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Strong planning with full observability

We will first consider one of the simplest cases of
nondeterministic planning by restricting attention to:

fully observable planning tasks and

strong plans.

In this lesson, planning task always means fully observable
nondeterministic planning task.
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Memoryless strategies
Definition

As noted previously, in the fully observable case, we can use
simpler notions of strategies and plans.

Definition

Let S be the set of states of a planning task T .
A memoryless strategy for T is a partial function π : S → O
such that π(s) is applicable wherever π(s) is defined.

Execution of a memoryless strategy

1 Determine the current state s (full observability!).

2 If π(s) is not defined then terminate execution.
(If s is a goal state, then π(s) should not be defined so
that the execution terminates.)

3 Execute action π(s).
4 Repeat from first step.
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Memoryless plans

Memoryless strategies can be straightforwardly translated
to strategies as introduced in the previous lesson.

We do not discuss this.

Following the definitions from the previous lesson, we can
introduce concepts such as weak memoryless plans, strong
memoryless plans etc.
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Memoryless plans
Transition system of a blocks world task
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Memoryless plans
Memoryless plan (deterministic operators, uncertain initial state)
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Images

Image

The image of a set T of states with respect to an operator o is
the set of those states that can be reached by executing o in a
state in T .

T imgo(T )
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Images
Formal definition

Definition (Image of a state)

imgo(s) = {s′ ∈ S|sos′}

Definition (Image of a set of states)

imgo(T ) =
⋃

s∈T imgo(s)

Observe that imgo(T ) = appo(T ), where T is a belief
state. We avoid the term “belief state” in this lesson
because the intuition behind this term is wrong for fully
observable planning – here, we consider sets of states
together for algorithmic or efficiency reasons, not because
they cannot be distinguished.
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Weak preimages

Weak preimage

The weak preimage of a set T of states with respect to an
operator o is the set of those states from which a state in T
can be reached by executing o.

preimgo(T ) T
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Weak preimages
Formal definition

Definition (Weak preimage of a state)

preimgo(s′) = {s ∈ S|sos′}

Definition (Weak preimage of a set of states)

preimgo(T ) =
⋃

s∈T preimgo(s).
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Strong preimage

The strong preimage of a set T of states with respect to an
operator o is the set of those states from which a state in T is
always reached when executing o.

spreimgo(T ) T
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Strong preimages
Formal definition

Definition (Strong preimage of a set of states)

spreimgo(T ) = {s ∈ S | ∃s′ ∈ T : sos′, imgo(s) ⊆ T}
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Algorithms for fully observable problems

1 Heuristic search (forward)
Strong planning can be viewed as AND-OR search.

OR nodes: Choice between operators
AND nodes: Nondeterministically reached state

Heuristic AND-OR search algorithms:
AO*, B*, Proof Number Search, . . .

2 Dynamic programming (backward)
Compute operator/distance/value for a state based on the
operators/distances/values of its all successor states.

1 0 actions needed for goal states.
2 If states with i actions to goals are known, states with
≤ i + 1 actions to goals can be easily identified.

Automatic reuse of already found plan suffixes.
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AND-OR search

s1 s2 s3 s4

s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20
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AND-OR search

OR

OR OR OR OR

s1 s2 s3 s4

s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20
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Dynamic programming

Planning by dynamic programming

If for all successors of state s with respect to operator o a plan
exists, assign operator o to s.

Base case i = 0: In goal states there is nothing to do.

Inductive case i ≥ 1: If there is o ∈ O such that for all
s′ ∈ imgo(s), the state s′ is a goal state
or π(s′) was assigned in an earlier
iteration, then assign π(s) = o.

Backward distances

If s is assigned a value on iteration i ≥ 1, then the backward
distance of s is i.
The dynamic programming algorithm essentially computes the
backward distances of states.



AI Planning

M. Helmert,
B. Nebel

Concepts

Basic
Algorithms

AND-OR search

Dynamic
programming

Bwd-distances

Efficient
Algorithm

Summary

Backward distances
Example

distance to G
∞ 3 2 1 0

G
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Backward distances
Definition of distance sets

Definition

Let G be a set of states and O a set of operators.
The backward distance sets Dbwd

i for G and O consist of those
states for which there is a guarantee of reaching a state in G
with at most i operator applications using operators in O:

Dbwd
0 := G

Dbwd
i := Dbwd

i−1 ∪
⋃
o∈O

spreimgo(Dbwd
i−1 ) for all i ≥ 1
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Backward distances
Definition

Definition

Let G be a set of states and O a set of operators, and let
Dbwd

0 , Dbwd
1 , . . . be the backward distance sets for G and O.

