
Principles of AI Planning
January 24th, 2007 — Strong cyclic planning with full observability

Strong cyclic plans
Motivation
Algorithm idea
Algorithm

Maintenance goals
Definition
Example
Algorithm

Summary

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 1 / 47

Principles of AI Planning
Strong cyclic planning with full observability

Malte Helmert Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

January 24th, 2007

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 2 / 47

Strong cyclic plans Motivation

Planning objectives
Strong plans

I The simplest objective for nondeterministic planning is the one we
have considered in the previous lecture: reach a goal state with
certainty.

I With this objective the nondeterminism can also be understood as an
opponent like in 2-player games or in n-player games in general.
The plan guarantees reaching a goal state no matter what the
opponent does: plans are winning strategies.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 3 / 47

Strong cyclic plans Motivation

Planning objectives
Limitations of strong plans

I In strong plans, goal states can be reached without visiting any state
twice.

I This property guarantees that the length of executions is bounded by
some constant (which is smaller than the number of states.)

I Some solvable problems are not solvable this way.

1. Action may fail to have any effect.
Hit a coconut to break it.

2. Action may fail and take us away from the goals.
Build a house of cards.

Consequences:

1. It is impossible to avoid visiting some states several times.
2. There is no finite upper bound on execution length.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 4 / 47

Strong cyclic plans Motivation

Planning objectives
When strong cyclic plans make sense

Assumption

For any nondeterministic effect e1 | . . . | en the probability of every effect
e1, . . . , en is greater than 0.

Alternatively: For any s ′ ∈ imgo(s) the probability of reaching s ′ from s by
o is greater than 0.

This assumption guarantees that a strong cyclic plan reaches the goal
almost certainly (with probability 1).

This is not compatible with viewing nondeterminism as an opponent in a
2-player game: the opponent’s strategy might rule out some of the choices
e1, . . . , en.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 5 / 47

Strong cyclic plans Motivation

Need for strong cyclic plans
Example

Example (Breaking a coconut)

I Initial state: coconut is intact.

I Goal state: coconut is broken.

I On every hit the coconut may or
may not break.

I There is no finite upper bound on
the number of hits.

This is equivalent to coin tossing.

distance to G
∞ 0

G

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 6 / 47

Strong cyclic plans Motivation

Need for strong cyclic plans
Example

Example (Build a house of cards)

I Initial state: all cards lie on the table.

I Goal state: house of cards is complete.

I At every construction step the house may collapse.

distance to G
∞ 0

G

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 7 / 47

Strong cyclic plans Algorithm idea

Strong cyclic planning algorithm
Idea

I We now present an algorithm that finds plans that may loop (strong
cyclic plans).

I The algorithm is rather tricky in comparison to the algorithm for
strong plans.

I Every state covered by a plan satisfies two properties:

1. The state is good: there is at least one execution (= path in the graph
defined by the plan) leading to a goal state.

2. Every successor state is either a goal state or good.

I The algorithm repeatedly eliminates states that are not good.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 8 / 47

Strong cyclic plans Algorithm idea

Strong cyclic planning algorithm
Example

GG

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 9 / 47

Strong cyclic plans Algorithm idea

Strong cyclic planning algorithm
Example
All states are candidates for being good.

GG

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 10 / 47

Strong cyclic plans Algorithm idea

Strong cyclic planning algorithm
Example
States from which goals are reachable in ≤ 1 steps so that all immediate
successors are possibly good.

GG

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 11 / 47

Strong cyclic plans Algorithm idea

Strong cyclic planning algorithm
Example
States from which goals are reachable in ≤ 2 steps so that all immediate
successors are possibly good.

GG

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 12 / 47

Strong cyclic plans Algorithm idea

Strong cyclic planning algorithm
Example
States from which goals are reachable in ≤ 3 steps so that all immediate
successors are possibly good.

GG

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 13 / 47

Strong cyclic plans Algorithm idea

Strong cyclic planning algorithm
Example
States from which goals are reachable in ≤ 4 steps so that all immediate
successors are possibly good.

GG

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 14 / 47

Strong cyclic plans Algorithm idea

Strong cyclic planning algorithm
Example
Eliminate states that turned out not to be good.

GG

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 15 / 47

Strong cyclic plans Algorithm idea

Strong cyclic planning algorithm
Example
The set of possibly good states is now smaller.

GG

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 16 / 47

Strong cyclic plans Algorithm idea

Strong cyclic planning algorithm
Example
States from which goals are reachable in ≤ 1 steps so that all immediate
successors are possibly good.

GG

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 17 / 47

Strong cyclic plans Algorithm idea

Strong cyclic planning algorithm
Example
States from which goals are reachable in ≤ 2 steps so that all immediate
successors are possibly good.

GG

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 18 / 47

Strong cyclic plans Algorithm idea

Strong cyclic planning algorithm
Example
States from which goals are reachable in ≤ 3 steps so that all immediate
successors are possibly good.

GG

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 19 / 47

Strong cyclic plans Algorithm idea

Strong cyclic planning algorithm
Example
States from which goals are reachable in ≤ 4 steps so that all immediate
successors are possibly good.

