Principles of AI Planning

January 10th, 2007 — Expressive power

Motivation

Why?
Examples

Propositional STRIPS and Variants

Disjunctive Preconditions: Difficult or Easy?
STRIPS Variants
Partially Ordered STRIPS Variants
Computational Complexity

Expressive Power

Measuring Expressive Power
Compilation Schemes
Compilability
Positive Results
Negative Results
Using Circuit Complexity . . .
General Compilability Results

Summary
Principles of AI Planning
Expressive power

Malte Helmert Bernhard Nebel
Albert-Ludwigs-Universität Freiburg

January 10th, 2007
Motivation: Why Analyzing the Expressive Power?

- Expressive power is the motivation for designing new planning languages.
- Often there is the question: *Syntactic sugar* or *essential feature*?

 ⇒ *Compiling away* or change planning algorithm?

→ If a feature can be compiled away, then it is apparently only *syntactic sugar*.

- Sometimes, however, a compilation can lead to much larger planning domain descriptions or to much longer plans.

⇒ This means the planning algorithm will probably choke, i.e., it cannot be considered as a compilation.
Example: DNF Preconditions

- Assume we have **DNF preconditions** in STRIPS operators
- This can be **compiled away** as follows
- **Split** each operator with a DNF precondition $c_1 \lor \ldots \lor c_n$ into n operators with the same effects and c_i as preconditions
- If there exists a plan for the original planning task there is one for the new planning task and **vice versa**
- The **planning task** has almost the **same size**
- The **shortest plans** have the **same size**
Example: Conditional effects

- Can we compile away **conditional effects** to STRIPS?
- Example operator: $\langle a, b \triangleright d \land \neg c \triangleright e \rangle$
- Can be translated into four operators:
 $\langle a \land b \land c, d \rangle, \langle a \land b \land \neg c, d \land e \rangle, \ldots$
- Plan **existence** and plan **size** are identical
- **Exponential blowup** of domain description!
- Can this be avoided?
In the following we will only consider propositional STRIPS and some variants of it.

Planning task:

\[\mathcal{T} = \langle A, I, O, G \rangle. \]

Often we refer to domain structures \(\mathcal{D} = \langle A, O \rangle \).
Disjunctive Preconditions: Trivial or Essential?

- Kambhampati et al [ECP 97] and Gazen & Knoblock [ECP 97]: Disjunctive preconditions are trivial – since they can be translated to basic STRIPS (DNF-preconditions)
- Bäckström [AIJ 95]: Disjunctive preconditions are probably essential – since they can not easily be translated to basic STRIPS (CNF-preconditions)
- Anderson et al [AIPS 98]: “[D]isjunctive preconditions . . . are . . . essential prerequisites for handling conditional effects” \iff conditional effects imply disjunctive preconditions (?) (General Boolean preconditions)
More “Expressive Power”

\[
\begin{align*}
\text{STRIPS}_N & : \text{plain strips with negative literals} \\
\text{STRIPS}_{Bd} & : \text{precondition in disjunctive normal form} \\
\text{STRIPS}_{Bc} & : \text{precondition in conjunctive normal form} \\
\text{STRIPS}_B & : \text{Boolean expressions as preconditions} \\
\text{STRIPS}_C & : \text{conditional effects} \\
\text{STRIPS}_{C,N} & : \text{conditional effects & negative literals}
\end{align*}
\]
Ordering Planning Formalisms Partially
Computational Complexity . . .

Theorem

PLANEX is PSPACE-complete for STRIPS_N, $\text{STRIPS}_{C,B}$, and for all formalisms “between” the two.

Proof.

Follows from theorems proved in the previous lecture.
Measuring Expressive Power

Consider *mappings* between planning problems in different formalisms

- that *preserve*
 - solution existence
 - plan size linearly or polynomially etc.
 - the exact plan size
 - the plan “structure”
 - the solutions/plans themselves

- that *are limited*
 - in the *size* of the result (poly. size)
 - in the *computational resources* (poly. time)

- that *transform*
 - entire planning instances
 - domain structure and states in isolation
Method 1: Polynomial Transformation

- **preserving**
 - solution existence
 - plan size linearly or polynomially etc.
 - the exact plan size
 - the plan “structure”
 - the solutions/plans themselves

- **limiting**
 - in the size of the result (poly. size)
 - in the computational resources (poly. time)

- **transforming**
 - entire planning instances
 - domain structure and states in isolation

 semua formalisms have the **same expressiveness** (?)
Method 2: Bäckström’s ESP-reductions

- **preserving**
 - solution existence
 - plan size linearly or polynomially etc.
 - the exact plan size
 - the plan “structure”
 - the solutions/plans themselves

- **limiting**
 - in the size of the result (poly. size)
 - in the computational resources (poly. time)