Then the backward distance of a state s for G and O is

δbwd
G (s) =


0 if s ∈ G

i if s ∈ Dbwd
i \Dbwd

i−1 for any i ∈ N1

∞ otherwise
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Strong memoryless plans based on distances

Let T = 〈A, I, O, G, V 〉 be a planning task with state set S.

Extraction of a strong memoryless plan from distance sets

1 Let S′ ⊆ S be those states having a finite backward
distance for G and O.

2 Let s ∈ S′ be a state with distance i = δbwd
G (s) ≥ 1.

3 Assign to π(s) any operator o ∈ O such that
imgo(s) ⊆ Dbwd

i−1 . Hence o decreases the backward
distance by at least one.

Then π is a strong plan for T iff {s ∈ S | s |= I} ⊆ S′.

Question: What is the worst-case runtime of the algorithm?
Question: What is the best-case runtime of the algorithm
Question: if most states have a finite backward distance?
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Making the algorithm a logic-based algorithm

An algorithm that represents the states explicitly stops
being feasible at about 108 or 109 states.

For planning with bigger transition systems structural
properties of the transition system have to be taken
advantage of.

As before, representing state sets as propositional formulae
or BDDs often allows taking advantage of the structural
properties: a formula or BDD that represents a set of
states or a transition relation that has certain regularities
may be very small in comparison to the set or relation.

In the following, we will present a BDD-based algorithm.
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Breadth-first search with progression and state sets
Reminder: Algorithm for the deterministic case

Progression breadth-first search

def bfs-progression(A, I, O, G):
goal := formula-to-set(G)
reached := {I}
loop:

if reached ∩ goal 6= ∅:
return solution found

new-reached := reached ∪ apply(reached, O)
if new-reached = reached:

return no solution exists
reached := new-reached

 This can easily be transformed into a regression algorithm.



AI Planning

M. Helmert,
B. Nebel

Concepts

Basic
Algorithms

Efficient
Algorithm

Main

Transitions

Summary

Breadth-first search with regression and state sets
Algorithm for the deterministic case

Regression breadth-first search

def bfs-regression(A, I, O, G):
init := I
reached := formula-to-set(G)
loop:

if init ∈ reached:
return solution found

new-reached := reached ∪ apply−1(reached, O)
if new-reached = reached:

return no solution exists
reached := new-reached

This algorithm is very similar to the dynamic programming
algorithm for the nondeterministic case!
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Breadth-first search with regression and state sets
Algorithm for the nondeterministic case

Regression breadth-first search

def bfs-regression(A, I, O, G):
init := formula-to-set(I)
reached := formula-to-set(G)
loop:

if init ⊆ reached:
return solution found

new-reached := reached ∪
⋃

o∈O spreimgo(reached)
if new-reached = reached:

return no solution exists
reached := new-reached

How do we define spreimg with set-theoretic (BDD)
operations?
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Computing strong preimages

Strong preimages

spreimgo(T ) = {s ∈ S | ∃s′ ∈ T : sos′, imgo(s) ⊆ T}
= {s ∈ S | (∃s′ ∈ S : s′ ∈ T ∧ sos′) ∧

{s′ ∈ S | sos′} ⊆ T}
= {s ∈ S | (∃s′ ∈ S : s′ ∈ T ∧ sos′) ∧

(∀s′ ∈ S : sos′ → (s′ ∈ T ))}
= {s ∈ S | (∃s′ ∈ S : s′ ∈ T ∧ sos′) ∧

(¬∃s′ ∈ S : sos′ ∧ s′ /∈ T )}
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Computing strong preimages with BDD operations

spreimgo(T ) = {s ∈ S | (∃s′ ∈ S : s′ ∈ T ∧ sos′) ∧
(¬∃s′ ∈ S : sos′ ∧ s′ /∈ T )}

Strong preimages with BDDs

def rename-A-to-A’(B):
for each a ∈ A:

B := bdd-rename(B, a, a′)
return B

def forget-A’(B):
for each a ∈ A:

B := bdd-forget(B, a′)
return B
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Computing strong preimages with BDD operations

spreimgo(T ) = {s ∈ S | (∃s′ ∈ S : s′ ∈ T ∧ sos′) ∧
(¬∃s′ ∈ S : sos′ ∧ s′ /∈ T )}

Strong preimages with BDDs

def strong-preimage(o, T ):
s’-in-T := rename-A-to-A’(T )
s’-not-in-T := bdd-complement(s’-in-T)
B1 := forget-A’(bdd-intersection(s’-in-T, TA(o)))
B2 := forget-A’(bdd-intersection(TA(o), s’-not-in-T))
return bdd-intersection(B1, bdd-complement(B2))
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Computing strong preimages with BDD operations

spreimgo(T ) = {s ∈ S | (∃s′ ∈ S : s′ ∈ T ∧ sos′) ∧
(¬∃s′ ∈ S : sos′ ∧ s′ /∈ T )}

