Principles of AI Planning

Complexity of nondeterministic planning with full observability

Malte Helmert Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

January 26th, 2007

Al Planning

M. Helmert, B. Nebel

Motivation

Review

Complexity results

Overview

 Similar to the earlier analysis of deterministic planning, we will now study the computational complexity of nondeterministic planning with full observability.

- We consider the case of strong planning.
- The results for strong cyclic planning are identical.

As usual, the main motivation for such a study is to determine the limit of what is possible algorithmically: Should we try to develop a polynomial algorithm? AI Planning

M. Helmert, B. Nebel

Motivation

Review

Complexity results

Comparison to deterministic planning

- The basic proof idea is very similar to the PSPACE-completeness proof for deterministic planning.
- The main difference is that we consider alternating Turing Machines (ATMs) instead of deterministic Turing Machines (DTMs) in the reduction.
- Due to the similarity to the earlier proof, we first review some of the concepts introduced in the earlier lecture.

Al Planning

M. Helmert, B. Nebel

Motivation

Review

Complexity results

Alternating Turing Machines

Definition: Alternating Turing Machine

Alternating Turing Machine (ATM) $\langle \Sigma, \square, Q, q_0, l, \delta \rangle$:

- input alphabet Σ and blank symbol $\square \notin \Sigma$
 - alphabets always non-empty and finite
 - tape alphabet $\Sigma_{\square} = \Sigma \cup \{\square\}$
- 2 finite set Q of internal states with initial state $q_0 \in Q$
- \bullet state labeling $l: Q \to \{Y, N, \exists, \forall\}$
 - accepting, rejecting, existential, universal states $Q_{\mathsf{V}}, Q_{\mathsf{N}}, Q_{\exists}, Q_{\forall}$
 - terminal states $Q_{\star} = Q_{\mathsf{Y}} \cup Q_{\mathsf{N}}$
 - nonterminal states $Q' = Q_{\exists} \cup Q_{\forall}$
- transition relation $\delta \subseteq (Q' \times \Sigma_{\square}) \times (Q \times \Sigma_{\square} \times \{-1, +1\})$

Al Planning

M. Helmert. B. Nebel

ATMs

Turing Machine configurations

Let $M = \langle \Sigma, \square, Q, q_0, l, \delta \rangle$ be an ATM.

Definition: Configuration

A configuration of M is a triple $(w,q,x) \in \Sigma_{\square}^* \times Q \times \Sigma_{\square}^+$.

- w: tape contents before tape head
- q: current state
- x: tape contents after and including tape head

Al Planning

M. Helmert, B. Nebel

Motivation

Review ATMs Complexity

Complexity

Turing Machine transitions

Let $M = \langle \Sigma, \square, Q, q_0, l, \delta \rangle$ be an ATM.

Definition: Yields relation

A configuration c of M yields a configuration c' of M, in symbols $c \vdash c'$, as defined by the following rules, where $a, a', b \in \Sigma_{\square}$, $w, x \in \Sigma_{\square}^*$, $q, q' \in Q$ and $((q, a), (q', a', \Delta)) \in \delta$:

$$\begin{split} (w,q,ax) \vdash (wa',q',x) & \quad \text{if } \Delta = +1, |x| \geq 1 \\ (w,q,a) \vdash (wa',q',\square) & \quad \text{if } \Delta = +1 \\ (wb,q,ax) \vdash (w,q',ba'x) & \quad \text{if } \Delta = -1 \\ (\epsilon,q,ax) \vdash (\epsilon,q',\square a'x) & \quad \text{if } \Delta = -1 \end{split}$$

Al Planning

M. Helmert, B. Nebel

Motivation

Review ATMs Complexity

Complexity results

Acceptance (space)

Let $M = \langle \Sigma, \square, Q, q_0, l, \delta \rangle$ be an ATM.

Definition: Acceptance (space)

Let c = (w, q, x) be a configuration of M.

