Principles of Al Planning

Strong nondeterministic planning with full observability

Malte Helmert Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

January 17th, 2007

Strong planning with full observability

We will first consider one of the simplest cases of nondeterministic planning by restricting attention to:

- fully observable planning tasks and
- strong plans.

In this lesson, planning task always means fully observable nondeterministic planning task.

Memoryless strategies

Definition

As noted previously, in the fully observable case, we can use

Al Planning
M. Helmert,
B. Nebel

Concepts
Memoryless
plans
Images
Weak preimages
Strong
preimages
Basic
Algorithms
Efficient
Algorithm
Summary
(2) If $\pi(s)$ is not defined then terminate execution. (If s is a goal state, then $\pi(s)$ should not be defined so that the execution terminates.)
(3) Execute action $\pi(s)$.
(9) Repeat from first step.

Memoryless plans

- Memoryless strategies can be straightforwardly translated to strategies as introduced in the previous lesson.
- We do not discuss this.
- Following the definitions from the previous lesson, we can introduce concepts such as weak memoryless plans, strong memoryless plans etc.

Memoryless plans

Transition system of a blocks world task

AI Planning
M. Helmert,
B. Nebel

Concepts
Memoryless
plans
Images
Weak preimages
Strong
preimages
Basic
Algorithms
Efficient
Algorithm
Summary

Memoryless plans

Memoryless plan (deterministic operators, uncertain initial state)

Images

Image

The image of a set T of states with respect to an operator o is the set of those states that can be reached by executing o in a state in T.

Al Planning
M. Helmert,
B. Nebel

Concepts
Memoryless
plans
Images
Weak preimages
Strong
preimages
Basic
Algorithms
Efficient
Algorithm
Summary

Images

Formal definition

$$
\begin{aligned}
& \text { Definition (Image of a state) } \\
& \operatorname{img}_{o}(s)=\left\{s^{\prime} \in S \mid s o s^{\prime}\right\}
\end{aligned}
$$

Al Planning
M. Helmert,
B. Nebel

Concepts
Memoryless
plans
Images
Weak preimages
Strong
preimages
Basic
Algorithms
Efficient
Algorithm
Summary

Images

Formal definition

$$
\begin{aligned}
& \text { Definition (Image of a state) } \\
& \operatorname{img}_{o}(s)=\left\{s^{\prime} \in S \mid \text { sos }\right\}
\end{aligned}
$$

Definition (Image of a set of states)

$\operatorname{img}_{o}(T)=\bigcup_{s \in T} i m g_{o}(s)$

- Observe that $\operatorname{img}_{o}(T)=\operatorname{app}_{o}(T)$, where T is a belief state. We avoid the term "belief state" in this lesson

Concepts
Memoryless
plans
Images
Weak preimages
Strong
preimages
Basic
Algorithms because the intuition behind this term is wrong for fully observable planning - here, we consider sets of states together for algorithmic or efficiency reasons, not because they cannot be distinguished.

Weak preimages

Weak preimage

The weak preimage of a set T of states with respect to an operator o is the set of those states from which a state in T can be reached by executing o.

Concepts
Memoryless
plans
Images
Weak preimages
Strong
preimages
Basic
Algorithms
Efficient
Algorithm
Summary

Weak preimages

Formal definition

Definition (Weak preimage of a state)
 $\operatorname{preimg}_{o}\left(s^{\prime}\right)=\left\{s \in S \mid s o s^{\prime}\right\}$

Definition (Weak preimage of a set of states)

$\operatorname{preimg}_{o}(T)=\bigcup_{s \in T} \operatorname{preimg}_{o}(s)$.

Basic
Algorithms
Efficient
Algorithm
Summary

Strong preimages

Strong preimage

The strong preimage of a set T of states with respect to an
Al Planning operator o is the set of those states from which a state in T is
M. Helmert,
B. Nebel always reached when executing o.

Concepts
Memoryless
plans
Images
Weak preimages
Strong
preimages
Basic
Algorithms
Efficient
Algorithm
Summary

Strong preimages

Formal definition

Definition (Strong preimage of a set of states)

Algorithms for fully observable problems

(1) Heuristic search (forward)
M. Helmert,
B. Nebel

Strong planning can be viewed as AND-OR search.
OR nodes: Choice between operators
AND nodes: Nondeterministically reached state Heuristic AND-OR search algorithms:

Concepts
Basic
Algorithms
AND-OR search
Dynamic
programming
Bwd-distances
AO*, B*, Proof Number Search, ...
(2)

Algorithms for fully observable problems

(1) Heuristic search (forward)

Strong planning can be viewed as AND-OR search.
OR nodes: Choice between operators
AND nodes: Nondeterministically reached state Heuristic AND-OR search algorithms:

Concepts
Basic
Algorithms
AND-OR search
Dynamic
programming
AO*, B*, Proof Number Search, ...
(2) Dynamic programming (backward)

Compute operator/distance/value for a state based on the operators/distances/values of its all successor states.
(1) 0 actions needed for goal states.
(2) If states with i actions to goals are known, states with $\leq i+1$ actions to goals can be easily identified.
Automatic reuse of already found plan suffixes.

AND-OR search

Al Planning
M. Helmert
B. Nebel

Concepts

Basic

Algorithms
AND-OR search Dynamic
programming
Bwd-distances
Efficient
Algorithm
Summary

AND-OR search

Al Planning
M. Helmert
B. Nebel

Concepts
Basic
Algorithms
AND-OR search
Dynamic
programming
Bwd-distances
Efficient
Algorithm
Summary

Dynamic programming

Planning by dynamic programming

If for all successors of state s with respect to operator o a plan exists, assign operator o to s.

