
Principles of AI Planning
January 31st, 2007 — Conformant planning

Introduction
Observability
Conformant planning
Motivation
Belief space

Algorithms
General approach
Heuristic search
Distance heuristics
Cardinality heuristics
Lazy representations
Extending the FF heuristics

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 31st, 2007 1 / 40

Principles of AI Planning
Conformant planning

Malte Helmert Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

January 31st, 2007

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 31st, 2007 2 / 40

Introduction Observability

Reminder: Restrictions on observability

Let 〈A, I ,O,G ,V 〉 be a problem instance in nondeterministic planning.

1. If A = V , the problem instance is fully observable.

2. If V = ∅, the problem instance is unobservable.

3. If there are no restrictions on V then the problem instance is partially
observable.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 31st, 2007 3 / 40

Introduction Conformant planning

Planning without observability: conformant planning

I Here we consider the second special case of planning with partial
observability: planning without observability.

I Plans are sequences of actions because observations are not possible,
actions cannot depend on the nondeterministic events or uncertain
initial state, and hence the same actions have to be taken no matter
what happens.

I Techniques needed for planning without observability can often be
generalized to the general partially observable case.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 31st, 2007 4 / 40



Introduction Motivation

Why acting without observation?

I Conformant planning is like planning to act in an environment while
you are blind and deaf.

I Observations could be expensive or it is preferable to have a simple
plan.

I Example: Finding synchronization sequences in hardware circuits

I Example: Initializing a system consisting of many components that
are in unknown states.

I Internal motivation: try to understand the unobservable case so that
one can better deal with the more complicated partially observable
case.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 31st, 2007 5 / 40

Introduction Belief space

Belief states and the belief space

I The current state is not in general known during plan execution.
Instead, a set of possible current states is known.

I The set of possible current states forms the belief state.

I The set of all belief states is the belief space.

I If there are n states and none of them can be observationally
distinguished from another, then there are 2n − 1 belief states.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 31st, 2007 6 / 40

Introduction Belief space

The belief space

1. Let B be a belief state (a set of states).

2. Operator o is executable in B if it is executable in every s ∈ B.

3. When o is executed, possible next states are T = imgo(B).

4. Belief states can be succinctly represented using Boolean formulae or
BDDs.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 31st, 2007 7 / 40

Introduction Belief space

The belief space
Example

Example (Next slide)

Belief space generated by states over two Boolean state variables.
n = 2 state variables, 2n = 4 states, 22n − 1 = 15 belief states
red action: complement the value of the first state variable
blue action: assign a random value to the second state variable

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 31st, 2007 8 / 40



Introduction Belief space

The belief space
Example

00

01

10

11

{00, 01}

{00, 10}

{00, 11}

{01, 10}

{01, 11}

{10, 11}

{01, 10, 11}{00, 10, 11}

{00, 01, 11}{00, 01, 10}

{00, 01,
10, 11}

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 31st, 2007 9 / 40

Introduction Belief space

The belief space
Example

I A robot without any sensors,
anywhere in a room of size
7× 8.

I Actions: go North, South, East,
West; if no way, just stay where
you are

I Plan for getting out: 6 × West,
7 × North, 1 × East, 1 × North

I On the next slides we depict one
possible location of the robot
(•) and the change in the belief
state at every execution step by
gray fields.

door

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 31st, 2007 10 / 40

Introduction Belief space

Example: after WWW

door

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 31st, 2007 14 / 40

Introduction Belief space

Example: after WWWWWW

door

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 31st, 2007 17 / 40



Introduction Belief space

Example: after WWWWWWNNN

door

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 31st, 2007 20 / 40

Introduction Belief space

Example: after WWWWWWNNNNNNNE

door

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 31st, 2007 25 / 40

Introduction Belief space

The belief space
Sorting networks

Sorting networks consist of
comparator-swapper elements
that compare the values of two
inputs and output them sorted:
if first input is bigger than the
second, then they are
swapped, otherwise the
outputs are the inputs.
A sorting network for n inputs
should sort any input
sequence.

i0

i1

i2

o0

o1

o2

i0

i1

i2

i3

o0

o1

o2

o3

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 31st, 2007 27 / 40

Introduction Belief space

The belief space
Sorting networks

Theorem
If a sorting network correctly sorts any sequence of binary digits 0 and 1,
then it correctly sorts any input sequence.