GG

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 20 / 47

Strong cyclic plans Algorithm idea

Strong cyclic planning algorithm
Example
Eliminate states that turned out not to be good.

GG

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 21 / 47

Strong cyclic plans Algorithm idea

Strong cyclic planning algorithm
Example
The set of possibly good states is now smaller.

GG

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 22 / 47

Strong cyclic plans Algorithm idea

Strong cyclic planning algorithm
Example
States from which goals are reachable in ≤ 1 steps so that all immediate
successors are possibly good.

GG

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 23 / 47

Strong cyclic plans Algorithm idea

Strong cyclic planning algorithm
Example
States from which goals are reachable in ≤ 2 steps so that all immediate
successors are possibly good.

GG

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 24 / 47

Strong cyclic plans Algorithm idea

Strong cyclic planning algorithm
Example
States from which goals are reachable in ≤ 3 steps so that all immediate
successors are possibly good.

GG

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 25 / 47

Strong cyclic plans Algorithm idea

Strong cyclic planning algorithm
Example
States from which goals are reachable in ≤ 4 steps so that all immediate
successors are possibly good.

GG

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 26 / 47

Strong cyclic plans Algorithm idea

Strong cyclic planning algorithm
Example
Remaining states are all good.
A further iteration would not eliminate more states.

GG

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 27 / 47

Strong cyclic plans Algorithm idea

Strong cyclic planning algorithm
Example
Assign each state an operator so that the successor states are goal states
or good, and some of them are closer to goal states. Use weak distances
computed with weak preimages.
For this example this is trivial.

G

01234
weak backward distances

G

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 28 / 47

Strong cyclic plans Algorithm

Procedure prune

I The procedure prune finds a maximal set of states for which reaching
goals with looping is possible.

I It consists of two nested loops:

1. The outer loop iterates through i = 0, 1, 2, . . . and produces a shrinking
sequence of candidate good state sets C0,C1, . . . ,Cn until Ci = Ci+1.

2. The inner loop identifies growing sets Wj of states from which a goal
state can be reached with j steps without leaving the current set of
candidate good states Ci .
The union of all W0,W1, . . . will be Ci+1.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 29 / 47

Strong cyclic plans Algorithm

Procedure prune
Definition

Procedure prune
def prune(S , O, G):

C0 := S
for each i ∈ N1:

W0 := G
for each j ∈ N1:

Wj := Wj−1 ∪
⋃

o∈O(preimgo(Wj−1) ∩ spreimgo(Ci))
if Wj = Wj−1:

break
Ci := Wj

if Ci = Ci−1:
return 〈Ci , 〈W0, . . . ,Wj−1〉〉

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 30 / 47

Strong cyclic plans Algorithm

Procedure prune
Correctness

Lemma (Procedure prune)

Let S and G ⊆ S be sets of states and O a set of operators Then
prune(S ,O,G) terminates after a finite number of steps and returns
C ⊆ S such that there is π : C \ G → O with the following properties:

Hope: For every s ∈ C there is an execution s0, . . . , sn of π such
that s = s0 and sn ∈ G.

Safety: For every s ∈ C \ G, imgπ(s)(s) ⊆ C.

Maximality: There is no set C ′ 6⊆ C and π′ : C ′ \ G → O satisfying the
hope and safety properties.

I The sets Wj also returned by prune encode weak distances and can
be used to define the strong cyclic plan π.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 31 / 47

Strong cyclic plans Algorithm

Strong cyclic planning algorithm
Main algorithm

The planning algorithm

def strong-cyclic-plan(〈A, I ,O,G 〉):
S := A → {0, 1}
SG := {s ∈ S | s |= G}
〈S∗, (Wj)j=0,1,2,...〉 = prune(S ,O,SG)
if ∃s ∈ S : s |= I ∧ s /∈ S∗:

return no solution
for each s ∈ S∗:

δ(s) := min{j ∈ N0 | s ∈ Wj}
for each s ∈ S∗ \ SG :

π(s) := some operator o ∈ O with imgo(s) ⊆ S∗

and min{δ(s ′) | s ′ ∈ imgo(s)} < δ(s)
return π

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 32 / 47

Strong cyclic plans Algorithm

Strong cyclic planning algorithm
Complexity

I The procedure prune runs in polynomial time in the number of states
because the number of iterations of each loop is at most n – hence
there are O(n2) iterations – and computation on each iteration takes
polynomial time in the number of states.

I Finding strong cyclic plans for full observability is in the complexity
class EXPTIME.

I The problem is also EXPTIME-hard.

I Similar to strong planning, we can speed up the algorithm in many
practical cases by using a symbolic implementation (e. g. with BDDs).

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 33 / 47

Maintenance

Maintenance goals

I In this lecture, we usually limit ourselves to the problem of finding
plans that reach a goal state.

I In practice, planning is often about more general goals, where
execution cannot be terminated.

1. An animal: find food, eat, sleep, find food, eat, sleep, . . .
2. Cleaning robot: keep the building clean.

I These problems cannot be directly formalized in terms of reachability
because infinite (unbounded) plan execution is needed.

