on the current observation class.

I Conformant (i.e., non-branching) plans as in the unobservable case
are also clearly not powerful enough.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 3 / 50

Introduction

Strong planning

I We will (mostly) consider the strong planning problem.

I Generalizations to the strong cyclic planning are similar to the fully
observable case.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 4 / 50

Introduction

Algorithms

Similar to other variants of the planning problem, there are three major
approaches to nondeterministic planning with partial observability:

I Reduction to another problem

I Forward search

I Backward search

We will consider one example for each of these.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 5 / 50

Introduction

Algorithms
Three approaches

Reduction to another problem:

I Reduce to planning with full observability.

Forward search (progression):

I Define the search space as an AND/OR tree.

I Define a heuristic function for such trees.

I Use a tree search algorithm such as AO∗ or Proof Number Search.

Backward search (regression):

I Start from the set of goal states.

I Find state sets from which already generated state sets can be
reached by applying operators and making observations.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 6 / 50

Reduction Idea

Reduction to fully observable case

I Memoryless plans are not sufficient for the partially observable case
because a plan must take into account the knowledge collected in
previous observations etc.

I During plan execution, this knowledge is represented in the current
belief state.

I One idea for solving a partially observable task T is to map it to a
fully observable task T ′ where each belief state of T corresponds to a
state of T ′.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 7 / 50

Reduction Basic translation

Reduction to fully observable case
State variables

Let T = 〈A, I ,O,G ,V 〉 be the input task with state set S .
We define the fully observable task T ′ = 〈A′, I ′,O ′,G ′,A′〉.

State variables

I For each state s ∈ S , there is one state variable vs ∈ A′.

I Intuition: vs is true in a state of T ′ iff it is possible that we are
currently in s.

I Formally: A′ := { vs | s ∈ S }

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 8 / 50

Reduction Basic translation

Reduction to fully observable case
Initial state formula

Let T = 〈A, I ,O,G ,V 〉 be the input task with state set S .
We define the fully observable task T ′ = 〈A′, I ′,O ′,G ′,A′〉.

Initial state formula

I The initial state of T ′ is fully deterministic (in terms of A′), as there
is only one possible initial belief state in T .

I For all states s in the initial belief state of T , variable vs is initially
true. Other variables are initially false.

I Formally: I ′ :=
∧

s∈S ,s|=I vs ∧
∧

s∈S ,s 6|=I ¬vs .

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 9 / 50

Reduction Basic translation

Reduction to fully observable case
Initial state formula

Let T = 〈A, I ,O,G ,V 〉 be the input task with state set S .
We define the fully observable task T ′ = 〈A′, I ′,O ′,G ′,A′〉.

Goal formula

I A goal belief state of T is one where all possible states satisfy G .

I This is equivalent to saying that no state in the current belief state
violates G .

I We can express that by saying that none of the variables vs for states
s violating G are true.

I Formally: G ′ :=
∧

s∈S ,s 6|=G ¬vs .

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 10 / 50

Reduction Basic translation

Reduction to fully observable case
Initial state formula

Let T = 〈A, I ,O,G ,V 〉 be the input task with state set S .
We define the fully observable task T ′ = 〈A′, I ′,O ′,G ′,A′〉.

Operators (preconditions)

I Each operator o = 〈c , e〉 ∈ O is translated to an operator
o ′ = 〈c ′, e ′〉 ∈ O ′.

I To test whether operator o is applicable, we must verify that all
states in the current belief state satisfy c .

I Again, this is equivalent to saying that no state in the current belief
state violates c .

I Formally: c ′ :=
∧

s∈S ,s 6|=c ¬vs .

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 11 / 50

Reduction Basic translation

Reduction to fully observable case
Initial state formula

Let T = 〈A, I ,O,G ,V 〉 be the input task with state set S .
We define the fully observable task T ′ = 〈A′, I ′,O ′,G ′,A′〉.

Operators (effects)

I Each operator o = 〈c , e〉 ∈ O is translated to an operator
o ′ = 〈c ′, e ′〉 ∈ O ′.

I After applying operator o, we can possibly be in state s ∈ S iff we
were previously in some state in which o is applicable and from which
applying o can lead to s.

I This is modeled by an effect
((

∨
t∈preimgo(s) vt) B vs) ∧ (¬(

∨
t∈preimgo(s) vt) B ¬vs).

I Formally: e ′ :=
∧

s∈S(((
∨

t∈preimgo(s) vt) B vs) ∧
(¬(

∨
t∈preimgo(s) vt) B ¬vs)).

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 12 / 50

Reduction Caveat

Reduction to fully observable case
Done?

I We have translated state variables, initial state formula, goal formula
and operators.

Is that it?

I So far, our translation is independent of the set of observable
variables V !

I Moreover, the resulting planning task is deterministic!

Is there an error in our modeling?

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 13 / 50

Reduction Caveat

Reduction to fully observable case
Not done

Is there an error in our modeling?

I No, but it is not complete yet: There are solvable partially observable
tasks T for which T ′ (as defined so far) is unsolvable.