Strong preimages with BDDs

def strong-preimage(o, T ):
s’-in-T := rename-A-to-A’(T )
s’-not-in-T := bdd-complement(s’-in-T)
B1 := forget-A’(bdd-intersection(s’-in-T, TA(o)))
B2 := forget-A’(bdd-intersection(TA(o), s’-not-in-T))
return bdd-intersection(B1, bdd-complement(B2))

Are we done?
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Computing strong preimages with BDD operations

spreimgo(T ) = {s ∈ S | (∃s′ ∈ S : s′ ∈ T ∧ sos′) ∧
(¬∃s′ ∈ S : sos′ ∧ s′ /∈ T )}

Strong preimages with BDDs

def strong-preimage(o, T ):
s’-in-T := rename-A-to-A’(T )
s’-not-in-T := bdd-complement(s’-in-T)
B1 := forget-A’(bdd-intersection(s’-in-T, TA(o)))
B2 := forget-A’(bdd-intersection(TA(o), s’-not-in-T))
return bdd-intersection(B1, bdd-complement(B2))

Are we done?
No, because we have not yet shown how to compute TA(o)
for nondeterministic operators.
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Transition formula for nondeterministic operators

The formula τA(o) (on which the BDD/relation TA(o) is
based) must express

the conditions for applicability of o,

how o changes state variables, and

which state variables o does not change.

A significant difficulty lies in the third requirement because
different variables may be affected depending on
nondeterministic choices.
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Normal forms for nondeterministic operators

In deterministic planning, we translated effects to normal
form to express them in propositional logic.

For nondeterministic effects, there is no (simple) normal
form with all the nice properties of deterministic operator
normal form:

expressiveness (all effects are convertible to normal form)
efficient computability
simple representation in propositional logic

We will thus introduce different normal forms which have
a subset of these properties.
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Unary nondeterminism normal form
Definition

Definition

An effect e is in unary nondeterminism normal form iff

e is deterministic and in normal form, or

e = e1 | . . . | en where each ei is deterministic and in
normal form.

What about simple representation, expressiveness and
efficient computability?
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Unary nondeterminism normal form
Simple representation

Recall: τA(o) for deterministic operators o = 〈c, e〉

τA(o) = c ∧
∧
a∈A

((EPCa(e) ∨ (a ∧ ¬EPC¬a(e))) ↔ a′)

∧
∧
a∈A

¬(EPCa(e) ∧ EPC¬a(e))

For o = 〈c, e1 | . . . | en〉 where each ei is deterministic:

τA(o) = c ∧
n∨

i=1

∧
a∈A

((EPCa(ei) ∨ (a ∧ ¬EPC¬a(ei))) ↔ a′)

∧
n∧

i=1

∧
a∈A

¬(EPCa(ei) ∧ EPC¬a(ei))
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Unary nondeterminism normal form
Expressiveness and efficient computability

Unary nondeterminism normal form is expressive.
Every nondeterministic effect can be converted by using the
following equivalences to raise nondeterminism to the root of
the effect:

c B (e1 | . . . | en) ≡ (c B e1) | . . . |(c B en)
(e1 | . . . | en) ∧ e′ ≡ (e1 ∧ e′) | . . . |(en ∧ e′)

(e1 | . . . | en) | e′1 . . . | e′m ≡ e1 | . . . | en | e′1 | . . . | e′m

and then converting the deterministic subeffects using the
standard algorithm.

However, this is not efficiently computable because there are
operators for which an exponential growth of operator size is
unavoidable ( exercises).
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Unary nondeterminism normal form
Expressiveness and efficient computability
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operators for which an exponential growth of operator size is
unavoidable ( exercises).
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Unary nondeterminism normal form
Discussion

Unary nondeterminism normal form is among the simplest
possible normal forms. There is only one possible nesting
of effect types:

atomic effects
within conditional effects
within conjunctive effects
within choice effects

The price for this simplicity is an exponential blow-up in
many cases.

To avoid this blowup, we will now relax the nesting
options somewhat.
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Unary conditionality normal form
Definition

Definition

An effect e is in unary conditionality normal form iff for all
conditional effects (c B e′) occurring within e, the effect e′ is
atomic.

Note that conjunctive effects and choice effects may be
nested arbitrarily.
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Unary conditionality normal form
Properties

Unary conditionality normal form is expressive.
Every nondeterministic effect can be converted by using the
following equivalences to push conditional effects towards the
leaves of the effect:

c B (e1 | . . . | en) ≡ (c B e1) | . . . |(c B en)
c B (e1 ∧ · · · ∧ en) ≡ (c B e1) ∧ · · · ∧ (c B en)

c B (c′ B e) ≡ (c ∧ c′) B e

This is also efficiently computable.