- **transforming**
 - entire planning instances
 - domain structure and states in isolation

~~> However, expressiveness is independent of the computational resources needed to compute the mapping
Method 3: Polysize Mappings

- **preserving**
 - solution existence
 - plan size linearly or polynomially etc.
 - the exact plan size
 - the plan “structure”
 - the solutions/plans themselves

- **limiting**
 - in the size of the result (poly. size)
 - in the computational resources (poly. time)

- **transforming**
 - entire planning instances
 - domain structure and states in isolation

⇒ All formalisms are **trivially equivalent** (because planning is PSPACE-complete for all propositional STRIPS formalisms)
Method 4: Modular & Polysize Mappings

- **preserving**
 - solution existence
 - plan size linearly or polynomially etc.
 - the exact plan size
 - the plan “structure”
 - the solutions/plans themselves

- **limiting**
 - in the size of the result (poly. size)
 - in the computational resources (poly. time)

- **transforming**
 - entire planning instances
 - domain structure and states in isolation

When measuring the expressiveness of planning formalisms, domain structures should be considered independently from states.
The Right Method: Compilation Schemes (Simplified)

- Transform **domain structure**
 \[D = \langle A, O \rangle \] (with polynomial blowup) to \(D' \) preserving solution existence

- Only trivial changes to **states** (independent of operator set)

- Resulting **plans** \(\pi' \) should not grow too much (additive constant, linear growth, polynomial growth)

~~ Similar to **knowledge compilation**, with operators as the **fixed part** and initial states & goals as the **varying part**
Compilability

\(\mathcal{Y} \preceq \mathcal{X} \) (\(\mathcal{Y} \) is compilable to \(\mathcal{X} \))

iff

there exists a compilation scheme from \(\mathcal{Y} \) to \(\mathcal{X} \).

\(\mathcal{Y} \preceq^1 \mathcal{X} \): preserving plan size \textbf{exactly} (modulo additive constants)

\(\mathcal{Y} \preceq^c \mathcal{X} \): preserving plan size \textbf{linearly} (in \(|\pi| \))

\(\mathcal{Y} \preceq^p \mathcal{X} \): preserving plan size \textbf{polynomially} (in \(|\pi| \) and \(|D| \))

\(\mathcal{Y} \preceq^x \mathcal{X} \): \textbf{polynomial-time} compilability

Theorem

\textit{For all } \(x, y \), \textit{the relations } \preceq^x_y \textit{ are transitive and reflexive.}
Back-Translatability

- Shouldn’t we also require that plans in the compiled instance can be translated back to the original formalism?
- Yes, if we want to use this technique, one should require that!
- In all positive cases, there was never any problem to translate the plan back
- For the negative case, it is easier to prove non-existence
- So, in order to prove negative results, we do not need it, for positive it never had been a problem

→ So, similarly to the concentration on decision problems when determining complexity, we simplify things here
A (Trivial) Positive Result: $\text{STRIPS}_{Bd} \preceq^1_p \text{STRIPS}_N$

DNF preconditions can be "compiled away."
Assume operator $o = \langle c, e \rangle$ and

$$c = L_1 \lor \ldots \lor L_k$$

with L_i being a conjunction of literals. Create k operators $o_i = \langle L_i, e \rangle$

1. compilation is solution-preserving,
2. D' is only polynomially larger than D,
3. compilation can be computed in polynomial time,
4. resulting plans do not grow at all.

$\Rightarrow \text{STRIPS}_{Bd} \preceq^1_p \text{STRIPS}_N$
Another Positive Result: $\text{STRIPS}_{C,Bc} \preceq^C_p \text{STRIPS}_{C,N}$

CNF preconditions can be "compiled away" – provided we have already conditional effects.

- Evaluate the truth value of all disjunctions appearing in operators by using a **special evaluation operator** with conditional effects that make new "clause atoms" true
- Alternate between executing original operators (clauses replaced by new atoms) and evaluation operators
- Operator sets grow only **polynomially**
- Plans are **double as long** as the original plans

⇒ **Anderson et al’s conjecture** holds in a weak version
A First Negative Result: Conditional Effects Cannot be Compiled into Boolean Preconditions

Consider domain \mathcal{D} with only one (STRIPS$_{C,B}$) operator o:

$$ \langle \top, (p_1 \triangleright \neg p_1) \land (\neg p_1 \triangleright p_1) \land \ldots \land (p_k \triangleright \neg p_k) \land (\neg p_k \triangleright p_k) \rangle, $$

which “inverts” a given state. For all (I, G) with

$$ G = \bigwedge \{ \neg v \mid v \in A, I \models v \} \land \bigwedge \{ v \mid v \in A, I \not\models v \}, $$

there exists a STRIPS$_{C,B}$ one-step plan.

