Principles of AI Planning

Complexity of nondeterministic planning with full observability

Review

Complexity
results
Summary

Malte Helmert Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

January 26th, 2007

Overview

- Similar to the earlier analysis of deterministic planning, we will now study the computational complexity of nondeterministic planning with full observability.
- We consider the case of strong planning.
- The results for strong cyclic planning are identical.

As usual, the main motivation for such a study is to determine the limit of what is possible algorithmically: Should we try to develop a polynomial algorithm?

Comparison to deterministic planning

- The basic proof idea is very similar to the PSPACE-completeness proof for deterministic planning.
- The main difference is that we consider alternating Turing Machines (ATMs) instead of deterministic Turing Machines (DTMs) in the reduction.
- Due to the similarity to the earlier proof, we first review some of the concepts introduced in the earlier lecture.

Alternating Turing Machines

Definition: Alternating Turing Machine
Al Planning
M. Helmert,

Alternating Turing Machine (ATM) $\left\langle\Sigma, \square, Q, q_{0}, l, \delta\right\rangle$:
Motivation
(1) input alphabet Σ and blank symbol $\square \notin \Sigma$

- alphabets always non-empty and finite

Review
ATMs

- tape alphabet $\Sigma_{\square}=\Sigma \cup\{\square\}$
(2) finite set Q of internal states with initial state $q_{0} \in Q$
(3) state labeling $l: Q \rightarrow\{\mathrm{Y}, \mathrm{N}, \exists, \forall\}$
- accepting, rejecting, existential, universal states $Q_{\mathrm{Y}}, Q_{\mathrm{N}}, Q_{\exists}, Q_{\forall}$
- terminal states $Q_{\star}=Q_{\mathrm{Y}} \cup Q_{\mathrm{N}}$
- nonterminal states $Q^{\prime}=Q_{\exists} \cup Q_{\forall}$
(9) transition relation $\delta \subseteq\left(Q^{\prime} \times \Sigma_{\square}\right) \times\left(Q \times \Sigma_{\square} \times\{-1,+1\}\right)$

Turing Machine configurations

Let $M=\left\langle\Sigma, \square, Q, q_{0}, l, \delta\right\rangle$ be an ATM.

Definition: Configuration

A configuration of M is a triple $(w, q, x) \in \Sigma_{\square}^{*} \times Q \times \Sigma_{\square}^{+}$.

- w : tape contents before tape head
- q : current state
- x : tape contents after and including tape head

Turing Machine transitions

Let $M=\left\langle\Sigma, \square, Q, q_{0}, l, \delta\right\rangle$ be an ATM.
Al Planning
M. Helmert
B. Nebel

Definition: Yields relation

A configuration c of M yields a configuration c^{\prime} of M, in symbols $c \vdash c^{\prime}$, as defined by the following rules, where $a, a^{\prime}, b \in \Sigma_{\square}, w, x \in \Sigma_{\square}^{*}, q, q^{\prime} \in Q$ and $\left((q, a),\left(q^{\prime}, a^{\prime}, \Delta\right)\right) \in \delta:$

$$
\begin{aligned}
(w, q, a x) \vdash\left(w a^{\prime}, q^{\prime}, x\right) & & \text { if } \Delta=+1,|x| \geq 1 \\
(w, q, a) \vdash\left(w a^{\prime}, q^{\prime}, \square\right) & & \text { if } \Delta=+1 \\
(w b, q, a x) \vdash\left(w, q^{\prime}, b a^{\prime} x\right) & & \text { if } \Delta=-1 \\
(\epsilon, q, a x) \vdash\left(\epsilon, q^{\prime}, \square a^{\prime} x\right) & & \text { if } \Delta=-1
\end{aligned}
$$

ATMs
Complexity
classes
Complexity
results
Summary

Acceptance (space)

Al Planning
M. Helmert
B. Nebel

Let $M=\left\langle\Sigma, \square, Q, q_{0}, l, \delta\right\rangle$ be an ATM.

Definition: Acceptance (space)

Let $c=(w, q, x)$ be a configuration of M.

- M accepts $c=(w, q, x)$ with $q \in Q_{Y}$ in space n iff $|w|+|x| \leq n$.
- M accepts $c=(w, q, x)$ with $q \in Q_{\exists}$ in space n iff M accepts some c^{\prime} with $c \vdash c^{\prime}$ in space n.
- M accepts $c=(w, q, x)$ with $q \in Q_{\forall}$ in space n iff M accepts all c^{\prime} with $c \vdash c^{\prime}$ in space n.