Base case $i=0$: In goal states there is nothing to do. Inductive case $i \geq 1$: If there is $o \in O$ such that for all $s^{\prime} \in \operatorname{img}_{o}(s)$, the state s^{\prime} is a goal state or $\pi\left(s^{\prime}\right)$ was assigned in an earlier iteration, then assign $\pi(s)=o$.

Backward distances

If s is assigned a value on iteration $i \geq 1$, then the backward distance of s is i.
The dynamic programming algorithm essentially computes the backward distances of states.

Backward distances
 Example

Al Planning
M. Helmert,
B. Nebel

Concepts
Basic
Algorithms
AND-OR search
Dynamic
programming
Bwd-distances
Efficient
Algorithm
Summary

Backward distances

Definition of distance sets

Definition

Concepts
Basic
Algorithms
AND-OR search
Dynamic
programming
Bwd-distances
Efficient
Algorithm

$$
\begin{aligned}
& D_{0}^{b w d}:=G \\
& D_{i}^{b w d}:=D_{i-1}^{b w d} \cup \bigcup_{o \in O} \operatorname{spreimg}_{o}\left(D_{i-1}^{b w d}\right) \text { for all } i \geq 1
\end{aligned}
$$

Backward distances

Definition

Al Planning
M. Helmert,
B. Nebel

Definition

Let G be a set of states and O a set of operators, and let $D_{0}^{\text {bwd }}, D_{1}^{\text {bwd }}, \ldots$ be the backward distance sets for G and O. Then the backward distance of a state s for G and O is

$$
\delta_{G}^{b w d}(s)= \begin{cases}0 & \text { if } s \in G \\ i & \text { if } s \in D_{i}^{b w d} \backslash D_{i-1}^{b w d} \text { for any } i \in \mathbb{N}_{1} \\ \infty & \text { otherwise }\end{cases}
$$

Concepts
Basic
Algorithms
AND-OR search
Dynamic
programming
Bwd-distances
Efficient
Algorithm
Summary

Strong memoryless plans based on distances

Let $\mathcal{T}=\langle A, I, O, G, V\rangle$ be a planning task with state set S.
Extraction of a strong memoryless plan from distance sets
(1) Let $S^{\prime} \subseteq S$ be those states having a finite backward distance for G and O.
(2) Let $s \in S^{\prime}$ be a state with distance $i=\delta_{G}^{b w d}(s) \geq 1$.
(3) Assign to $\pi(s)$ any operator $o \in O$ such that $i m g_{o}(s) \subseteq D_{i-1}^{\text {bwd }}$. Hence o decreases the backward distance by at least one.

Then π is a strong plan for \mathcal{T} iff $\{s \in S \mid s \models I\} \subseteq S^{\prime}$.
Question: What is the worst-case runtime of the algorithm?

Strong memoryless plans based on distances

Let $\mathcal{T}=\langle A, I, O, G, V\rangle$ be a planning task with state set S.
Extraction of a strong memoryless plan from distance sets
(1) Let $S^{\prime} \subseteq S$ be those states having a finite backward distance for G and O.
(2) Let $s \in S^{\prime}$ be a state with distance $i=\delta_{G}^{b w d}(s) \geq 1$.
(3) Assign to $\pi(s)$ any operator $o \in O$ such that $i m g_{o}(s) \subseteq D_{i-1}^{\text {bwd }}$. Hence o decreases the backward distance by at least one.

Then π is a strong plan for \mathcal{T} iff $\{s \in S \mid s \models I\} \subseteq S^{\prime}$.
Question: What is the worst-case runtime of the algorithm?
Question: What is the best-case runtime of the algorithm
if most states have a finite backward distance?

Strong memoryless plans based on distances

Let $\mathcal{T}=\langle A, I, O, G, V\rangle$ be a planning task with state set S.
Extraction of a strong memoryless plan from distance sets
(1) Let $S^{\prime} \subseteq S$ be those states having a finite backward distance for G and O.
(2) Let $s \in S^{\prime}$ be a state with distance $i=\delta_{G}^{b w d}(s) \geq 1$.
(3) Assign to $\pi(s)$ any operator $o \in O$ such that $i m g_{o}(s) \subseteq D_{i-1}^{b w d}$. Hence o decreases the backward distance by at least one.

Then π is a strong plan for \mathcal{T} iff $\{s \in S \mid s \models I\} \subseteq S^{\prime}$.
Question: What is the worst-case runtime of the algorithm? Question: What is the best-case runtime of the algorithm if most states have a finite backward distance?

Making the algorithm a logic-based algorithm

- An algorithm that represents the states explicitly stops being feasible at about 10^{8} or 10^{9} states.
- For planning with bigger transition systems structural properties of the transition system have to be taken advantage of.
- As before, representing state sets as propositional formulae

Concepts
Basic
Algorithms
Efficient
Algorithm
Main
Transitions
Summary or BDDs often allows taking advantage of the structural properties: a formula or BDD that represents a set of states or a transition relation that has certain regularities may be very small in comparison to the set or relation.

- In the following, we will present a BDD-based algorithm.

Breadth-first search with progression and state sets

 Reminder: Algorithm for the deterministic caseProgression breadth-first search
AI Planning
M. Helmert
B. Nebel
def bfs-progression (A, I, O, G) :
goal $:=$ formula-to-set (G)
reached $:=\{I\}$
loop:
if reached \cap goal $\neq \emptyset$:
return solution found
new-reached $:=$ reached \cup apply $($ reached, $O)$
if new-reached = reached:
return no solution exists reached := new-reached
\rightsquigarrow This can easily be transformed into a regression algorithm.