Assume there exists a compilation preserving plan size linearly leading to a STRIPS$_B$ domain structure \mathcal{D}'. There are exponentially many possible initial states, but only polynomially many different c-step plans for \mathcal{D}'. Some STRIPS$_B$ plan π is used for different initial states I_1, I_2 (for large enough k). Let v be a variable with $I_1(v) \neq I_2(v)$.

\Rightarrow In one case, v must be set by π, in the other case, it must be cleared.

\Rightarrow This is not possible in an unconditional plan.

\Rightarrow The transformation is \textbf{not solution preserving}!

\Rightarrow \textbf{Conditional effects} cannot be compiled away (if plan size can grow only linearly)
Another Negative Result: $\text{STRIPS}_{Bc} \not\preccurlyeq^C \text{STRIPS}_N$

k-FISEX: Planning problem with fixed plan length k and varying initial state. Does there exist an initial state leading to a successful k-step plan? 1-FISEX is NP-complete for STRIPS_{Bc} ($= \text{SAT}$).

k-FISEX is polynomial for STRIPS_N (regression analysis)

$$\leadsto \text{STRIPS}_{Bc} \not\preccurlyeq_p \text{STRIPS}_N \text{ (if } P \neq \text{NP})$$

Using a technique first used by Kautz & Selman, one can show that even arbitrary compilations can be ruled out – provided the polynomial hierarchy does not collapse. The proof method uses non-uniform complexity classes such as $P/poly$.

$$\leadsto \text{Bäckström’s conjecture holds}$$ in the compilation framework.
A Final Negative Result: Boolean Preconditions Cannot be Compiled Away Even in the Presence of Conditional Effects

- Boolean preconditions have the power of families of Boolean circuits with logarithmic depth (because Boolean formula have this power) ($= \text{NC}^1$)
- Conditional effects can simulate only families of circuits with fixed depth ($= \text{AC}^0$).
- The parity function can be expressed in the first framework (NC^1) while it cannot be expressed in the second (AC^0).

\implies The negative result follows unconditionally!
Boolean Circuits

- We know what **Boolean circuits** are (directed, acyclic graphs with different types of nodes: *and*, *or*, *not*, *input*, *output*)

- **Size of circuit** = number of gates

- **Depth of circuit** = length of longest path from input gate to output gate

- When we want to *recognize formal languages* with circuits, we need a *sequence of circuits* with an increasing number of input gates \(\rightsquigarrow \) *family of circuits*

- Families with polynomial size and poly-log \((\log^k n) \) depth

- Complexity classes \(\text{NC}^k \) (Nick’s class)

- \(\text{NC} = \bigcup_k \text{NC}^k \subseteq P \), the class of problems that can be solved efficiently in parallel

- The class of languages that can be characterized by polynomially sized Boolean formulae is identical to \(\text{NC}^1 \)
The classes AC^k

- The classes NC^k are defined with a fixed fan-in
- If we have *unbounded fan-in*, we get the classes AC^k
 - gate types: NOT, n-ary AND, n-ary OR for all $n \geq 2$
- Obviously: $\text{NC}^k \subseteq \text{AC}^k$
- Possible to show: $\text{AC}^{k-1} \subseteq \text{NC}^k$
- The *parity language* is in NC^1, but not in AC^0!
Accepting languages with families of domain structures with fixed goals

- We will view families of domain structures with fixed goals and fixed size plans as "machines" that accept languages.
- Consider families of poly-sized domain structures in STRIPS\(_B\) and use one-step plans for acceptance.
- Obviously, this is the same as using Boolean formulae.

All languages in \(\text{NC}^1\) can be accepted in this way.
Simulating $\text{STRIPS}_{C,N}$ c-Step Plans with $A\text{C}^0$ circuits (1)

- Represent each operator and then chain the actions together ($O(|O|^c)$ different plans):
Simulating $\text{STRIPS}_{C,N}$ c-Step Plans with AC^0 circuits (2)

- For each single action (precondition testing (a), conditional effects (b), and the computation of effects (c))
Theorem

$\text{STRIPS}_B \nsubseteq^c \text{STRIPS}_{C,N}$.

Proof.
Assuming $\text{STRIPS}_B \subseteq^c \text{STRIPS}_{C,N}$ has the consequence that the underlying compilation scheme could be used to compile a NC^1 circuit family into an AC^0 circuit family, which is impossible in the general case.
All other potential positive results have been ruled out by our 3 negative results and transitivity.
Compilation schemes seem to be the right method to measure the *relative expressive power* of planning formalisms.

Either we get a positive result preserving plan size *linearly* with a *polynomial-time compilation*.

Or we get an *impossibility result*.

→ *Results are relevant for building planning systems*.

⇝ *CNF preconditions* do not add much when we have already conditional effects.

Note: In all cases we can get a positive result if we allow for a polynomial blow-up of the plans.