Accepting words and languages

$$
\text { Let } M=\left\langle\Sigma, \square, Q, q_{0}, l, \delta\right\rangle \text { be an ATM. }
$$

Definition: Accepting words

Motivation
Review
ATMs
Complexity
classes
Complexity
results
Summary

Definition: Accepting languages

Let $f: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$.
M accepts the language $L \subseteq \Sigma^{*}$ in space f iff M accepts each word $w \in L$ in space $f(|w|)$, and M does not accept any word $w \notin L$.

Alternating space complexity

Al Planning
M. Helmert
B. Nebel

Definition: ASPACE, APSPACE

Let $f: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$.
Complexity class ASPACE (f) contains all languages accepted in space f by some ATM.

Let \mathcal{P} be the set of polynomials $p: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$.

$$
\operatorname{APSPACE}:=\bigcup_{p \in \mathcal{P}} \operatorname{ASPACE}(p)
$$

Standard complexity classes relationships

Theorem

$\mathrm{P} \subseteq$	NP	$\subseteq A P$
PSPACE \subseteq	NPSPACE	\subseteq APSPACE
EXP \subseteq	NEXP	\subseteq AEXP
$\begin{array}{r} \text { EXPSPACE } \subseteq \\ 2-\mathrm{EXP} \subseteq \end{array}$	NEXPSPAC	$\subseteq \text { AEXPSPACE }$

Review
ATMs
Complexity
classes
Complexity
results
Summary

The power of alternation

Theorem (Chandra et al. 1981)
$A P=P S P A C E$
APSPACE $=$ EXP
AEXP $=$ EXPSPACE

The hierarchy of complexity classes

2-EXPSPACE $=$ 2-NEXPSPACE
2-NEXP

Al Planning
M. Helmert
B. Nebel

Motivation
Review
ATMs
Complexity
classes
Complexity
results
Summary

The strong planning problem

StrongPlanEx (strong plan existence)

Motivation
Review
Complexity
results
The problem
The reduction
The proof
Summary

- We do not consider a nondeterministic analog of the bounded plan existence problem (PlanLen).

Proof idea

Al Planning
M. Helmert
B. Nebel

- We will prove that StrongPlanEx is EXP-complete.
- We already know that the problem belongs to EXP, because we have presented a dynamic programming algorithm that generates strong plans in exponential time.
- We prove hardness for EXP by providing a generic reduction for alternating Turing Machines with polynomial space and use Chandra et al.'s theorem showing APSPACE $=E X P$.

Reduction

Overview

- For a fixed polynomial p, given ATM M and input w, generate planning task which is solvable by a strong plan iff M accepts w in space $p(|w|)$.
- For simplicity, restrict to ATMs which never move to the left of the initial head position (no loss of generality).
- Existential states of the ATM are modeled by states of the

Reduction

- For a fixed polynomial p, given ATM M and input w, generate planning task which is solvable by a strong plan iff M accepts w in space $p(|w|)$.
- For simplicity, restrict to ATMs which never move to the left of the initial head position (no loss of generality).
- Existential states of the ATM are modeled by states of the planning task where there are several applicable operators to choose from.
- Universal states of the ATM are modeled by states of the planning task where there is a single applicable operator with a nondeterministic effect.

Reduction

- For a fixed polynomial p, given ATM M and input w, generate planning task which is solvable by a strong plan iff M accepts w in space $p(|w|)$.

Motivation
Review

- For simplicity, restrict to ATMs which never move to the left of the initial head position (no loss of generality).
- Existential states of the ATM are modeled by states of the planning task where there are several applicable operators to choose from.
- Universal states of the ATM are modeled by states of the planning task where there is a single applicable operator with a nondeterministic effect.

Reduction: state variables

Let p be the space-bound polynomial.
Given ATM $\left\langle\Sigma, \square, Q, q_{0}, l, \delta\right\rangle$ and input $w_{1} \ldots w_{n}$, define relevant tape positions $X=\{1, \ldots, p(n)\}$.

AI Planning
M. Helmert,
B. Nebel

Motivation

Complexity
results
The problem
The reduction
The proof
Summary

Reduction: initial state

Let p be the space bound polynomial.
Given ATM $\left\langle\Sigma, \square, Q, q_{0}, l, \delta\right\rangle$ and input $w_{1} \ldots w_{n}$, define relevant tape positions $X=\{1, \ldots, p(n)\}$.

AI Planning
M. Helmert,
B. Nebel

Initial state formula
Specify a unique initial state.
Initially true:
Motivation

- state $_{q_{0}}$
- head ${ }_{1}$
- content $i_{i, w_{i}}$ for all $i \in\{1, \ldots, n\}$
- content ${ }_{i, \square}$ for all $i \in X \backslash\{1, \ldots, n\}$

Initially false:

- all others

Reduction: goal

Let p be the space bound polynomial.
Al Planning
Given ATM $\left\langle\Sigma, \square, Q, q_{0}, l, \delta\right\rangle$ and input $w_{1} \ldots w_{n}$,
M. Helmert, define relevant tape positions $X=\{1, \ldots, p(n)\}$.
B. Nebel

Motivation

Goal

$\bigvee_{q \in Q_{\curlyvee}}$ state $_{q}$

- Without loss of generality, we can assume that Q_{Y} is a singleton set so that we do not need a disjunctive goal.
- This way, the hardness result also holds for a restricted class of planning tasks ("nondeterministic STRIPS").

