Principles of Al Planning

January 26th, 2007 — Complexity of nondeterministic planning with full observability

Motivation

Review

Alternating Turing Machines Complexity classes

Complexity results

The strong planning problem APSPACE reduction EXP-completeness proof

Summary

Principles of Al Planning

Complexity of nondeterministic planning with full observability

Malte Helmert Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

January 26th, 2007

Overview

- Similar to the earlier analysis of deterministic planning, we will now study the computational complexity of nondeterministic planning with full observability.
- ▶ We consider the case of strong planning.
- ► The results for strong cyclic planning are identical.

As usual, the main motivation for such a study is to determine the limit of what is possible algorithmically: Should we try to develop a polynomial algorithm?

Comparison to deterministic planning

- ► The basic proof idea is very similar to the PSPACE-completeness proof for deterministic planning.
- ► The main difference is that we consider alternating Turing Machines (ATMs) instead of deterministic Turing Machines (DTMs) in the reduction.
- ▶ Due to the similarity to the earlier proof, we first review some of the concepts introduced in the earlier lecture.

Alternating Turing Machines

Definition: Alternating Turing Machine

Alternating Turing Machine (ATM) $\langle \Sigma, \square, Q, q_0, I, \delta \rangle$:

- 1. input alphabet Σ and blank symbol $\square \notin \Sigma$
 - alphabets always non-empty and finite
 - ▶ tape alphabet $\Sigma_{\square} = \Sigma \cup \{\square\}$
- 2. finite set Q of internal states with initial state $q_0 \in Q$
- 3. state labeling $I: Q \to \{Y, N, \exists, \forall\}$
 - ► accepting, rejecting, existential, universal states Q_Y, Q_N, Q_∃, Q_∀
 - ▶ terminal states $Q_{\star} = Q_{\mathsf{Y}} \cup Q_{\mathsf{N}}$
 - ▶ nonterminal states $Q' = Q_{\exists} \cup Q_{\forall}$
- 4. transition relation $\delta \subseteq (Q' \times \Sigma_{\square}) \times (Q \times \Sigma_{\square} \times \{-1, +1\})$

Turing Machine configurations

Let $M = \langle \Sigma, \square, Q, q_0, I, \delta \rangle$ be an ATM.

Definition: Configuration

A configuration of M is a triple $(w, q, x) \in \Sigma_{\square}^* \times Q \times \Sigma_{\square}^+$.

- ▶ w: tape contents before tape head
- ▶ q: current state
- x: tape contents after and including tape head

Turing Machine transitions

Let $M = \langle \Sigma, \square, Q, q_0, I, \delta \rangle$ be an ATM.

Definition: Yields relation

A configuration c of M yields a configuration c' of M, in symbols $c \vdash c'$, as defined by the following rules, where $a, a', b \in \Sigma_{\square}$, $w, x \in \Sigma_{\square}^*$, $q, q' \in Q$ and $((q, a), (q', a', \Delta)) \in \delta$:

$$egin{aligned} (w,q,\mathsf{ax}) &\vdash (w\mathsf{a}',q',x) & & ext{if } \Delta = +1, |x| \geq 1 \ (w,q,\mathsf{a}) &\vdash (w\mathsf{a}',q',\square) & & ext{if } \Delta = +1 \ (w\mathsf{b},q,\mathsf{ax}) &\vdash (w,q',\mathsf{ba}'x) & & ext{if } \Delta = -1 \ (\epsilon,q,\mathsf{ax}) &\vdash (\epsilon,q',\square\mathsf{a}'x) & & ext{if } \Delta = -1 \end{aligned}$$

Acceptance (space)

Let $M = \langle \Sigma, \square, Q, q_0, I, \delta \rangle$ be an ATM.

Definition: Acceptance (space)

Let c = (w, q, x) be a configuration of M.

- ▶ M accepts c = (w, q, x) with $q \in Q_Y$ in space n iff $|w| + |x| \le n$.
- ▶ M accepts c = (w, q, x) with $q \in Q_{\exists}$ in space n iff M accepts some c' with $c \vdash c'$ in space n.
- ▶ M accepts c = (w, q, x) with $q \in Q_{\forall}$ in space n iff M accepts all c' with $c \vdash c'$ in space n.