3-input sorting networks can be formalized as a succinct transition system
〈A, I ,O,G ,V 〉 where

A = {a0, a1, a2}
I = >

O = {o01, o02, o12}
G = (a0→a1) ∧ (a1→a2)

o01 = 〈>, (a0 ∧ ¬a1) B (¬a0 ∧ a1)〉
o02 = 〈>, (a0 ∧ ¬a2) B (¬a0 ∧ a2)〉
o12 = 〈>, (a1 ∧ ¬a2) B (¬a1 ∧ a2)〉

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 31st, 2007 28 / 40



Introduction Belief space

The belief space
Sorting networks

A plan for the 3-input sorting network is o12, o02, o01.
The initial states are 000, 001, 010, 011, 100, 101, 110, 111.
The goal states are 000, 001, 011, 111
The belief state evolves as follows.

000, 001, 010, 011, 100, 101, 110, 111 initially
000, 001, 010,011, 100, 101, 110,111 after o12

000, 001, 010,011, 100,101, 110,111 after o02

000, 001, 010,011, 100, 101, 110,111 after o01

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 31st, 2007 29 / 40

Algorithms General approach

Algorithms for unobservable problems

1. Find an operator sequence o1, . . . , on that reaches a state satisfying G
starting from any state satisfying I .

2. o1 must be applicable in all states B0 = {s ∈ S |s |= I} satisfying I .
o2 must be applicable in all states in B1 = imgo1(B0).
oi must be applicable in all states in Bi = imgoi (Bi−1) for all
i ∈ {1, . . . , n}.
Terminal states must be goal states: Bn ⊆ {s ∈ S |s |= G}.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 31st, 2007 30 / 40

Algorithms General approach

Algorithms for unobservable problems

I Algorithms for deterministic planning can be lifted to the level of
belief states.

I We can do forward search in the belief space with imgo(B), backward
search with spreimgo(B).

I We have already introduced implementation techniques that allow
representing belief states B as formulae φ and computing images and
pre-images respectively as imgo(φ) and spreimgo(φ).

I Size of belief space is exponentially bigger than the size of the
corresponding state space.
For n state variables there are 2n world states, and the belief space
has a size of 22n − 1.

I Either explicit representation of world states or symbolic
representation of a belief state using a BDD.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 31st, 2007 31 / 40

Algorithms Heuristic search

Heuristic search in belief space

progression/regression + heuristic search (A∗, IDA∗, simulated annealing,
...)
Heuristics:

I heuristic 1: backward distances (for forward search)

I heuristic 2: cardinality of belief state (for both forward and backward
search)

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 31st, 2007 32 / 40



Algorithms Distance heuristics

Distance heuristics

Use backward distances of states as a heuristic:

D0 = G
Di+1 = Di ∪

⋃
o∈O spreimgo(Di ) for all i ≥ 1

A lower bound on plan length for belief state B is j if B ⊆ Dj and
B 6⊆ Dj−1 for j ≥ 1.
This is an admissible heuristic (does not overestimate the distance).

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 31st, 2007 33 / 40

Algorithms Cardinality heuristics

Cardinality heuristics

I Backward search: Prefer operators that increase the size of the belief
state, i.e. find a plan suffix that reaches a goal state from more
starting states.

I Forward search: Prefer operators that decrease the size of the belief
state, i.e. reduce the uncertainty about the current state and make
reaching goals easier.
For the room navigation example this heuristic works very well until
the size of the belief state is 1.

I This heuristic is not admissible.

I Computing the cardinality of a belief state from its BDD
representation takes linear time. (Propositional logic in general:
problem is NP-hard.)