- M accepts c=(w,q,x) with $q\in Q_{\mathbf{Y}}$ in space n iff $|w|+|x|\leq n$.
- M accepts c=(w,q,x) with $q\in Q_\exists$ in space n iff M accepts some c' with $c\vdash c'$ in space n.
- M accepts c = (w, q, x) with $q \in Q_{\forall}$ in space n iff M accepts all c' with $c \vdash c'$ in space n.

Al Planning

M. Helmert, B. Nebel

iviotivation

ATMs

Complexity classes

C.....

Accepting words and languages

Let $M = \langle \Sigma, \square, Q, q_0, l, \delta \rangle$ be an ATM.

Definition: Accepting words

M accepts the word $w \in \Sigma^*$ in space $n \in \mathbb{N}_0$ iff M accepts (ϵ, q_0, w) in space n.

• Special case: M accepts ϵ in time (space) $n \in \mathbb{N}_0$ iff M accepts (ϵ, q_0, \square) in time (space) n.

Al Planning

B. Nebel

ATMs

Definition: Accepting languages

Let $f: \mathbb{N}_0 \to \mathbb{N}_0$.

M accepts the language $L \subseteq \Sigma^*$ in space f

iff M accepts each word $w \in L$ in space f(|w|), and M does not accept any word $w \notin L$.

Alternating space complexity

Definition: ASPACE, APSPACE

Let $f: \mathbb{N}_0 \to \mathbb{N}_0$.

Complexity class $\mathsf{ASPACE}(f)$ contains all languages accepted in space f by some ATM.

Let \mathcal{P} be the set of polynomials $p: \mathbb{N}_0 \to \mathbb{N}_0$.

$$\mathsf{APSPACE} := \bigcup_{p \in \mathcal{P}} \mathsf{ASPACE}(p)$$

Al Planning

M. Helmert, B. Nebel

Motivation

ATMs Complexity

Complexity results

Standard complexity classes relationships

Theorem

 $\begin{array}{cccc} P \subseteq & NP & \subseteq AP \\ PSPACE \subseteq & NPSPACE & \subseteq APSPACE \\ EXP \subseteq & NEXP & \subseteq AEXP \\ EXPSPACE \subseteq NEXPSPACE \subseteq AEXPSPACE \\ 2-EXP \subseteq & \dots \end{array}$

Al Planning

M. Helmert, B. Nebel

Motivation

ATMs Complexity

Complexity results

The power of alternation

AI Planning

M. Helmert B. Nebel

Motivation

ATMs Complexity classes

Complexity results

Summary

```
Theorem (Chandra et al. 1981)
```

AP = PSPACE

APSPACE = EXP

AEXP = EXPSPACE

AEXPSPACE = 2-EXP

The hierarchy of complexity classes

Al Planning

M. Helmert, B. Nebel

Motivation

Review

Complexity classes

results

The strong planning problem

STRONGPLANEX (strong plan existence)

GIVEN: nondeterministic planning task $\langle A, I, O, G, V \rangle$

with full observability (A = V)

QUESTION: Is there a strong plan for the task?

• We do not consider a nondeterministic analog of the bounded plan existence problem (PlanLen).

Al Planning

M. Helmert, B. Nebel

....

Review

Complexity results

The problem The reduction The proof

Proof idea

- We will prove that STRONGPLANEX is EXP-complete.
- We already know that the problem belongs to EXP, because we have presented a dynamic programming algorithm that generates strong plans in exponential time.
- We prove hardness for EXP by providing a generic reduction for alternating Turing Machines with polynomial space and use Chandra et al.'s theorem showing APSPACE = EXP.

Al Planning

M. Helmert, B. Nebel

Motivation

Review

Complexity results

The problem
The reduction
The proof

- For simplicity, restrict to ATMs which never move to the left of the initial head position (no loss of generality).
- Existential states of the ATM are modeled by states of the planning task where there are several applicable operators to choose from.
- Universal states of the ATM are modeled by states of the planning task where there is a single applicable operator with a nondeterministic effect.