Reduction: operators

Let p be the space bound polynomial.
Al Planning
Given ATM $\left\langle\Sigma, \square, Q, q_{0}, l, \delta\right\rangle$ and input $w_{1} \ldots w_{n}$,
M. Helmert, define relevant tape positions $X=\{1, \ldots, p(n)\}$.
B. Nebel

Operators

For $q, q^{\prime} \in Q, a, a^{\prime} \in \Sigma_{\square}, \Delta \in\{-1,+1\}, i \in X$, define

- pre $_{q, a, i}=\operatorname{state}_{q} \wedge$ head $_{i} \wedge$ content $_{i, a}$
- $\operatorname{eff}_{q, a, q^{\prime}, a^{\prime}, \Delta, i}=\neg$ state $_{q} \wedge \neg$ head $_{i} \wedge \neg$ content $_{i, a}$ \wedge state $_{q^{\prime}} \wedge$ head $_{i+\Delta} \wedge$ content $_{i, a^{\prime}}$
- If $q=q^{\prime}$, omit the effects \neg state $_{q}$ and state q^{\prime}.
- If $a=a^{\prime}$, omit the effects \neg content $_{i, a}$ and content ${ }_{i, a^{\prime}}$.

Reduction: operators (continued)

Let p be the space bound polynomial.
Given ATM $\left\langle\Sigma, \square, Q, q_{0}, l, \delta\right\rangle$ and input $w_{1} \ldots w_{n}$, define relevant tape positions $X=\{1, \ldots, p(n)\}$.

Al Planning
M. Helmert,
B. Nebel

Motivation

Complexity
results
The problem
The reduction
The proof
Summary

For each $j \in\{1, \ldots, k\}$, introduce one operator:

- precondition: pre ${ }_{q, a, i}$
- effect: $\operatorname{eff}_{q, a, q_{j}^{\prime}, a_{j}^{\prime}, \Delta_{j}, i}$

Reduction: operators (continued)

Let p be the space bound polynomial.
Given ATM $\left\langle\Sigma, \square, Q, q_{0}, l, \delta\right\rangle$ and input $w_{1} \ldots w_{n}$, define relevant tape positions $X=\{1, \ldots, p(n)\}$.

Al Planning
M. Helmert,
B. Nebel

Motivation

Complexity
results
The problem
The reduction
The proof
Summary

Introduce only one operator:

- precondition: pre ${ }_{q, a, i}$
- effect: $\operatorname{eff}_{q, a, q_{1}^{\prime}, a_{1}^{\prime}, \Delta_{1}, i} \mid \ldots \operatorname{eff}_{q, a, q_{k}^{\prime}, a_{k}^{\prime}, \Delta_{k}, i}$

EXP-completeness of strong planning with full observability

Theorem (Rintanen)

Al Planning
M. Helmert
B. Nebel

StrongPlanEx is EXP-complete.
This is true even if we only allow operators in unary nondeterminism normal form where all deterministic sub-effects and the goal satisfy the STRIPS restriction and if we require a deterministic initial state.

Proof.
Membership in EXP has been shown by providing
exponential-time algorithms that generate strong plans (and decide if one exists as a side effect)

Hardness follows from the previous generic reduction for ATMs with polynomial space bound and Chandra et al.'s theorem

EXP-completeness of strong planning with full observability

Theorem (Rintanen)

Al Planning
M. Helmert,
B. Nebel

StrongPlanEx is EXP-complete.
This is true even if we only allow operators in unary nondeterminism normal form where all deterministic sub-effects and the goal satisfy the STRIPS restriction and if we require a deterministic initial state.

Proof.

Membership in EXP has been shown by providing exponential-time algorithms that generate strong plans (and decide if one exists as a side effect).
Hardness follows from the previous generic reduction for ATMs with polynomial space bound and Chandra et al.'s theorem.

Summary

- Nondeterministic planning is harder than deterministic planning.
- In particular, it is EXP-complete in the fully observable case, compared to the PSPACE-completeness of deterministic planning.
- The hardness result already holds if the operators and goals satisfy some fairly strong syntactic restrictions and there is a unique initial state.
- The introduction of nondeterministic effects corresponds to the introduction of alternation in Turing Machines.
- Later, we will see that restricted observability has an even more dramatic effect on the complexity of the planning problem.