I The reason for this is that he have not yet modeled the possibility of
observing state variables.

Modeling observations requires introducing nondeterminism in T ′.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 14 / 50

Reduction Observations

Reduction to fully observable case
Observations

Let T = 〈A, I ,O,G ,V 〉 be the input task with state set S .
We define the fully observable task T ′ = 〈A′, I ′,O ′,G ′,A′〉.

Observations

I In general, our formalism allows observations to be general formulas
over V . However, it is sufficient to only consider atomic observations
u ∈ V .

I If we observe u in a belief state b, we can end up in two different
belief states: one containing exactly the states of b where u is true,
and one containing exactly the states of b where u is false.

I In other words, either the belief states where u is false or the belief
states where u is true are ruled out.

I Formally: Translate observation of u ∈ V into an operator
〈>, e ′u〉 ∈ O ′ with e ′u := (

∧
s∈S ,s 6|=u ¬vs) |(

∧
s∈S ,s|=u ¬vs).

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 15 / 50

Reduction Discussion

Reduction to fully observable case
Discussion

I Note that the reduction works both for strong and for strong cyclic
planning.

I The reduction has a significant drawback: Since it introduces as
many state variables as there are states in the original task, the
resulting problem is exponentially larger than the original one.

I This will usually not be practical.

I On the other hand, there does not really exist any truly “practical”
algorithm for nondeterministic planning with partial observability.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 16 / 50

Reduction Discussion

Reduction to fully observable case
Complexity result

I Using an exponential-time planning algorithm for fully observable
planning, T ′ can be solved in time O(c‖T ′‖), and ‖T ′‖ = O(c‖T ‖).

I Thus, we have a double-exponential (O(cc‖T ‖
)) algorithm for

nondeterministic planning for partial observability.

I We will later prove that this is worst-case optimal.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 17 / 50

Forward search Idea

Search in AND/OR trees

In forward search, plans are represented as trees whose nodes represent the
situations arising during plan execution.

I The root node represents the initial situation.
I OR nodes correspond to choosing and applying operators.

I Note how these relate to operators in T ′ in the earlier reduction.

I AND nodes correspond to making observations.
I Note how these relate to nondeterminism in T ′ in the earlier reduction.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 18 / 50

Forward search Idea

Search in AND/OR trees
Example

OR

AND

bI

imgo1(bI) imgo2(bI) . . . imgon(bI)

{ s ∈ imgo2(bI) | s |= ϕ } { s ∈ imgo2(bI) | s 6|= ϕ }

o1 o2 on

ϕ ¬ϕ

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 19 / 50

Forward search Algorithm

AND/OR trees
Formal definition

Definition
An AND/OR tree is a labeled rooted tree where

I internal nodes are labeled with (∧) or (∨)
(AND nodes/OR nodes), and

I leaves are labeled with (>) or (⊥)
(true leaves/false leaves).

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 20 / 50

Forward search Algorithm

AND/OR trees
Truth value

Definition
An AND/OR tree evaluates to true iff

I it is a true leaf,

I it is an OR node with a child that evaluates to true, or

I it is an AND node whose children all evaluate to true.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 21 / 50

Forward search Algorithm

Partial plan trees

Definition
A partial plan tree for a nondeterministic planning task 〈A, I ,O,G ,V 〉
with state set S is an AND/OR tree with the following properties:

I Each node n has an associated belief state b(n).

I If n is the root node, then b(n) = { s ∈ S | s |= I }.
I A leaf node n is labeled with (>) iff b(n) |= G . In this case it is called

a goal node, otherwise an open node.

I . . .

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 22 / 50

Forward search Algorithm

Partial plan trees

Definition (ctd.)

A partial plan tree for a nondeterministic planning task 〈A, I ,O,G ,V 〉
with state set S is an AND/OR tree with the following properties:

I . . .

I An OR node n (also called an operator node) has one child no for
each operator o ∈ O applicable in b(n), with associated belief state
b(no) = appo(b(n)).

I An AND node n (also called an observation node) has an associated
formula ϕ(n) over V . It has two children:

I n> with b(n>) = { s ∈ b(n) | s |= ϕ}
I n⊥ with b(n⊥) = { s ∈ b(n) | s 6|= ϕ}.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 23 / 50

Forward search Algorithm

Forward planning as search in partial plan trees

I Clearly, a partial plan tree represents a strategy.

I This strategy is a strong plan iff the tree evaluates to true.

We thus obtain a (nondeterministic) forward search algorithm:

Forward search in partial plan trees

def expand-tree(T):
Set T to the partial plan tree for T that consists

of a single leaf, labeled with the initial belief state.
while T evaluates to false:

Choose some open leaf n in T .
Replace n by an operator or observation node,

adding the necessary children to T .

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 24 / 50

Forward search Algorithm

Search in AND/OR trees
Issues

I There is a conflict between plan size and observing:
I With many observations, plans become very big.
I With few observations, it may be impossible to find a plan.