Breadth-first search with regression and state sets

 Algorithm for the deterministic case
Regression breadth-first search

Al Planning
M. Helmert
B. Nebel
def bfs-regression (A, I, O, G) :
init $:=I$
reached := formula-to-set (G)
loop:

$$
\text { if init } \in \text { reached: }
$$

return solution found new-reached $:=$ reached \cup apply ${ }^{-1}($ reached, $O)$ if new-reached = reached: return no solution exists reached := new-reached

- This algorithm is very similar to the dynamic programming algorithm for the nondeterministic case!

Breadth-first search with regression and state sets

 Algorithm for the nondeterministic case
Regression breadth-first search

Al Planning
M. Helmert
B. Nebel
def bfs-regression (A, I, O, G) :
init $:=$ formula-to-set(I)
reached := formula-to-set (G)
loop:

$$
\begin{aligned}
& \text { if init } \subseteq \text { reached: } \\
& \text { return solution found } \\
& \text { new-reached }:=\text { reached } \cup \bigcup_{o \in O} \text { spreimgo }(\text { reached }) \\
& \text { if new-reached }=\text { reached: } \\
& \quad \text { return no solution exists } \\
& \text { reached }:=\text { new-reached }
\end{aligned}
$$

- How do we define spreimg with set-theoretic (BDD) operations?

Computing strong preimages

Strong preimages

$$
\operatorname{spreimg}_{o}(T)=\left\{s \in S \mid \exists s^{\prime} \in T: \operatorname{sos}^{\prime}, \operatorname{img}_{o}(s) \subseteq T\right\}
$$

Computing strong preimages

Strong preimages

Al Planning
M. Helmert,
B. Nebel

Concepts
Basic
Algorithms
Efficient
Algorithm
Main
Transitions
Summary

Computing strong preimages

Strong preimages

Al Planning
M. Helmert,
B. Nebel

$$
\begin{aligned}
\text { spreimg }_{o}(T)= & \left\{s \in S \mid \exists s^{\prime} \in T: \operatorname{sos}^{\prime}, i m g_{o}(s) \subseteq T\right\} \\
= & \left\{s \in S \mid\left(\exists s^{\prime} \in S: s^{\prime} \in T \wedge \operatorname{sos}^{\prime}\right) \wedge\right. \\
& \left.\left\{s^{\prime} \in S \mid \operatorname{sos}^{\prime}\right\} \subseteq T\right\} \\
= & \left\{s \in S \mid\left(\exists s^{\prime} \in S: s^{\prime} \in T \wedge \operatorname{sos}^{\prime}\right) \wedge\right. \\
& \left.\left(\forall s^{\prime} \in S: \operatorname{sos}^{\prime} \rightarrow\left(s^{\prime} \in T\right)\right)\right\}
\end{aligned}
$$

Computing strong preimages

Strong preimages

Al Planning
M. Helmert,
B. Nebel

$$
\begin{aligned}
\text { spreimg }_{o}(T)= & \left\{s \in S \mid \exists s^{\prime} \in T: \operatorname{sos}^{\prime}, \text { img }_{o}(s) \subseteq T\right\} \\
= & \left\{s \in S \mid\left(\exists s^{\prime} \in S: s^{\prime} \in T \wedge \operatorname{sos}^{\prime}\right) \wedge\right. \\
& \left.\left\{s^{\prime} \in S \mid \operatorname{sos}^{\prime}\right\} \subseteq T\right\} \\
= & \left\{s \in S \mid\left(\exists s^{\prime} \in S: s^{\prime} \in T \wedge \operatorname{sos}^{\prime}\right) \wedge\right. \\
& \left.\left(\forall s^{\prime} \in S: \operatorname{sos}^{\prime} \rightarrow\left(s^{\prime} \in T\right)\right)\right\} \\
= & \left\{s \in S \mid\left(\exists s^{\prime} \in S: s^{\prime} \in T \wedge \operatorname{sos}^{\prime}\right) \wedge\right. \\
& \left.\left(\neg \exists s^{\prime} \in S: \operatorname{sos}^{\prime} \wedge s^{\prime} \notin T\right)\right\}
\end{aligned}
$$

Concepts
Basic
Algorithms
Efficient
Algorithm
Main
Transitions
Summary

Computing strong preimages with BDD operations

$$
\begin{aligned}
\operatorname{spreimg}_{o}(T)=\{s \in S \mid & \left(\exists s^{\prime} \in S: s^{\prime} \in T \wedge \operatorname{sos}^{\prime}\right) \wedge \\
& \left.\left(\neg \exists s^{\prime} \in S: \operatorname{sos}^{\prime} \wedge s^{\prime} \notin T\right)\right\}
\end{aligned}
$$

Al Planning
M. Helmert
B. Nebel

Strong preimages with BDDs

def rename-A-to- $\mathrm{A}^{\prime}(B)$: for each $a \in A$:

$$
B:=b d d-r e n a m e\left(B, a, a^{\prime}\right)
$$

return B
def forget- $\mathrm{A}^{\prime}(B)$:
for each $a \in A$:

$$
B:=b d d-\text { forget }\left(B, a^{\prime}\right)
$$

return B

Computing strong preimages with BDD operations

AI Planning
$\operatorname{spreimg}_{o}(T)=\left\{s \in S \mid\left(\exists s^{\prime} \in S: s^{\prime} \in T \wedge \operatorname{sos}^{\prime}\right) \wedge\right.$

$$
\left.\left(\neg \exists s^{\prime} \in S: \operatorname{sos}^{\prime} \wedge s^{\prime} \notin T\right)\right\}
$$