Accepting words and languages

Let $M = \langle \Sigma, \square, Q, q_0, I, \delta \rangle$ be an ATM.

Definition: Accepting words

M accepts the word $w \in \Sigma^*$ in space $n \in \mathbb{N}_0$ iff M accepts (ϵ, q_0, w) in space n.

▶ Special case: M accepts ϵ in time (space) $n \in \mathbb{N}_0$ iff M accepts (ϵ, q_0, \square) in time (space) n.

Definition: Accepting languages

Let $f: \mathbb{N}_0 \to \mathbb{N}_0$.

M accepts the language $L \subseteq \Sigma^*$ in space f iff M accepts each word $w \in L$ in space f(|w|), and M does not accept any word $w \notin L$.

Alternating space complexity

Definition: ASPACE, APSPACE

Let $f: \mathbb{N}_0 \to \mathbb{N}_0$.

Complexity class ASPACE(f) contains all languages accepted in space f by some ATM.

Let \mathcal{P} be the set of polynomials $p: \mathbb{N}_0 \to \mathbb{N}_0$.

$$\mathsf{APSPACE} := \bigcup_{p \in \mathcal{P}} \mathsf{ASPACE}(p)$$

Standard complexity classes relationships

```
Theorem
            P \subset NP \subset AP
    PSPACE ⊂ NPSPACE ⊂ APSPACE
         \mathsf{EXP} \subset \mathsf{NEXP} \subset \mathsf{AEXP}
\mathsf{EXPSPACE} \subset \mathsf{NEXPSPACE} \subset \mathsf{AEXPSPACE}
      2-EXP ⊂ ...
```

The power of alternation

```
Theorem (Chandra et al. 1981)

AP = PSPACE

APSPACE = EXP

AEXP = EXPSPACE

AEXPSPACE = 2-EXP
```

The hierarchy of complexity classes

The strong planning problem

STRONGPLANEX (strong plan existence)

GIVEN: nondeterministic planning task $\langle A, I, O, G, V \rangle$

with full observability (A = V)

QUESTION: Is there a strong plan for the task?

▶ We do not consider a nondeterministic analog of the bounded plan existence problem (PlanLen).

Proof idea

- ▶ We will prove that STRONGPLANEX is EXP-complete.
- We already know that the problem belongs to EXP, because we have presented a dynamic programming algorithm that generates strong plans in exponential time.
- ▶ We prove hardness for EXP by providing a generic reduction for alternating Turing Machines with polynomial space and use Chandra et al.'s theorem showing APSPACE = EXP.

Reduction

Overview

- For a fixed polynomial p, given ATM M and input w, generate planning task which is solvable by a strong plan iff M accepts w in space p(|w|).
- ► For simplicity, restrict to ATMs which never move to the left of the initial head position (no loss of generality).
- Existential states of the ATM are modeled by states of the planning task where there are several applicable operators to choose from.
- ▶ Universal states of the ATM are modeled by states of the planning task where there is a single applicable operator with a nondeterministic effect.

Reduction: state variables

Let p be the space-bound polynomial.

Given ATM $\langle \Sigma, \square, Q, q_0, I, \delta \rangle$ and input $w_1 \dots w_n$, define relevant tape positions $X = \{1, \dots, p(n)\}$.

State variables

- ▶ state_q for all $q \in Q$
- ▶ head_i for all $i \in X \cup \{0, p(n) + 1\}$
- ▶ content_{i,a} for all $i \in X$, $a \in \Sigma_{\square}$

Reduction: initial state

Let p be the space bound polynomial.

Given ATM $\langle \Sigma, \square, Q, q_0, I, \delta \rangle$ and input $w_1 \dots w_n$, define relevant tape positions $X = \{1, \dots, p(n)\}$.

Initial state formula

Specify a unique initial state.

Initially true:

- ▶ state_{q0}
- ▶ head₁
- ▶ content_{i,w_i} for all $i \in \{1, ..., n\}$
- ▶ content_{i.□} for all $i \in X \setminus \{1, ..., n\}$

Initially false:

all others

Reduction: goal

Let p be the space bound polynomial.

