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Motivation

We have seen that non-determinism adds to the
complexity in the case of full observability (PSPACE  
EXP)

Conformant planning probably adds also to the complexity
because of the larger search space

But how much? Is it easier or harder than
non-deterministic, fully observable planning?

Again, the main motivation is to determine the limit of
what is possible algorithmically: Should we try to develop
a polynomial algorithm? Or would Local search algorithm
suffice?
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It turns out that conformant planning is
EXPSPACE-complete

In other words, it is (probably) more complicated than
planning in the fully observable case (which is
EXP-complete)

The basic proof idea is very similar to the
PSPACE-completeness proof for deterministic planning.

The main difficulty is that we have to deal with an
exponentially larger tape, which has to be fully
instantiated, i.e., we need exponentially many operators
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The conformant planning problem

ConformantPlanEx (conformant plan existence)

Given: nondeterministic planning task 〈A, I, O, G, V 〉
with no observability (V = ∅)

Question: Is there a conformant plan for the task?

We do not consider the analog of the bounded plan
existence problem (PlanLen).
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Membership in EXPSPACE

ConformantPlanEx ∈ EXPSPACE

Generate a classical propositional planning task which has one
state variable for each state of the input task.

states of the generated planning task correspond to
belief states of the input task

operators, initial states, goal “easy” (wrt. the unfolded
state space) to convert

 exponential-time reduction to a problem in PSPACE
 EXPSPACE algorithm
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Hardness for EXPSPACE

Idea:

generic reduction for DTMs with exponential space

TM states and tape head position easily representable
with polynomially many state variables

Problem:

must encode exponentially many tape cell contents
with polynomially many state variables
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Hardness for EXPSPACE (continued)

The trick:

only keep track of the contents of one tape cell
 watched tape cell

which tape cell is watched is unobservable

 plan must work correctly for all possible choices

 plan must remain faithful to the TM computation
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Reduction: State Variables

Let p be a polynomial such that 2p is a space bound.

Given DTM 〈Σ,�, Q, q0, l, δ〉 and input w0 . . . wn,
define relevant tape positions X = {0, . . . , 2p(n) − 1}.

State variables

Convention:
Use bars to denote vectors of p(n) state variables
encoding a number in the range 0 . . . , 2p(n) − 1.

stateq for all q ∈ Q

head – the head position

contenta for all a ∈ Σ�

watched – the position of the watched tape cell
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Spelling it out

head ≡ head1 . . . headp(n)

(head = 1) ≡ ¬head1 ∧ . . .¬headp(n)−1 ∧ headp(n)

(head = watched) ≡
(¬head1 ∨ watched1) ∧ (head1 ∨ ¬watched1) ∧ . . .

head := head + 1 ≡ (¬headp(n) B headp(n))∧
(¬headp(n)−1 ∧ headp(n) B headp(n)−1 ∧ ¬headp(n)) . . .

head := head− 1 ≡ . . .
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Reduction: Initial State Formula

Initial state formula

I = stateq0 ∧
∧

q∈Q\{q0}

¬stateq

∧ head = 0

∧
n∧

i=0

((watched = i) → contentwi)

∧ (watched > n) → content�

∧
∧

a∈Σ�

∧
a′∈Σ�\{a}

¬(contenta ∧ contenta′)

Note: watched tape cell unspecified
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Reduction: Operators

Operators

One operator for each transition rule δ(q, a) = (q′, a′,∆):
precondition:

stateq

∧ ((head = watched) → contenta)
If ∆ = −1, conjoin with head > 0.
If ∆ = +1, conjoin with head < 2p(n) − 1.

effect:
¬stateq

∧ stateq′

∧ (head := head + ∆)
∧ ((head = watched) B (¬contenta ∧ contenta′))
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Reduction: Goal

Goal

G =
∨

q∈QY
stateq
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There exists a plan iff there exists an accepting
computation

Proof.

Assume that there exists an accepting computation and
consider the corresponding conformant plan. The belief state
contains one world state for each (watched) tape cell.
Consequently, each operator is applicable and changes the
appropriate tape contents in the watched tape cell in the
corresponding world state. The TM state and head position is
changed in all world states. Hence, the last operator switches
to an accepting TM state and the plan reaches the goal.

Conversely, . . .
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There exists a plan iff there exists an accepting
computation [continued]

Continued.

Conversely, assume there exists a plan that reaches the goal
and that this plan does not correspond to an accepting
computation. Consider the first deviating operator. If the TM
state is wrong, then the operator is not applicable. Similarly, if
the symbol is wrong, then there is one world state in the belief
state where the watched tape cell is the cell under the head.
So the operator is not applicable. Hence it cannot be a
successful plan.

So, there exists a plan iff there exists an accepting computation
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Summary

Conformant planning is EXPSPACE-hard, i.e. harder than
nondeterministic planning under full observability

Proof is done using the “watched tape cell” trick

The TM tape is simulated using the different world states
in a belief state

Reduction can be extended to cover the simpler case,
where the initial state is described by a CNF formula and
all conditions (including the goal) are conjunctions of
positive atoms (Conformant-FF).
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