. Helmert
B. Nebel

Strong preimages with BDDs

def strong-preimage (o, T) :

$$
\begin{aligned}
& \text { s'-in- } T:=\text { rename- } A \text {-to- } A^{\prime}(T) \\
& \text { s'-not-in- } T:=\text { bdd-complement }\left(s^{\prime}-\text {-in- } T\right) \\
& B_{1}:=\text { forget- } A^{\prime}\left(\text { bdd-intersection }\left(s^{\prime}-i n-T, T_{A}(o)\right)\right) \\
& B_{2}:=\text { forget- } A^{\prime}\left(b d d-i n t e r s e c t i o n\left(T_{A}(o), s^{\prime}-\text { not-in- } T\right)\right) \\
& \text { return bdd-intersection }\left(B_{1}, \text { bdd-complement }\left(B_{2}\right)\right)
\end{aligned}
$$

Computing strong preimages with BDD operations

AI Planning
$\operatorname{spreimg}_{o}(T)=\left\{s \in S \mid\left(\exists s^{\prime} \in S: s^{\prime} \in T \wedge \operatorname{sos}^{\prime}\right) \wedge\right.$

$$
\left.\left(\neg \exists s^{\prime} \in S: \operatorname{sos}^{\prime} \wedge s^{\prime} \notin T\right)\right\}
$$

. Helmert
B. Nebel

Strong preimages with BDDs

def strong-preimage (o, T) :

$$
\left.\left.\begin{array}{l}
\text { s'-in- } T:=\text { rename- } A \text {-to- } A^{\prime}(T) \\
\text { s'-not-in- } T:=\text { bdd-complement }\left(s^{\prime}-\text { in- } T\right) \\
B_{1}:=\text { forget- } A^{\prime}\left(b d d-\text { intersection }\left(s^{\prime}-i n-T, T_{A}(o)\right)\right) \\
B_{2}:=\text { forget- } A^{\prime}(b d d-i n t e r s e c t i o n ~
\end{array} T_{A}(o), s^{\prime} \text {-not-in- } T\right)\right) \text {) } \begin{aligned}
& \text { return bdd-intersection }\left(B_{1}, \text { bdd-complement }\left(B_{2}\right)\right)
\end{aligned}
$$

Computing strong preimages with BDD operations

AI Planning
$\operatorname{spreimg}_{o}(T)=\left\{s \in S \mid\left(\exists s^{\prime} \in S: s^{\prime} \in T \wedge \operatorname{sos}^{\prime}\right) \wedge\right.$

$$
\left.\left(\neg \exists s^{\prime} \in S: \operatorname{sos}^{\prime} \wedge s^{\prime} \notin T\right)\right\}
$$

M. Helmert
B. Nebel

Strong preimages with BDDs

def strong-preimage (o, T) :

$$
\left.\left.\begin{array}{l}
\text { s'-in- } T:=\text { rename- } A \text {-to- } A^{\prime}(T) \\
\text { s'-not-in- } T:=\text { bdd-complement }\left(s^{\prime}-\text {-in- } T\right) \\
B_{1}:=\text { forget- } A^{\prime}\left(\text { bdd-intersection }\left(s^{\prime}-i n-T, T_{A}(o)\right)\right) \\
B_{2}:=\text { forget- } A^{\prime}(b d d-i n t e r s e c t i o n ~
\end{array} T_{A}(o), s^{\prime} \text {-not-in- } T\right)\right) \text {) } \begin{aligned}
& \text { return bdd-intersection }\left(B_{1}, \text { bdd-complement }\left(B_{2}\right)\right)
\end{aligned}
$$

Computing strong preimages with BDD operations

AI Planning
$\operatorname{spreimg}_{o}(T)=\left\{s \in S \mid\left(\exists s^{\prime} \in S: s^{\prime} \in T \wedge \operatorname{sos}^{\prime}\right) \wedge\right.$

$$
\left.\left(\neg \exists s^{\prime} \in S: \operatorname{sos}^{\prime} \wedge s^{\prime} \notin T\right)\right\}
$$

. Helmert
B. Nebel

Strong preimages with BDDs

def strong-preimage (o, T) :

$$
\left.\left.\begin{array}{l}
\text { s'-in- } T:=\text { rename- } A \text {-to- } A^{\prime}(T) \\
\text { s'-not-in- } T:=\text { bdd-complement }\left(s^{\prime}-\text {-in- } T\right) \\
B_{1}:=\text { forget- } A^{\prime}\left(\text { bdd-intersection }\left(s^{\prime}-i n-T, T_{A}(o)\right)\right) \\
B_{2}:=\text { forget- } A^{\prime}(b d d-i n t e r s e c t i o n ~
\end{array} T_{A}(o), s^{\prime} \text {-not-in- } T\right)\right) \text {) }{\text { return bdd-intersection }\left(B_{1}, \text { bdd-complement }\left(B_{2}\right)\right)}^{\text {sdd }}
$$

Computing strong preimages with BDD operations

AI Planning
$\operatorname{spreimg}_{o}(T)=\left\{s \in S \mid\left(\exists s^{\prime} \in S: s^{\prime} \in T \wedge \operatorname{sos}^{\prime}\right) \wedge\right.$

$$
\left.\left(\neg \exists s^{\prime} \in S: \operatorname{sos}^{\prime} \wedge s^{\prime} \notin T\right)\right\}
$$

M. Helmert
B. Nebel

Strong preimages with BDDs

def strong-preimage (o, T) :

$$
\begin{aligned}
& \text { s'-in- } T \text { := rename-A-to- } A^{\prime}(T) \\
& \text { s'-not-in-T := bdd-complement(s'-in-T) } \\
& B_{1}:=\text { forget- } A^{\prime}\left(b d d-\text { intersection }\left(s^{\prime}-i n-T, T_{A}(o)\right)\right) \\
& B_{2}:=\text { forget- } A^{\prime}\left(\text { bdd-intersection }\left(T_{A}(o), s^{\prime}-\text { not-in- } T\right)\right) \\
& \text { return bdd-intersection(} B_{1} \text {, bdd-complement }\left(B_{2}\right) \text {) }
\end{aligned}
$$

