
AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Principles of AI Planning
Computational complexity

Malte Helmert Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

December 15th, 2006

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Computational Complexity
Motivation

We have seen that planning in transition systems can be
done in time polynomial in the size of the transition system

This appears not to be true for planning in succinct
transition systems (= planning tasks)

1 What is the precise computational complexity of the
planning problem?

2 How does the computational complexity vary with the
expressiveness of the planning language?

3 What is the computational complexity of planning in a
particular domain (e.g. blocks world)?

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Computational Complexity
Motivation

We have seen that planning in transition systems can be
done in time polynomial in the size of the transition system

This appears not to be true for planning in succinct
transition systems (= planning tasks)

1 What is the precise computational complexity of the
planning problem?

2 How does the computational complexity vary with the
expressiveness of the planning language?

3 What is the computational complexity of planning in a
particular domain (e.g. blocks world)?

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Computational Complexity
Motivation

We have seen that planning in transition systems can be
done in time polynomial in the size of the transition system

This appears not to be true for planning in succinct
transition systems (= planning tasks)

1 What is the precise computational complexity of the
planning problem?

2 How does the computational complexity vary with the
expressiveness of the planning language?

3 What is the computational complexity of planning in a
particular domain (e.g. blocks world)?

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Computational Complexity
Motivation

We have seen that planning in transition systems can be
done in time polynomial in the size of the transition system

This appears not to be true for planning in succinct
transition systems (= planning tasks)

1 What is the precise computational complexity of the
planning problem?

2 How does the computational complexity vary with the
expressiveness of the planning language?

3 What is the computational complexity of planning in a
particular domain (e.g. blocks world)?

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Why Computational Complexity?

understand the problem

know what is not possible

find interesting subproblems that are easier to solve

distinguish essential features from syntactic sugar

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Deterministic planning: NP-hardness

Definition

The decision problem SAT: test whether a given propositional
formula φ is satisfiable.

Reduction from SAT to deterministic planning

A = the set of propositional variables occurring in φ
I = any state, e.g. all state variables have value 0
O = ({>} ×A) ∪ ({〈>,¬a〉|a ∈ A})

There is a plan for 〈A, I, O, φ〉 if and only if φ is satisfiable.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Deterministic planning: NP-hardness

Because there is a polynomial-time translation from SAT
into deterministic planning, and SAT is an NP-complete
problem, there is a polynomial time translation from every
decision problem in NP into deterministic planning. Hence
the problem is NP-hard.

1 Does NP-hardness depend on having Boolean formulae as
preconditions?

2 Does deterministic planning have the power of NP, or is it
still more powerful?

3 We show that it is more powerful: The decision problem of
testing whether a plan exists is PSPACE-complete.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Deterministic planning: NP-hardness

Because there is a polynomial-time translation from SAT
into deterministic planning, and SAT is an NP-complete
problem, there is a polynomial time translation from every
decision problem in NP into deterministic planning. Hence
the problem is NP-hard.

1 Does NP-hardness depend on having Boolean formulae as
preconditions?

2 Does deterministic planning have the power of NP, or is it
still more powerful?

3 We show that it is more powerful: The decision problem of
testing whether a plan exists is PSPACE-complete.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Deterministic planning: NP-hardness

Because there is a polynomial-time translation from SAT
into deterministic planning, and SAT is an NP-complete
problem, there is a polynomial time translation from every
decision problem in NP into deterministic planning. Hence
the problem is NP-hard.

1 Does NP-hardness depend on having Boolean formulae as
preconditions?

2 Does deterministic planning have the power of NP, or is it
still more powerful?

3 We show that it is more powerful: The decision problem of
testing whether a plan exists is PSPACE-complete.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Deterministic planning: NP-hardness

Because there is a polynomial-time translation from SAT
into deterministic planning, and SAT is an NP-complete
problem, there is a polynomial time translation from every
decision problem in NP into deterministic planning. Hence
the problem is NP-hard.

1 Does NP-hardness depend on having Boolean formulae as
preconditions?

2 Does deterministic planning have the power of NP, or is it
still more powerful?

3 We show that it is more powerful: The decision problem of
testing whether a plan exists is PSPACE-complete.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

ATMs

(N)TMs

Computations

Acceptance

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Alternating Turing Machines

Definition: Alternating Turing Machine

Alternating Turing Machine (ATM) 〈Σ,�, Q, q0, l, δ〉:
1 input alphabet Σ and blank symbol � /∈ Σ

alphabets always non-empty and finite
tape alphabet Σ� = Σ ∪ {�}

2 finite set Q of internal states with initial state q0 ∈ Q
3 state labeling l : Q → {Y,N,∃,∀}

accepting, rejecting, existential, universal states
QY, QN, Q∃, Q∀
terminal states Q? = QY ∪QN

nonterminal states Q′ = Q∃ ∪Q∀

4 transition relation δ ⊆ (Q′ × Σ�)× (Q× Σ� × {−1,+1})