However, for this normal form, there does not appear to be a
simple representation in propositional logic.
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Properties

Unary conditionality normal form is expressive.
Every nondeterministic effect can be converted by using the
following equivalences to push conditional effects towards the
leaves of the effect:

c B (e1 | . . . | en) ≡ (c B e1) | . . . |(c B en)
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c B (c′ B e) ≡ (c ∧ c′) B e
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Unary conditionality normal form
Discussion

Unary conditionality normal form allows too complicated
nestings of conjunctive and choice effects.

This makes it difficult to test, for example, whether there
are possible choices that will lead to inconsistent effects.

For this reason, we will now look into a slightly stricter
normal form which is a good compromise between our
desiderata.



AI Planning

M. Helmert,
B. Nebel

Concepts

Basic
Algorithms

Efficient
Algorithm

Main

Transitions

Summary

Decomposablue unary conditionality normal form
Scope

Definition

Define the scope of an effect e as

scope(a) = {a}
scope(¬a) = {a}

scope(c B e) = scope(e)
scope(e1 ∧ · · · ∧ en) = scope(e1) ∪ · · · ∪ scope(en)

scope(e1 | . . . | en) = scope(e1) ∪ · · · ∪ scope(en)
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Decomposable unary conditionality normal form
Definition

Definition

An effect e is in decomposable unary conditionality (DUC)
normal form iff it is in unary conditionality normal form and for
all conjunctive effects (e1 ∧ · · · ∧ en) occurring within e, either

all ei are deterministic, or

for all i 6= j, scope(ei) and scope(ej) are disjoint.

Example: (a | b) ∧ (¬b | d) is not in DUC normal form because
variable b occurs in (a | b) and (¬b | d).

Consistency of effect application can be tested easily:
The effect is guaranteed to be consistent in state s iff this
is the case for each deterministic sub-effect.
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Definition

An effect e is in decomposable unary conditionality (DUC)
normal form iff it is in unary conditionality normal form and for
all conjunctive effects (e1 ∧ · · · ∧ en) occurring within e, either
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for all i 6= j, scope(ei) and scope(ej) are disjoint.

Example: (a | b) ∧ (¬b | d) is not in DUC normal form because
variable b occurs in (a | b) and (¬b | d).
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Decomposable unary conditionality normal form
Properties

DUC normal form is a special case of unary conditionality
normal form and a generalization of unary nondeterminism
normal form.

Because it generalizes unary nondeterminism normal form,
it is expressive.

We do not discuss efficient computability in detail, but
only note that in practice, nondeterministic operators can
usually be compactly represented in DUC normal form.

We will now consider the property of simple representation.
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Decomposable unary conditionality normal form
Representation in propositional logic

Recall: τA(o) for deterministic operators o = 〈c, e〉

τA(o) = c ∧
∧
a∈A

((EPCa(e) ∨ (a ∧ ¬EPC¬a(e))) ↔ a′)

∧
∧
a∈A

¬(EPCa(e) ∧ EPC¬a(e))

For nondeterministic o = 〈c, e〉 where e is in DUC normal form,
this generalizes to:

τA(o) = c ∧ τnd
A (e) ∧

∧
e′∈Edet

∧
a∈A

¬(EPCa(e′) ∧ EPC¬a(e′))

where Edet is the set of deterministic sub-effects of e and
τnd
A (e) is defined on the following slide.
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Decomposable unary conditionality normal form
Representation in propositional logic

We make sure that τnd
A (e) describes changed and unchanged

variables consistently by expressing changes

for exactly the same variables B within choice effects and

for disjoint variables B for (nondeterministic) conjunctive
effects.

This gives rise to the following recursive definition:

Definition

τnd
B (e) = τB(e) for deterministic effects e

τnd
B (e1 | . . . | en) = τnd

B (e1) ∨ · · · ∨ τnd
B (en)

τnd
B (e1 ∧ · · · ∧ en) = τnd

scope(e1)(e1) ∧ · · · ∧ τnd
scope(en)(en)

∧
∧

a∈B\
Sn

i=1 scope(ei)

(a ↔ a′)
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Summary
Strong planning with full observability

We have considered the special case of nondeterministic
planning where

planning tasks are fully observable and
we are interested in strong plans.

We have introduced important concepts also relevant to
other variants of nondeterministic planning such as

images and
weak and strong preimages.

We have discussed some basic classes of algorithms:

forward search in AND/OR graphs, and
backward induction by dynamic programming.

Finally, we have shown how to make a dynamic
programming algorithm more efficient by exploiting logic-
or set-based representations such as BDDs.
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