Computing strong preimages with BDD operations

AI Planning
$\operatorname{spreimg}_{o}(T)=\left\{s \in S \mid\left(\exists s^{\prime} \in S: s^{\prime} \in T \wedge \operatorname{sos}^{\prime}\right) \wedge\right.$

$$
\left.\left(\neg \exists s^{\prime} \in S: \operatorname{sos}^{\prime} \wedge s^{\prime} \notin T\right)\right\}
$$

. Helmert
B. Nebel

Strong preimages with BDDs

def strong-preimage (o, T) :

$$
\begin{aligned}
& \text { s'-in- } T:=\text { rename- } A \text {-to- } A^{\prime}(T) \\
& \text { s'-not-in- } T:=\text { bdd-complement }\left(s^{\prime}-\text {-in- } T\right) \\
& B_{1}:=\text { forget- } A^{\prime}\left(\text { bdd-intersection }\left(s^{\prime}-i n-T, T_{A}(o)\right)\right) \\
& B_{2}:=\text { forget- } A^{\prime}\left(b d d-i n t e r s e c t i o n\left(T_{A}(o), s^{\prime}-\text { not-in- } T\right)\right) \\
& \text { return bdd-intersection }\left(B_{1}, \text { bdd-complement }\left(B_{2}\right)\right)
\end{aligned}
$$

Computing strong preimages with BDD operations

AI Planning
$\operatorname{spreimg}_{o}(T)=\left\{s \in S \mid\left(\exists s^{\prime} \in S: s^{\prime} \in T \wedge \operatorname{sos}^{\prime}\right) \wedge\right.$

$$
\left.\left(\neg \exists s^{\prime} \in S: \operatorname{sos}^{\prime} \wedge s^{\prime} \notin T\right)\right\}
$$

. Helmert
B. Nebel

Strong preimages with BDDs

def strong-preimage (o, T) :

$$
\begin{aligned}
& \text { s'-in- } T:=\text { rename- } A \text {-to- } A^{\prime}(T) \\
& \text { s'-not-in- } T:=\text { bdd-complement }\left(s^{\prime}-\text {-in- } T\right) \\
& B_{1}:=\text { forget- } A^{\prime}\left(\text { bdd-intersection }\left(s^{\prime}-i n-T, T_{A}(o)\right)\right) \\
& B_{2}:=\text { forget- } A^{\prime}\left(b d d-i n t e r s e c t i o n\left(T_{A}(o), s^{\prime}-\text { not-in- } T\right)\right) \\
& \text { return bdd-intersection }\left(B_{1}, \text { bdd-complement }\left(B_{2}\right)\right)
\end{aligned}
$$

Computing strong preimages with BDD operations

AI Planning
$\operatorname{spreimg}_{o}(T)=\left\{s \in S \mid\left(\exists s^{\prime} \in S: s^{\prime} \in T \wedge \operatorname{sos}^{\prime}\right) \wedge\right.$

$$
\left.\left(\neg \exists s^{\prime} \in S: \operatorname{sos}^{\prime} \wedge s^{\prime} \notin T\right)\right\}
$$

. Helmert
B. Nebel

Strong preimages with BDDs

def strong-preimage (o, T) :

$$
\begin{aligned}
& \text { s'-in- } T:=\text { rename- } A \text {-to- } A^{\prime}(T) \\
& \text { s'-not-in- } T:=\text { bdd-complement }\left(s^{\prime}-\text {-in- } T\right) \\
& B_{1}:=\text { forget- } A^{\prime}\left(\text { bdd-intersection }\left(s^{\prime}-i n-T, T_{A}(o)\right)\right) \\
& B_{2}:=\text { forget- } A^{\prime}\left(b d d-i n t e r s e c t i o n\left(T_{A}(o), s^{\prime}-\text { not-in- } T\right)\right) \\
& \text { return bdd-intersection }\left(B_{1}, \text { bdd-complement }\left(B_{2}\right)\right)
\end{aligned}
$$

Computing strong preimages with BDD operations

Al Planning
$\operatorname{spreimg}_{o}(T)=\left\{s \in S \mid\left(\exists s^{\prime} \in S: s^{\prime} \in T \wedge \operatorname{sos}^{\prime}\right) \wedge\right.$

$$
\left.\left(\neg \exists s^{\prime} \in S: \operatorname{sos}^{\prime} \wedge s^{\prime} \notin T\right)\right\}
$$

M. Helmert
B. Nebel

Strong preimages with BDDs

def strong-preimage (o, T) :

$$
\begin{aligned}
& \text { s'-in- } T:=\text { rename- } A \text {-to- } A^{\prime}(T) \\
& \text { s'-not-in- } T:=\text { bdd-complement }\left(s^{\prime}-\text {-in- } T\right) \\
& B_{1}:=\text { forget- } A^{\prime}\left(\text { bdd-intersection }\left(s^{\prime}-i n-T, T_{A}(o)\right)\right) \\
& B_{2}:=\text { forget- } A^{\prime}\left(b d d-i n t e r s e c t i o n\left(T_{A}(o), s^{\prime}-\text { not-in- } T\right)\right) \\
& \text { return bdd-intersection }\left(B_{1}, \text { bdd-complement }\left(B_{2}\right)\right)
\end{aligned}
$$

Computing strong preimages with BDD operations

Al Planning
$\operatorname{spreimg}_{o}(T)=\left\{s \in S \mid\left(\exists s^{\prime} \in S: s^{\prime} \in T \wedge \operatorname{sos}^{\prime}\right) \wedge\right.$

$$
\left.\left(\neg \exists s^{\prime} \in S: \operatorname{sos}^{\prime} \wedge s^{\prime} \notin T\right)\right\}
$$

Strong preimages with BDDs

def strong-preimage (o, T) :

$$
\begin{aligned}
& \text { s'-in- } T:=\text { rename- } A \text {-to- } A^{\prime}(T) \\
& \text { s'-not-in- } T:=b d d-\text { complement }\left(s^{\prime}-i n-T\right) \\
& B_{1}:=\text { forget- } A^{\prime}\left(\text { bdd-intersection }\left(s^{\prime}-i n-T, T_{A}(o)\right)\right) \\
& B_{2}:=\text { forget- } A^{\prime}\left(\text { bdd-intersection }\left(T_{A}(o), s^{\prime}-\text { not-in- } T\right)\right) \\
& \text { return bdd-intersection }\left(B_{1}, \text { bdd-complement }\left(B_{2}\right)\right)
\end{aligned}
$$

Are we done?