Al Planning

M. Helmert, B. Nebel

Motivation

Review

Complexity

The problem
The reduction
The proof

- For simplicity, restrict to ATMs which never move to the left of the initial head position (no loss of generality).
- Existential states of the ATM are modeled by states of the planning task where there are several applicable operators to choose from.
- Universal states of the ATM are modeled by states of the planning task where there is a single applicable operator with a nondeterministic effect.

Al Planning

M. Helmert, B. Nebel

Motivation

Review

Complexity

The problem
The reduction
The proof

- For simplicity, restrict to ATMs which never move to the left of the initial head position (no loss of generality).
- Existential states of the ATM are modeled by states of the planning task where there are several applicable operators to choose from.
- Universal states of the ATM are modeled by states of the planning task where there is a single applicable operator with a nondeterministic effect.

Al Planning

M. Helmert, B. Nebel

Motivation

Review

Complexity

The problem
The reduction
The proof

Reduction: state variables

Let p be the space-bound polynomial.

Given ATM $\langle \Sigma, \square, Q, q_0, l, \delta \rangle$ and input $w_1 \dots w_n$, define relevant tape positions $X = \{1, \dots, p(n)\}$.

State variables

- ullet state $_q$ for all $q \in Q$
- head_i for all $i \in X \cup \{0, p(n) + 1\}$
- content_{i,a} for all $i \in X$, $a \in \Sigma_{\square}$

Al Planning

M. Helmert, B. Nebel

Motivation

Review

Complexity results

The problem
The reduction
The proof

Reduction: initial state

Let p be the space bound polynomial.

Given ATM $\langle \Sigma, \square, Q, q_0, l, \delta \rangle$ and input $w_1 \dots w_n$, define relevant tape positions $X = \{1, \dots, p(n)\}$.

Initial state formula

Specify a unique initial state.

Initially true:

- state_{q0}
- head₁
- content_{i,w_i} for all $i \in \{1,\ldots,n\}$
- content_{i.\(\sigma\)} for all $i \in X \setminus \{1, \ldots, n\}$

Initially false:

all others

Al Planning

M. Helmert, B. Nebel

Motivation

Review

Complexity results

The problem
The reduction
The proof

Reduction: goal

Let p be the space bound polynomial.

Given ATM $\langle \Sigma, \square, Q, q_0, l, \delta \rangle$ and input $w_1 \dots w_n$, define relevant tape positions $X = \{1, \dots, p(n)\}$.

Goal

 $\bigvee_{q \in Q_{\mathsf{Y}}} \mathsf{state}_q$

- Without loss of generality, we can assume that Q_Y is a singleton set so that we do not need a disjunctive goal.
- This way, the hardness result also holds for a restricted class of planning tasks ("nondeterministic STRIPS").

Al Planning

M. Helmert, B. Nebel

Motivation

Review

Complexity results

The problem
The reduction
The proof

Reduction: operators

Let p be the space bound polynomial.

Given ATM $\langle \Sigma, \square, Q, q_0, l, \delta \rangle$ and input $w_1 \dots w_n$, define relevant tape positions $X = \{1, \dots, p(n)\}$.

Operators

For $q, q' \in Q$, $a, a' \in \Sigma_{\square}$, $\Delta \in \{-1, +1\}$, $i \in X$, define

- ullet $\operatorname{pre}_{q,a,i} = \operatorname{state}_q \wedge \operatorname{head}_i \wedge \operatorname{content}_{i,a}$
- $\begin{array}{c} \bullet \ \operatorname{eff}_{q,a,q',a',\Delta,i} = \neg \operatorname{state}_q \wedge \neg \operatorname{head}_i \wedge \neg \operatorname{content}_{i,a} \\ \wedge \ \operatorname{state}_{q'} \wedge \operatorname{head}_{i+\Delta} \wedge \operatorname{content}_{i,a'} \end{array}$
 - If q = q', omit the effects $\neg \text{state}_q$ and $\text{state}_{q'}$.
 - If a=a', omit the effects $\neg content_{i,a}$ and $content_{i,a'}$.

