Principles of AI Planning Complexity of nondeterministic planning with full observability Malte Helmert Bernhard Nebel Albert-Ludwigs-Universität Freiburg January 26th, 2007 Al Planning M. Helmert, B. Nebel Motivation Review Complexity results ## Overview Similar to the earlier analysis of deterministic planning, we will now study the computational complexity of nondeterministic planning with full observability. - We consider the case of strong planning. - The results for strong cyclic planning are identical. As usual, the main motivation for such a study is to determine the limit of what is possible algorithmically: Should we try to develop a polynomial algorithm? AI Planning M. Helmert, B. Nebel Motivation Review Complexity results # Comparison to deterministic planning - The basic proof idea is very similar to the PSPACE-completeness proof for deterministic planning. - The main difference is that we consider alternating Turing Machines (ATMs) instead of deterministic Turing Machines (DTMs) in the reduction. - Due to the similarity to the earlier proof, we first review some of the concepts introduced in the earlier lecture. Al Planning M. Helmert, B. Nebel Motivation Review Complexity results # Alternating Turing Machines ## Definition: Alternating Turing Machine Alternating Turing Machine (ATM) $\langle \Sigma, \square, Q, q_0, l, \delta \rangle$: - input alphabet Σ and blank symbol $\square \notin \Sigma$ - alphabets always non-empty and finite - tape alphabet $\Sigma_{\square} = \Sigma \cup \{\square\}$ - 2 finite set Q of internal states with initial state $q_0 \in Q$ - \bullet state labeling $l: Q \to \{Y, N, \exists, \forall\}$ - accepting, rejecting, existential, universal states $Q_{\mathsf{V}}, Q_{\mathsf{N}}, Q_{\exists}, Q_{\forall}$ - terminal states $Q_{\star} = Q_{\mathsf{Y}} \cup Q_{\mathsf{N}}$ - nonterminal states $Q' = Q_{\exists} \cup Q_{\forall}$ - transition relation $\delta \subseteq (Q' \times \Sigma_{\square}) \times (Q \times \Sigma_{\square} \times \{-1, +1\})$ Al Planning M. Helmert. B. Nebel ATMs # Turing Machine configurations Let $M = \langle \Sigma, \square, Q, q_0, l, \delta \rangle$ be an ATM. ## Definition: Configuration A configuration of M is a triple $(w,q,x) \in \Sigma_{\square}^* \times Q \times \Sigma_{\square}^+$. - w: tape contents before tape head - q: current state - x: tape contents after and including tape head Al Planning M. Helmert, B. Nebel Motivation Review ATMs Complexity Complexity # Turing Machine transitions Let $M = \langle \Sigma, \square, Q, q_0, l, \delta \rangle$ be an ATM. #### Definition: Yields relation A configuration c of M yields a configuration c' of M, in symbols $c \vdash c'$, as defined by the following rules, where $a, a', b \in \Sigma_{\square}$, $w, x \in \Sigma_{\square}^*$, $q, q' \in Q$ and $((q, a), (q', a', \Delta)) \in \delta$: $$\begin{split} (w,q,ax) \vdash (wa',q',x) & \quad \text{if } \Delta = +1, |x| \geq 1 \\ (w,q,a) \vdash (wa',q',\square) & \quad \text{if } \Delta = +1 \\ (wb,q,ax) \vdash (w,q',ba'x) & \quad \text{if } \Delta = -1 \\ (\epsilon,q,ax) \vdash (\epsilon,q',\square a'x) & \quad \text{if } \Delta = -1 \end{split}$$ Al Planning M. Helmert, B. Nebel Motivation Review ATMs Complexity Complexity results # Acceptance (space) Let $M = \langle \Sigma, \square, Q, q_0, l, \delta \rangle$ be an ATM. ## Definition: Acceptance (space) Let c = (w, q, x) be a configuration of M. - M accepts c=(w,q,x) with $q\in Q_{\mathbf{Y}}$ in space n iff $|w|+|x|\leq n$. - M accepts c=(w,q,x) with $q\in Q_\exists$ in space n iff M accepts some c' with $c\vdash c'$ in space n. - M accepts c = (w, q, x) with $q \in Q_{\forall}$ in space n iff M accepts all c' with $c \vdash c'$ in space n. Al Planning M. Helmert, B. Nebel iviotivation ATMs Complexity classes C..... # Accepting words and languages Let $M = \langle \Sigma, \square, Q, q_0, l, \delta \rangle$ be an ATM. ## Definition: Accepting words M accepts the word $w \in \Sigma^*$ in space $n \in \mathbb{N}_0$ iff M accepts (ϵ, q_0, w) in space n. • Special case: M accepts ϵ in time (space) $n \in \mathbb{N}_0$ iff M accepts (ϵ, q_0, \square) in time (space) n. #### Al Planning B. Nebel ATMs # Definition: Accepting languages Let $f: \mathbb{N}_0 \to \mathbb{N}_0$. M accepts the language $L \subseteq \Sigma^*$ in space f iff M accepts each word $w \in L$ in space f(|w|), and M does not accept any word $w \notin L$. # Alternating space complexity ## Definition: ASPACE, APSPACE Let $f: \mathbb{N}_0 \to \mathbb{N}_0$. Complexity class $\mathsf{ASPACE}(f)$ contains all languages accepted in space f by some ATM. Let \mathcal{P} be the set of polynomials $p: \mathbb{N}_0 \to \mathbb{N}_0$. $$\mathsf{APSPACE} := \bigcup_{p \in \mathcal{P}} \mathsf{ASPACE}(p)$$ Al Planning M. Helmert, B. Nebel Motivation ATMs Complexity Complexity results # Standard complexity classes relationships ### Theorem $\begin{array}{cccc} P \subseteq & NP & \subseteq AP \\ PSPACE \subseteq & NPSPACE & \subseteq APSPACE \\ EXP \subseteq & NEXP & \subseteq AEXP \\ EXPSPACE \subseteq NEXPSPACE \subseteq AEXPSPACE \\ 2-EXP \subseteq & \dots \end{array}$ #### Al Planning M. Helmert, B. Nebel Motivation ATMs Complexity Complexity results # The power of alternation AI Planning M. Helmert B. Nebel Motivation ATMs Complexity classes Complexity results Summary ``` Theorem (Chandra et al. 1981) ``` AP = PSPACE APSPACE = EXP AEXP = EXPSPACE AEXPSPACE = 2-EXP # The hierarchy of complexity classes Al Planning M. Helmert, B. Nebel Motivation Review Complexity classes results # The strong planning problem ## STRONGPLANEX (strong plan existence) GIVEN: nondeterministic planning task $\langle A, I, O, G, V \rangle$ with full observability (A = V) QUESTION: Is there a strong plan for the task? • We do not consider a nondeterministic analog of the bounded plan existence problem (PlanLen). Al Planning M. Helmert, B. Nebel Review Complexity results The problem The reduction The proof ## Proof idea - We will prove that STRONGPLANEX is EXP-complete. - We already know that the problem belongs to EXP, because we have presented a dynamic programming algorithm that generates strong plans in exponential time. - We prove hardness for EXP by providing a generic reduction for alternating Turing Machines with polynomial space and use Chandra et al.'s theorem showing APSPACE = EXP. Al Planning M. Helmert, B. Nebel Motivation Review Complexity results The problem The reduction The proof - For simplicity, restrict to ATMs which never move to the left of the initial head position (no loss of generality). - Existential states of the ATM are modeled by states of the planning task where there are several applicable operators to choose from. - Universal states of the ATM are modeled by states of the planning task where there is a single applicable operator with a nondeterministic effect. Al Planning M. Helmert, B. Nebel Motivation Review Complexity The problem The reduction The proof - For simplicity, restrict to ATMs which never move to the left of the initial head position (no loss of generality). - Existential states of the ATM are modeled by states of the planning task where there are several applicable operators to choose from. - Universal states of the ATM are modeled by states of the planning task where there is a single applicable operator with a nondeterministic effect. Al Planning M. Helmert, B. Nebel Motivation Review Complexity The problem The reduction The proof - For simplicity, restrict to ATMs which never move to the left of the initial head position (no loss of generality). - Existential states of the ATM are modeled by states of the planning task where there are several applicable operators to choose from. - Universal states of the ATM are modeled by states of the planning task where there is a single applicable operator with a nondeterministic effect. Al Planning M. Helmert, B. Nebel Motivation Review Complexity The problem The reduction The proof ## Reduction: state variables Let p be the space-bound polynomial. Given ATM $\langle \Sigma, \square, Q, q_0, l, \delta \rangle$ and input $w_1 \dots w_n$, define relevant tape positions $X = \{1, \dots, p(n)\}$. #### State variables - ullet state $_q$ for all $q \in Q$ - head_i for all $i \in X \cup \{0, p(n) + 1\}$ - content_{i,a} for all $i \in X$, $a \in \Sigma_{\square}$ #### Al Planning M. Helmert, B. Nebel Motivation Review Complexity results The problem The reduction The proof ## Reduction: initial state Let p be the space bound polynomial. Given ATM $\langle \Sigma, \square, Q, q_0, l, \delta \rangle$ and input $w_1 \dots w_n$, define relevant tape positions $X = \{1, \dots, p(n)\}$. #### Initial state formula Specify a unique initial state. ## Initially true: - state_{q0} - head₁ - content_{i,w_i} for all $i \in \{1,\ldots,n\}$ - content_{i.