Computing strong preimages with BDD operations

Al Planning
$\operatorname{spreimg}_{o}(T)=\left\{s \in S \mid\left(\exists s^{\prime} \in S: s^{\prime} \in T \wedge \operatorname{sos}^{\prime}\right) \wedge\right.$

$$
\left.\left(\neg \exists s^{\prime} \in S: \operatorname{sos}^{\prime} \wedge s^{\prime} \notin T\right)\right\}
$$

Are we done?
No, because we have not yet shown how to compute $T_{A}(o)$ for nondeterministic operators.

Transition formula for nondeterministic operators

The formula $\tau_{A}(o)$ (on which the BDD/relation $T_{A}(o)$ is based) must express

- the conditions for applicability of o,
- how o changes state variables, and
- which state variables o does not change.

Concepts
Basic
Algorithms
Efficient
Algorithm
Main
Transitions
Summary

A significant difficulty lies in the third requirement because different variables may be affected depending on nondeterministic choices.

Normal forms for nondeterministic operators

- In deterministic planning, we translated effects to normal

Concepts form to express them in propositional logic.

- For nondeterministic effects, there is no (simple) normal form with all the nice properties of deterministic operator normal form:
- expressiveness (all effects are convertible to normal form)
- efficient computability
- simple representation in propositional logic
- We will thus introduce different normal forms which have a subset of these properties.

Unary nondeterminism normal form
 Definition

Al Planning
M. Helmert,
B. Nebel

Definition

An effect e is in unary nondeterminism normal form iff

- e is deterministic and in normal form, or
- $e=e_{1}|\ldots| e_{n}$ where each e_{i} is deterministic and in normal form.
- What about simple representation, expressiveness and efficient computability?

Unary nondeterminism normal form Simple representation

Recall: $\tau_{A}(o)$ for deterministic operators $o=\langle c, e\rangle$
Al Planning
M. Helmert,
B. Nebel

$$
\begin{aligned}
& \tau_{A}(o)=c \wedge \\
& \bigwedge_{a \in A}\left(\left(E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)\right) \leftrightarrow a^{\prime}\right) \\
& \wedge \bigwedge_{a \in A} \neg\left(E P C_{a}(e) \wedge E P C_{\neg a}(e)\right)
\end{aligned}
$$

For $o=\left\langle c, e_{1}\right| \ldots\left|e_{n}\right\rangle$ where each e_{i} is deterministic:

$$
\begin{aligned}
\tau_{A}(o)=c & \wedge \bigvee_{i=1}^{n} \bigwedge_{a \in A}\left(\left(E P C_{a}\left(e_{i}\right) \vee\left(a \wedge \neg E P C_{\neg a}\left(e_{i}\right)\right)\right) \leftrightarrow a^{\prime}\right) \\
& \wedge \bigwedge_{i=1}^{n} \bigwedge_{a \in A} \neg\left(E P C_{a}\left(e_{i}\right) \wedge E P C_{\neg a}\left(e_{i}\right)\right)
\end{aligned}
$$

Unary nondeterminism normal form

Expressiveness and efficient computability

Unary nondeterminism normal form is expressive.
Every nondeterministic effect can be converted by using the
following equivalences to raise nondeterminism to the root of

Concepts
Basic
Algorithms
Efficient
Algorithm
Main
Transitions
Summary
and then converting the deterministic subeffects using the standard algorithm.

However, this is not efficiently computable because there are operators for which an exponential growth of operator size is unavoidable (\rightsquigarrow exercises)

Unary nondeterminism normal form

Expressiveness and efficient computability

Unary nondeterminism normal form is expressive.
Every nondeterministic effect can be converted by using the following equivalences to raise nondeterminism to the root of

Concepts the effect:

$$
\begin{aligned}
c \triangleright\left(e_{1}|\ldots| e_{n}\right) & \equiv\left(c \triangleright e_{1}\right)|\ldots|\left(c \triangleright e_{n}\right) \\
\left(e_{1}|\ldots| e_{n}\right) \wedge e^{\prime} & \equiv\left(e_{1} \wedge e^{\prime}\right)|\ldots|\left(e_{n} \wedge e^{\prime}\right) \\
\left(e_{1}|\ldots| e_{n}\right)\left|e_{1}^{\prime} \ldots\right| e_{m}^{\prime} & \equiv e_{1}|\ldots| e_{n}\left|e_{1}^{\prime}\right| \ldots \mid e_{m}^{\prime}
\end{aligned}
$$

Basic
Algorithms
Efficient
Algorithm
Main
Transitions
Summary
and then converting the deterministic subeffects using the standard algorithm.