I Backward search with the cardinality heuristic seems to work
particularly well on the examples from the literature.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 31st, 2007 34 / 40

Algorithms Lazy representations

Conformant-FF: Lazy representation of belief states

I Instead of computing the belief states (explicitly or symbolically), one
could just store the representation of the initial state and the plan (as
propositional formula) so far – a lazy representation

I Works particularly well when all conditions in STRIPS-form, i.e.,
conjunctions of atoms and deterministic operators (can be extended)

I Necessarily true atoms at each point in the plan can be computed
using one UNSAT-call

I The FF heuristic hFF can be extended to deal with belief state
planning by using an unsound approximation of the propositional
formula.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 31st, 2007 35 / 40

Algorithms Lazy representations

Representing the plan as a CNF formula

I Let π be the plan 〈o1, . . . , on〉.
I The atoms ai are indexed by the time point t, i.e., ai (t).

I The initial belief state (at time point 0) is presented as a CNF
formula over literals indexed with 0.

I Given we have a representation for the plan up time point t, we
extend the formula as follows:

1. Effect axioms: For every effect e (in normal form) of ot+1 with
e = ((a1 ∧ . . . ∧ am) B l), we insert the formula

¬a1(t) ∨ . . . ∨ ¬am(t) ∨ l(t + 1)

2. Frame axioms: for every atom a, let e1, . . . , en be the effects that
contain a as a negative atomic effect; for every tuple a1, . . . , an such
that ai is a part of ei ’s effect condition, we insert

¬a(t) ∨ a1(t) ∨ . . . ∨ an(t) ∨ a(t + 1).

Similarly for positive atomic effects!

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 31st, 2007 36 / 40



Algorithms Lazy representations

Example

I Operator o = 〈>, (a ∧ c) B ¬a〉
I Initial belief state = a ∨ b,¬a ∨ ¬b, c

I Plan π = 〈o〉
I Construction:

1. Initial state: a(0) ∨ b(0),¬a(0) ∨ ¬b(0), c(0)
2. Effect axiom: ¬a(0) ∨ ¬c(0) ∨ ¬a(1)
3. Simple positive frame axioms: ¬b(0) ∨ b(1),¬c(0) ∨ c(1)
4. Complex positive frame axioms: ¬a(0)∨ a(0)∨ a(1),¬a(0)∨ c(0)∨ a(1)
5. Simple negative frame axioms: a(0)∨¬a(1), b(0)∨¬b(1), c(0)∨¬c(1)

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 31st, 2007 37 / 40

Algorithms Lazy representations

Computing the necessary true and false atoms

I In order to check whether an operator is applicable or the goal has
been reached, one need to know, whether a set of atoms is necessarily
true.

I Simply add ¬ai (t) and check for satisfiability. If it is unsatisfiable, ai

is necessarily true at time point t

I Necessarily true and false atoms can be cached to speed up reasoning.

I Problem: Designing a search heuristic in belief space!

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 31st, 2007 38 / 40

Algorithms Extending the FF heuristics

Extending the hFF heuristics

I Reminder: FF computes the heuristic estimate by ignoring negative
effects and trying to generate near-optimal plan for this relaxation.

I We do the same here and additionally . . .

I We over-approximate the clause set by reducing all clauses to
two-literal clauses – randomly

I This theory is stronger, i.e. it is complete and most probably unsound

I Satisfiability can be solved in linear time

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 31st, 2007 39 / 40

Algorithms Extending the FF heuristics

Summary

I Conformant planning is planning in a non-deterministic context
without observation

I The search space is the belief space, the space of all belief sets.

I Techniques from classical planning can be lifted to belief space search

I BDDs are one possibility to implement this kind of search and model
counting appears to be a reasonable heuristics

I Another possibility is lazy representation of plans as in Conformant-FF

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 31st, 2007 40 / 40


	Introduction
	Observability
	Conformant planning
	Motivation
	Belief space

	Algorithms
	General approach
	Heuristic search
	Distance heuristics
	Cardinality heuristics
	Lazy representations
	Extending the FF heuristics