\(\sigma\)} for all $i \in X \setminus \{1, \ldots, n\}$ ## Initially false: all others Al Planning M. Helmert, B. Nebel Motivation Review Complexity results The problem The reduction The proof # Reduction: goal Let p be the space bound polynomial. Given ATM $\langle \Sigma, \square, Q, q_0, l, \delta \rangle$ and input $w_1 \dots w_n$, define relevant tape positions $X = \{1, \dots, p(n)\}$. #### Goal $\bigvee_{q \in Q_{\mathsf{Y}}} \mathsf{state}_q$ - Without loss of generality, we can assume that Q_Y is a singleton set so that we do not need a disjunctive goal. - This way, the hardness result also holds for a restricted class of planning tasks ("nondeterministic STRIPS"). Al Planning M. Helmert, B. Nebel Motivation Review Complexity results The problem The reduction The proof # Reduction: operators Let p be the space bound polynomial. Given ATM $\langle \Sigma, \square, Q, q_0, l, \delta \rangle$ and input $w_1 \dots w_n$, define relevant tape positions $X = \{1, \dots, p(n)\}$. ### Operators For $q, q' \in Q$, $a, a' \in \Sigma_{\square}$, $\Delta \in \{-1, +1\}$, $i \in X$, define - ullet $\operatorname{pre}_{q,a,i} = \operatorname{state}_q \wedge \operatorname{head}_i \wedge \operatorname{content}_{i,a}$ - $\begin{array}{c} \bullet \ \operatorname{eff}_{q,a,q',a',\Delta,i} = \neg \operatorname{state}_q \wedge \neg \operatorname{head}_i \wedge \neg \operatorname{content}_{i,a} \\ \wedge \ \operatorname{state}_{q'} \wedge \operatorname{head}_{i+\Delta} \wedge \operatorname{content}_{i,a'} \end{array}$ - If q = q', omit the effects $\neg \text{state}_q$ and $\text{state}_{q'}$. - If a=a', omit the effects $\neg content_{i,a}$ and $content_{i,a'}$. Al Planning M. Helmert, B. Nebel Motivation Review Complexity results The problem The reduction The proof # Reduction: operators (continued) Let p be the space bound polynomial. Given ATM $\langle \Sigma, \square, Q, q_0, l, \delta \rangle$ and input $w_1 \dots w_n$, define relevant tape positions $X = \{1, \dots, p(n)\}$. ## Operators (ctd.) For existential states $q \in Q_{\exists}$, $a \in \Sigma_{\square}$, $i \in X$: Let $(q_j', a_j', \Delta_j)_{j \in \{1, \dots, k\}}$ be those triples with $((q, a), (q_j', a_j', \Delta_j)) \in \delta$. For each $j \in \{1, \dots, k\}$, introduce one operator: - precondition: $pre_{q,a,i}$ - effect: $eff_{q,a,q'_i,a'_i,\Delta_j,i}$ Al Planning M. Helmert, B. Nebel Motivation Review Complexity results The problem The reduction The proof # Reduction: operators (continued) Let p be the space bound polynomial. Given ATM $\langle \Sigma, \square, Q, q_0, l, \delta \rangle$ and input $w_1 \dots w_n$, define relevant tape positions $X = \{1, \dots, p(n)\}$. ## Operators (ctd.) For universal states $q \in Q_{\forall}$, $a \in \Sigma_{\square}$, $i \in X$: Let $(q_j', a_j', \Delta_j)_{j \in \{1, \dots, k\}}$ be those triples with $((q, a), (q_j', a_j', \Delta_j)) \in \delta$. Introduce only one operator: - precondition: $pre_{q,a,i}$ - ullet effect: $\operatorname{eff}_{q,a,q'_1,a'_1,\Delta_1,i}|\dots|\operatorname{eff}_{q,a,q'_k,a'_k,\Delta_k,i}$ Al Planning M. Helmert, B. Nebel Motivation Review Complexity results The problem The reduction The proof # EXP-completeness of strong planning with full observability ## Theorem (Rintanen) STRONGPLANEX is EXP-complete. This is true even if we only allow operators in unary nondeterminism normal form where all deterministic sub-effects and the goal satisfy the STRIPS restriction and if we require a deterministic initial state. #### Proof Membership in EXP has been shown by providing exponential-time algorithms that generate strong plans (and decide if one exists as a side effect). Hardness follows from the previous generic reduction for ATMs with polynomial space bound and Chandra et al.'s theorem. $\hfill\Box$ #### Al Planning M. Helmert, B. Nebel Motivation Review Complexity results The problem The reduction The proof # EXP-completeness of strong planning with full observability ## Theorem (Rintanen) STRONGPLANEX is EXP-complete. This is true even if we only allow operators in unary nondeterminism normal form where all deterministic sub-effects and the goal satisfy the STRIPS restriction and if we require a deterministic initial state. ## Proof. Membership in EXP has been shown by providing exponential-time algorithms that generate strong plans (and decide if one exists as a side effect). Hardness follows from the previous generic reduction for ATMs with polynomial space bound and Chandra et al.'s theorem. \Box Al Planning M. Helmert B. Nebel Motivation Review Complexity The problem The proof # Summary - Nondeterministic planning is harder than deterministic planning. - In particular, it is EXP-complete in the fully observable case, compared to the PSPACE-completeness of deterministic planning. - The hardness result already holds if the operators and goals satisfy some fairly strong syntactic restrictions and there is a unique initial state. - The introduction of nondeterministic effects corresponds to the introduction of alternation in Turing Machines. - Later, we will see that restricted observability has an even more dramatic effect on the complexity of the planning problem. Al Planning M. Helmert, B. Nebel Motivatior Review Complexity results