However, this is not efficiently computable because there are operators for which an exponential growth of operator size is unavoidable (\rightsquigarrow exercises)

Unary nondeterminism normal form

Expressiveness and efficient computability

Unary nondeterminism normal form is expressive.
Every nondeterministic effect can be converted by using the following equivalences to raise nondeterminism to the root of the effect:

$$
\begin{aligned}
c \triangleright\left(e_{1}|\ldots| e_{n}\right) & \equiv\left(c \triangleright e_{1}\right)|\ldots|\left(c \triangleright e_{n}\right) \\
\left(e_{1}|\ldots| e_{n}\right) \wedge e^{\prime} & \equiv\left(e_{1} \wedge e^{\prime}\right)|\ldots|\left(e_{n} \wedge e^{\prime}\right) \\
\left(e_{1}|\ldots| e_{n}\right)\left|e_{1}^{\prime} \ldots\right| e_{m}^{\prime} & \equiv e_{1}|\ldots| e_{n}\left|e_{1}^{\prime}\right| \ldots \mid e_{m}^{\prime}
\end{aligned}
$$

Basic
Algorithms
Efficient
Algorithm
Main
Transitions
Summary
and then converting the deterministic subeffects using the standard algorithm.

However, this is not efficiently computable because there are operators for which an exponential growth of operator size is unavoidable (\rightsquigarrow exercises).

Unary nondeterminism normal form Discussion

- Unary nondeterminism normal form is among the simplest possible normal forms. There is only one possible nesting of effect types:
- atomic effects
- within conditional effects
- within conjunctive effects

Concepts
Basic
Algorithms
Efficient
Algorithm
Main
Transitions

- within choice effects
- The price for this simplicity is an exponential blow-up in many cases.
- To avoid this blowup, we will now relax the nesting options somewhat.

Unary conditionality normal form
 Definition

Al Planning
M. Helmert,
B. Nebel

Definition

An effect e is in unary conditionality normal form iff for all conditional effects ($c \triangleright e^{\prime}$) occurring within e, the effect e^{\prime} is

Basic
Algorithms
Efficient
Algorithm
Main
Transitions
Summary

- Note that conjunctive effects and choice effects may be nested arbitrarily.

Unary conditionality normal form Properties

Unary conditionality normal form is expressive.
Every nondeterministic effect can be converted by using the
following equivalences to push conditional effects towards the leaves of the effect:

This is also efficiently computable.

H'owever, for this normal form, there does not appear to be a simple representation in propositional logic.

Unary conditionality normal form Properties

Unary conditionality normal form is expressive.
Every nondeterministic effect can be converted by using the following equivalences to push conditional effects towards the leaves of the effect:

$$
\begin{aligned}
c \triangleright\left(e_{1}|\ldots| e_{n}\right) & \equiv\left(c \triangleright e_{1}\right)|\ldots|\left(c \triangleright e_{n}\right) \\
c \triangleright\left(e_{1} \wedge \cdots \wedge e_{n}\right) & \equiv\left(c \triangleright e_{1}\right) \wedge \cdots \wedge\left(c \triangleright e_{n}\right) \\
c \triangleright\left(c^{\prime} \triangleright e\right) & \equiv\left(c \wedge c^{\prime}\right) \triangleright e
\end{aligned}
$$

This is also efficiently computable.
However, for this normal form, there does not appear to be a simple representation in propositional logic.

Unary conditionality normal form

Unary conditionality normal form is expressive.
Every nondeterministic effect can be converted by using the following equivalences to push conditional effects towards the leaves of the effect:

$$
\begin{aligned}
c \triangleright\left(e_{1}|\ldots| e_{n}\right) & \equiv\left(c \triangleright e_{1}\right)|\ldots|\left(c \triangleright e_{n}\right) \\
c \triangleright\left(e_{1} \wedge \cdots \wedge e_{n}\right) & \equiv\left(c \triangleright e_{1}\right) \wedge \cdots \wedge\left(c \triangleright e_{n}\right) \\
c \triangleright\left(c^{\prime} \triangleright e\right) & \equiv\left(c \wedge c^{\prime}\right) \triangleright e
\end{aligned}
$$

This is also efficiently computable.
However, for this normal form, there does not appear to be a simple representation in propositional logic.

Unary conditionality normal form
 Discussion

Al Planning
M. Helmert
B. Nebel

- Unary conditionality normal form allows too complicated nestings of conjunctive and choice effects.
- This makes it difficult to test, for example, whether there are possible choices that will lead to inconsistent effects.
- For this reason, we will now look into a slightly stricter normal form which is a good compromise between our desiderata.

Concepts
Basic
Algorithms
Efficient
Algorithm
Main
Transitions
Summary

Decomposablue unary conditionality normal form

 ScopeAl Planning
M. Helmert,
B. Nebel

Definition

Define the scope of an effect e as

$$
\begin{aligned}
\operatorname{scope}(a) & =\{a\} \\
\operatorname{scope}(\neg a) & =\{a\} \\
\operatorname{scope}(c \triangleright e) & =\operatorname{scope}(e) \\
\operatorname{scope}\left(e_{1} \wedge \cdots \wedge e_{n}\right) & =\operatorname{scope}\left(e_{1}\right) \cup \cdots \cup \operatorname{scope}\left(e_{n}\right) \\
\operatorname{scope}\left(e_{1}|\ldots| e_{n}\right) & =\operatorname{scope}\left(e_{1}\right) \cup \cdots \cup \operatorname{scope}\left(e_{n}\right)
\end{aligned}
$$

Concepts
Basic
Algorithms
Efficient
Algorithm
Main
Transitions
Summary

Decomposable unary conditionality normal form Definition

Definition

An effect e is in decomposable unary conditionality (DUC) normal form iff it is in unary conditionality normal form and for all conjunctive effects $\left(e_{1} \wedge \cdots \wedge e_{n}\right)$ occurring within e, either

- all e_{i} are deterministic, or
- for all $i \neq j$, $\operatorname{scope}\left(e_{i}\right)$ and $\operatorname{scope}\left(e_{j}\right)$ are disjoint.