Trying out all possible ways to branch is not feasible.
No good general solutions to this problem exist.

I AND-OR search algorithms use heuristics for making branching
decisions.

I But they do not really work well. . .

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 25 / 50

Backward search Idea

Backward search algorithms

I Backward search algorithms are similar in flavour to the ones for fully
observable problems.

I Backward steps with operator application:
I Compute strong preimages.

I Backward steps with observations:
I Compute union of belief states from disjoint observational classes.
I Note: Can always take subsets of solved belief states to make them

disjoint.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 26 / 50

Backward search Idea

Backward search algorithms
Regression: strong preimages

S

spreimg(S)

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 27 / 50

Backward search Observations

Observations in backward search

I Let C1, . . . ,Cn be different observational classes.

I Let B1, . . . ,Bn be belief states with Bi ⊆ Ci for all i = 1, . . . , n for
which we have a solution plan.

I Then we can find a plan for B = B1 ∪ · · · ∪ Bn by first observing in
which class Ci we are and then applying the corresponding plan for Bi .

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 28 / 50

Backward search Observations

Observations in backward search
Example: Combining two belief states

S2

o1 o2 o3 o4 o5 o6 o7

S1

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 29 / 50

Backward search Observations

Observations in backward search
Example: Combining two belief states, option 1

S2

o1 o2 o3 o4 o5 o6 o7

S1

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 30 / 50

Backward search Observations

Observations in backward search
Example: Combining two belief states, option 2

S2

o1 o2 o3 o4 o5 o6 o7

S1

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 31 / 50

Backward search Observations

Observations in backward search
Example: Combining two belief states, option 3

S2

o1 o2 o3 o4 o5 o6 o7

S1

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 32 / 50

Backward search Observations

Observations in backward search
Example: Combining two belief states, option 4

S2

o1 o2 o3 o4 o5 o6 o7

S1

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 33 / 50

Backward search Observations

No observability ⇒ no branching
Only one observational class: no choice between subplans

S2

S1

o1

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 34 / 50

Backward search Observations

No observability ⇒ no branching
No choice between subplans during execution: option 1

S2

S1

o1

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 35 / 50

Backward search Observations

No observability ⇒ no branching
No choice between subplans during execution: option 2

S2

S1

o1

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 36 / 50

Backward search Observations

Full observability ⇒ arbitrary branching
A different plan can be used for every state

S2

o1 o2 o3 o4 o5 o6 o7

S1

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 37 / 50

Backward search Algorithm

A systematic backward algorithm

Idea: always split belief states into all observational classes.

Initially, the set of solved belief states includes the set bG ∩ Ci for each
observational class Ci , where bG is the belief state containing all states
satisfying the goal.

Then iterate the following steps:

1. Pick one belief state bi for each observational class and compute their
union b.

2. If b includes all initial states solution.

3. Otherwise, compute the strong preimage of b with respect to some
operator o.

4. Split the resulting set of states to belief states for different
observational classes and add them to the set of solved belief states.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 38 / 50

Backward search Example

Backward search
Example

I Blocks world with three blocks

I Goal: all blocks are on the table

I Only the variables clear(X) are observable.

I A block can be moved onto the table if the block is clear.

I 8 observational classes corresponding to the 8 valuations of {clear(A),
clear(B), clear(C)} (one of the valuations does not correspond to a
blocks world state).

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 39 / 50

Backward search Example

Plan construction by backward search
Example: goal belief state

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 40 / 50

Backward search Example

Plan construction by backward search
Example: backward step with red-block-onto-table

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 41 / 50

Backward search Example

Plan construction by backward search
Example: backward step with green-block-onto-table

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 42 / 50

Backward search Example

Plan construction by backward search
Example: backward step with blue-block-onto-table

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 43 / 50

Backward search Example

Plan construction by backward search
Example: backward step with red-block-onto-table

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 44 / 50

Backward search Example

Plan construction by backward search
Example: backward step with green-block-onto-table

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 45 / 50

Backward search Example

Plan construction by backward search
Example: backward step with blue-block-onto-table

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 46 / 50

Backward search Example

Plan construction by backward search
Example: backward step with red-block-onto-table

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 47 / 50

Backward search Example

Plan construction by backward search
Example: backward step with green-block-onto-table

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 48 / 50

Backward search Example

Plan construction by backward search
Example: backward step with blue-block-onto-table

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 49 / 50

Summary

Summary

I Planning with partial observability in general requires more general
classes of plans than the fully observable and unobservable special
cases.

I It appears to be significantly harder.
I Algorithmic ideas are similar to the simpler cases:

I Reduction to full observability by viewing belief states as states.
I Forward search in AND/OR trees.
I Dynamic-programming style backward construction of solvable belief

states, starting from goal belief states.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning February 7th, 2007 50 / 50

	Introduction
	Reduction to fully observable case
	Idea
	Basic translation
	Caveat
	Observations
	Discussion

	Forward search
	Idea
	Algorithm

	Backward search
	Idea
	Observations
	Algorithm
	Example

	Summary