I We do not discuss this topic in full detail. However, to give at least a
little impression of planning for temporally extended goals, we will
discuss the simplest objective with infinite plan executions:
maintenance.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 34 / 47

Maintenance Definition

Plan objectives
Maintenance

Definition
Let T = 〈A, I ,O,G ,V 〉 be a planning task.
A strategy π for T is called a plan for maintenance for T iff

I it contains no leaf nodes,

I all cycles contain at least one operator node, and

I b(n) |= G for all nodes n of the strategy.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 35 / 47

Maintenance Example

Maintenance goals
Example

I The state of an animal is determined by three state values: hunger (0,
1,2), thirst (0, 1, 2) and location (river, pasture, desert). There is
also a special state called death.

I Thirst grows when not at river; at river it is 0.

I Hunger grows when not on pasture; on pasture it is 0.

I If hunger or thirst exceeds 2, the animal dies.

I The goal of the animal is to avoid death.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 36 / 47

Maintenance Example

Maintenance goals
Transition system for the example 0-safe states 1-safe states i-safe states for all i ≥ 2

pasture

river

Death

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 37 / 47

Maintenance Example

Maintenance goals
Plan for the example

We can infer rules backwards starting from the death condition.

1. If in desert and thirst = 2, must go to river.

2. If in desert and hunger = 2, must go to pasture.

3. If on pasture and thirst = 1, must go to desert.

4. If at river and hunger = 1, must go to desert.

If the above rules conflict, the animal will die.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 38 / 47

Maintenance Algorithm

Algorithm for maintenance goals
Idea

Summary of the algorithm idea

Repeatedly eliminate from consideration those states that
in one or more steps unavoidably lead to a non-goal state.

I A state is i-safe iff there is a plan that guarantees “survival” for the
next i actions.

I A state is safe (or ∞-safe) iff it is i-safe for all i ∈ N0.

I The 0-safe states are exactly the goal states: maintenance objective is
satisfied for the current state.

I Given all i-safe states, compute all i + 1-safe states by using strong
preimages.

I For some i ∈ N0, i-safe states equal i + 1-safe states because there
are only finitely many states and at each step and i + 1-safe states are
a subset of i-safe states.
Then i-safe states are also ∞-safe.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 39 / 47

Maintenance Algorithm

Algorithm for maintenance goals
Algorithm

Planning for maintenance goals

def maintenance-plan(〈A, I ,O,G 〉):
S := A → {0, 1}
Safe0 := {s ∈ S | s |= G}
for each i ∈ N1:

Safei := Safei−1 ∩
⋃

o∈O spreimgo(Safei−1)
if Safei = Safei−1:

break
if ∃s ∈ S : s |= I ∧ s /∈ Safei :

return no solution
for each s ∈ Safei :

π(s) := some operator o ∈ O with imgo(s) ⊆ Safei

return π

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 40 / 47

Maintenance Algorithm

Maintenance goals
Transition system for the example 0-safe states 1-safe states i-safe states for all i ≥ 2

pasture

river

Death

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 41 / 47

Maintenance Algorithm

Maintenance goals
Transition system for the example 0-safe states 1-safe states i-safe states for all i ≥ 2

pasture

river

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 42 / 47

Maintenance Algorithm

Maintenance goals
Transition system for the example 0-safe states 1-safe states i-safe states for all i ≥ 2

pasture

river

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 43 / 47

Maintenance Algorithm

Maintenance goals
Transition system for the example 0-safe states 1-safe states i-safe states for all i ≥ 2

pasture

river

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 44 / 47

Summary

Different planning objectives

G

Strong planning

G

Strong cyclic planning

G

Maintenance

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 45 / 47

Summary

Outlook: Computational tree logic

I We have considered different classes of solutions for planning tasks by
defining different planning problems.

I strong planning problem: find a strong plan
I strong cyclic planning problem: find a strong cyclic plan
I . . .

I Alternatively, we could allow specifying goals in a modal logic like
computational tree logic to directly express the type of plan we are
interested in using modalities such as A (all), E (exists), G (globally),
and F (finally).

I Weak planning: EFϕ
I Strong planning: AFϕ
I Strong cyclic planning: AGEFϕ
I Maintenance: AGϕ
I Strong recoverability: AGAFϕ

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 46 / 47

Summary

Summary

I We have extended our earlier planning algorithm from strong plans to
strong cyclic plans.

I The story does not end there: When considering infinitely executing
plans, many more types of goals are feasible.

I We considered maintenance as a simple example of a temporally
extended goal.

I In general, temporally extended goals be expressed in modal logics
such as computational tree logic (CTL).

I We presented dynamic programming (backward search) algorithms for
strong cyclic and maintenance planning.

I In practice, one might implement both algorithms by using binary
decision diagrams (BDDs) as a data structure for state sets.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning January 24th, 2007 47 / 47

	Strong cyclic plans
	Motivation
	Algorithm idea
	Algorithm

	Maintenance goals
	Definition
	Example
	Algorithm

	Summary