Basic
Algorithms
Efficient
Algorithm
Main
Transitions
Summary

Example: $(a \mid b) \wedge(\neg b \mid d)$ is not in DUC normal form because variable b occurs in $(a \mid b)$ and $(\neg b \mid d)$.

- Consistency of effect application can be tested easily: The effect is guaranteed to be consistent in state s iff this is the case for each deterministic sub-effect.

Decomposable unary conditionality normal form Definition

Definition

An effect e is in decomposable unary conditionality (DUC)
Concepts normal form iff it is in unary conditionality normal form and for all conjunctive effects $\left(e_{1} \wedge \cdots \wedge e_{n}\right)$ occurring within e, either

- all e_{i} are deterministic, or
- for all $i \neq j$, $\operatorname{scope}\left(e_{i}\right)$ and $\operatorname{scope}\left(e_{j}\right)$ are disjoint.

Basic
Algorithms
Efficient
Algorithm
Main
Transitions
Summary

Example: $(a \mid b) \wedge(\neg b \mid d)$ is not in DUC normal form because variable b occurs in $(a \mid b)$ and $(\neg b \mid d)$.

- Consistency of effect application can be tested easily:

The effect is guaranteed to be consistent in state s iff this is the case for each deterministic sub-effect.

Decomposable unary conditionality normal form

Definition

Definition

An effect e is in decomposable unary conditionality (DUC) normal form iff it is in unary conditionality normal form and for all conjunctive effects $\left(e_{1} \wedge \cdots \wedge e_{n}\right)$ occurring within e, either

- all e_{i} are deterministic, or
- for all $i \neq j$, $\operatorname{scope}\left(e_{i}\right)$ and $\operatorname{scope}\left(e_{j}\right)$ are disjoint.

Basic
Algorithms
Efficient
Algorithm
Main
Transitions
Summary

Example: $(a \mid b) \wedge(\neg b \mid d)$ is not in DUC normal form because variable b occurs in $(a \mid b)$ and $(\neg b \mid d)$.

- Consistency of effect application can be tested easily: The effect is guaranteed to be consistent in state s iff this is the case for each deterministic sub-effect.

Decomposable unary conditionality normal form Properties

- DUC normal form is a special case of unary conditionality

Concepts normal form and a generalization of unary nondeterminism normal form.

- Because it generalizes unary nondeterminism normal form, it is expressive.
- We do not discuss efficient computability in detail, but only note that in practice, nondeterministic operators can usually be compactly represented in DUC normal form.
- We will now consider the property of simple representation.

Basic
Algorithms
Efficient
Algorithm
Main
Transitions
Summary

Decomposable unary conditionality normal form

Representation in propositional logic

Recall: $\tau_{A}(o)$ for deterministic operators $o=\langle c, e\rangle$

Al Planning
M. Helmert,
B. Nebel

$$
\begin{aligned}
\tau_{A}(o)=c & \wedge \\
& \bigwedge_{a \in A}\left(\left(E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)\right) \leftrightarrow a^{\prime}\right) \\
& \wedge \bigwedge_{a \in A} \neg\left(E P C_{a}(e) \wedge E P C_{\neg a}(e)\right)
\end{aligned}
$$

For nondeterministic $o=\langle c, e\rangle$ where e is in DUC normal form, this generalizes to:

$$
\tau_{A}(o)=c \wedge \tau_{A}^{n d}(e) \wedge \bigwedge_{e^{\prime} \in E^{\text {det }}} \bigwedge_{a \in A} \neg\left(E P C_{a}\left(e^{\prime}\right) \wedge E P C_{\neg a}\left(e^{\prime}\right)\right)
$$

where $E^{d e t}$ is the set of deterministic sub-effects of e and $\tau_{A}^{\text {nd }}(e)$ is defined on the following slide.

Decomposable unary conditionality normal form

Representation in propositional logic

We make sure that $\tau_{A}^{\text {nd }}(e)$ describes changed and unchanged
Al Planning
M. Helmert,
B. Nebel

- for exactly the same variables B within choice effects and
- for disjoint variables B for (nondeterministic) conjunctive effects.
This gives rise to the following recursive definition:

Definition

$$
\begin{aligned}
\tau_{B}^{n d}(e)= & \tau_{B}(e) \text { for deterministic effects } e \\
\tau_{B}^{n d}\left(e_{1}|\ldots| e_{n}\right)= & \tau_{B}^{n d}\left(e_{1}\right) \vee \cdots \vee \tau_{B}^{n d}\left(e_{n}\right) \\
\tau_{B}^{n d}\left(e_{1} \wedge \cdots \wedge e_{n}\right)= & \tau_{\operatorname{scope}\left(e_{1}\right)}^{n d}\left(e_{1}\right) \wedge \cdots \wedge \tau_{\operatorname{scope}\left(e_{n}\right)}^{n d}\left(e_{n}\right) \\
& \wedge \bigwedge_{a \in B \backslash \bigcup_{i=1}^{n} \operatorname{scope}\left(e_{i}\right)}\left(a \leftrightarrow a^{\prime}\right)
\end{aligned}
$$

Concepts
Basic
Algorithms
Efficient
Algorithm
Main
Transitions
Summary

Summary

Strong planning with full observability

- We have considered the special case of nondeterministic planning where
- planning tasks are fully observable and
- we are interested in strong plans.
- We have introduced important concepts also relevant to other variants of nondeterministic planning such as
- images and
- weak and strong preimages.
- We have discussed some basic classes of algorithms:
- forward search in AND/OR graphs, and
- backward induction by dynamic programming.
- Finally, we have shown how to make a dynamic programming algorithm more efficient by exploiting logicor set-based representations such as BDDs.