Given ATM
$$\langle \Sigma, \square, Q, q_0, I, \delta \rangle$$
 and input $w_1 \dots w_n$, define relevant tape positions $X = \{1, \dots, p(n)\}$.

Goal

$$\bigvee_{q \in Q_{\mathsf{Y}}} \mathsf{state}_q$$

- \triangleright Without loss of generality, we can assume that Q_Y is a singleton set so that we do not need a disjunctive goal.
- ▶ This way, the hardness result also holds for a restricted class of planning tasks ("nondeterministic STRIPS").

Reduction: operators

Let p be the space bound polynomial.

Given ATM $\langle \Sigma, \square, Q, q_0, I, \delta \rangle$ and input $w_1 \dots w_n$ define relevant tape positions $X = \{1, \dots, p(n)\}.$

Operators

For $q, q' \in Q$, $a, a' \in \Sigma_{\square}$, $\Delta \in \{-1, +1\}$, $i \in X$, define

- $ightharpoonup \operatorname{pre}_{a,a,i} = \operatorname{state}_a \wedge \operatorname{head}_i \wedge \operatorname{content}_{i,a}$
- $\mathsf{eff}_{a,a,a',a',\Delta,j} = \neg \mathsf{state}_a \wedge \neg \mathsf{head}_j \wedge \neg \mathsf{content}_{j,a}$ \land state_{a'} \land head_{i+\Delta} \land content_{i,a'}
 - ▶ If q = q', omit the effects ¬state_q and state_{q'}.
 - ▶ If a = a', omit the effects ¬content_{i,a} and content_{i,a'}.

Reduction: operators (continued)

Let p be the space bound polynomial.

Given ATM $\langle \Sigma, \square, Q, q_0, I, \delta \rangle$ and input $w_1 \dots w_n$ define relevant tape positions $X = \{1, \dots, p(n)\}.$

Operators (ctd.)

For existential states $g \in Q_{\exists}$, $a \in \Sigma_{\Box}$, $i \in X$: Let $(q'_i, a'_i, \Delta_i)_{i \in \{1, ..., k\}}$ be those triples with $((q, a), (q'_i, a'_i, \Delta_i)) \in \delta$.

For each $j \in \{1, ..., k\}$, introduce one operator:

- precondition: pre_{a,a,i}
- effect: $eff_{q,a,q'_i,a'_i,\Delta_j,i}$

Reduction: operators (continued)

Let p be the space bound polynomial.

Given ATM $\langle \Sigma, \square, Q, q_0, I, \delta \rangle$ and input $w_1 \dots w_n$, define relevant tape positions $X = \{1, \dots, p(n)\}$.

Operators (ctd.)

For universal states $q \in Q_{\forall}$, $a \in \Sigma_{\square}$, $i \in X$: Let $(q'_j, a'_j, \Delta_j)_{j \in \{1, ..., k\}}$ be those triples with $((q, a), (q'_j, a'_j, \Delta_j)) \in \delta$.

Introduce only one operator:

- precondition: pre_{q,a,i}
- effect: $\operatorname{eff}_{q,a,q'_1,a'_1,\Delta_1,i}|\dots|\operatorname{eff}_{q,a,q'_k,a'_k,\Delta_k,i}$

EXP-completeness of strong planning with full observability

Theorem (Rintanen)

STRONGPLANEX is EXP-complete.

This is true even if we only allow operators in unary nondeterminism normal form where all deterministic sub-effects and the goal satisfy the STRIPS restriction and if we require a deterministic initial state.

Proof.

Membership in EXP has been shown by providing exponential-time algorithms that generate strong plans (and decide if one exists as a side effect).

Hardness follows from the previous generic reduction for ATMs with polynomial space bound and Chandra et al.'s theorem.

Summary

- ▶ Nondeterministic planning is harder than deterministic planning.
- ▶ In particular, it is EXP-complete in the fully observable case, compared to the PSPACE-completeness of deterministic planning.
- ► The hardness result already holds if the operators and goals satisfy some fairly strong syntactic restrictions and there is a unique initial state.
- ► The introduction of nondeterministic effects corresponds to the introduction of alternation in Turing Machines.
- ▶ Later, we will see that restricted observability has an even more dramatic effect on the complexity of the planning problem.