Al Planning

M. Helmert, B. Nebel

Motivation

Review

Complexity results

The problem
The reduction
The proof

Reduction: operators (continued)

Let p be the space bound polynomial.

Given ATM $\langle \Sigma, \square, Q, q_0, l, \delta \rangle$ and input $w_1 \dots w_n$, define relevant tape positions $X = \{1, \dots, p(n)\}$.

Operators (ctd.)

For existential states $q \in Q_{\exists}$, $a \in \Sigma_{\square}$, $i \in X$:

Let $(q_j', a_j', \Delta_j)_{j \in \{1, \dots, k\}}$ be those triples with $((q, a), (q_j', a_j', \Delta_j)) \in \delta$.

For each $j \in \{1, \dots, k\}$, introduce one operator:

- precondition: $pre_{q,a,i}$
- effect: $eff_{q,a,q'_i,a'_i,\Delta_j,i}$

Al Planning

M. Helmert, B. Nebel

Motivation

Review

Complexity results

The problem
The reduction
The proof

Reduction: operators (continued)

Let p be the space bound polynomial.

Given ATM $\langle \Sigma, \square, Q, q_0, l, \delta \rangle$ and input $w_1 \dots w_n$, define relevant tape positions $X = \{1, \dots, p(n)\}$.

Operators (ctd.)

For universal states $q \in Q_{\forall}$, $a \in \Sigma_{\square}$, $i \in X$:

Let $(q_j', a_j', \Delta_j)_{j \in \{1, \dots, k\}}$ be those triples with $((q, a), (q_j', a_j', \Delta_j)) \in \delta$.

Introduce only one operator:

- precondition: $pre_{q,a,i}$
- ullet effect: $\operatorname{eff}_{q,a,q'_1,a'_1,\Delta_1,i}|\dots|\operatorname{eff}_{q,a,q'_k,a'_k,\Delta_k,i}$

Al Planning

M. Helmert, B. Nebel

Motivation

Review

Complexity results

The problem
The reduction
The proof

EXP-completeness of strong planning with full observability

Theorem (Rintanen)

STRONGPLANEX is EXP-complete.

This is true even if we only allow operators in unary nondeterminism normal form where all deterministic sub-effects and the goal satisfy the STRIPS restriction and if we require a deterministic initial state.

Proof

Membership in EXP has been shown by providing exponential-time algorithms that generate strong plans (and decide if one exists as a side effect).

Hardness follows from the previous generic reduction for ATMs with polynomial space bound and Chandra et al.'s theorem. $\hfill\Box$

Al Planning

M. Helmert, B. Nebel

Motivation

Review

Complexity results

The problem
The reduction

The proof

EXP-completeness of strong planning with full observability

Theorem (Rintanen)

STRONGPLANEX is EXP-complete.

This is true even if we only allow operators in unary nondeterminism normal form where all deterministic sub-effects and the goal satisfy the STRIPS restriction and if we require a deterministic initial state.

Proof.

Membership in EXP has been shown by providing exponential-time algorithms that generate strong plans (and decide if one exists as a side effect).

Hardness follows from the previous generic reduction for ATMs with polynomial space bound and Chandra et al.'s theorem. \Box

Al Planning

M. Helmert B. Nebel

Motivation

Review

Complexity

The problem

The proof

Summary

- Nondeterministic planning is harder than deterministic planning.
- In particular, it is EXP-complete in the fully observable case, compared to the PSPACE-completeness of deterministic planning.
- The hardness result already holds if the operators and goals satisfy some fairly strong syntactic restrictions and there is a unique initial state.
- The introduction of nondeterministic effects corresponds to the introduction of alternation in Turing Machines.
- Later, we will see that restricted observability has an even more dramatic effect on the complexity of the planning problem.

Al Planning

M. Helmert, B. Nebel

Motivatior

Review

Complexity results