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

ATMs

(N)TMs

Computations

Acceptance

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Alternating Turing Machines

Definition: Alternating Turing Machine

Alternating Turing Machine (ATM) 〈Σ,�, Q, q0, l, δ〉:
1 input alphabet Σ and blank symbol � /∈ Σ

alphabets always non-empty and finite
tape alphabet Σ� = Σ ∪ {�}

2 finite set Q of internal states with initial state q0 ∈ Q
3 state labeling l : Q → {Y,N,∃,∀}

accepting, rejecting, existential, universal states
QY, QN, Q∃, Q∀
terminal states Q? = QY ∪QN

nonterminal states Q′ = Q∃ ∪Q∀

4 transition relation δ ⊆ (Q′ × Σ�)× (Q× Σ� × {−1,+1})

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

ATMs

(N)TMs

Computations

Acceptance

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Alternating Turing Machines

Definition: Alternating Turing Machine

Alternating Turing Machine (ATM) 〈Σ,�, Q, q0, l, δ〉:
1 input alphabet Σ and blank symbol � /∈ Σ

alphabets always non-empty and finite
tape alphabet Σ� = Σ ∪ {�}

2 finite set Q of internal states with initial state q0 ∈ Q
3 state labeling l : Q → {Y,N,∃,∀}

accepting, rejecting, existential, universal states
QY, QN, Q∃, Q∀
terminal states Q? = QY ∪QN

nonterminal states Q′ = Q∃ ∪Q∀

4 transition relation δ ⊆ (Q′ × Σ�)× (Q× Σ� × {−1,+1})

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

ATMs

(N)TMs

Computations

Acceptance

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Alternating Turing Machines

Definition: Alternating Turing Machine

Alternating Turing Machine (ATM) 〈Σ,�, Q, q0, l, δ〉:
1 input alphabet Σ and blank symbol � /∈ Σ

alphabets always non-empty and finite
tape alphabet Σ� = Σ ∪ {�}

2 finite set Q of internal states with initial state q0 ∈ Q
3 state labeling l : Q → {Y,N,∃,∀}

accepting, rejecting, existential, universal states
QY, QN, Q∃, Q∀
terminal states Q? = QY ∪QN

nonterminal states Q′ = Q∃ ∪Q∀

4 transition relation δ ⊆ (Q′ × Σ�)× (Q× Σ� × {−1,+1})

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

ATMs

(N)TMs

Computations

Acceptance

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Alternating Turing Machines

Definition: Alternating Turing Machine

Alternating Turing Machine (ATM) 〈Σ,�, Q, q0, l, δ〉:
1 input alphabet Σ and blank symbol � /∈ Σ

alphabets always non-empty and finite
tape alphabet Σ� = Σ ∪ {�}

2 finite set Q of internal states with initial state q0 ∈ Q
3 state labeling l : Q → {Y,N,∃,∀}

accepting, rejecting, existential, universal states
QY, QN, Q∃, Q∀
terminal states Q? = QY ∪QN

nonterminal states Q′ = Q∃ ∪Q∀

4 transition relation δ ⊆ (Q′ × Σ�)× (Q× Σ� × {−1,+1})

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

ATMs

(N)TMs

Computations

Acceptance

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

(Non-) Deterministic Turing Machines

Definition: Non-deterministic Turing Machine

A non-deterministic Turing Machine (NTM) is an ATM where
all nonterminal states are existential.

no universal states

Definition: Deterministic Turing Machine

A deterministic Turing Machine (DTM) is an NTM
where the transition relation is functional.

for all (q, a) ∈ Q′ × Σ�, there is exactly one triple
(q′, a′,∆) with ((q, a), (q′, a′,∆)) ∈ δ

notation: δ(q, a) = (q′, a′,∆)

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

ATMs

(N)TMs

Computations

Acceptance

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

(Non-) Deterministic Turing Machines

Definition: Non-deterministic Turing Machine

A non-deterministic Turing Machine (NTM) is an ATM where
all nonterminal states are existential.

no universal states

Definition: Deterministic Turing Machine

A deterministic Turing Machine (DTM) is an NTM
where the transition relation is functional.

for all (q, a) ∈ Q′ × Σ�, there is exactly one triple
(q′, a′,∆) with ((q, a), (q′, a′,∆)) ∈ δ

notation: δ(q, a) = (q′, a′,∆)

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

ATMs

(N)TMs

Computations

Acceptance

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Turing Machine Configurations

Let M = 〈Σ,�, Q, q0, l, δ〉 be an ATM.

Definition: Configuration

A configuration of M is a triple (w, q, x) ∈ Σ∗
� ×Q× Σ+

�.

w: tape contents before tape head

q: current state

x: tape contents after and including tape head

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

ATMs

(N)TMs

Computations

Acceptance

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Turing Machine Transitions

Let M = 〈Σ,�, Q, q0, l, δ〉 be an ATM.

Definition: Yields relation

A configuration c of M yields a configuration c′ of M ,
in symbols c ` c′, as defined by the following rules,
where a, a′, b ∈ Σ�, w, x ∈ Σ∗

�, q, q′ ∈ Q and
((q, a), (q′, a′,∆)) ∈ δ:

(w, q, ax) ` (wa′, q′, x) if ∆ = +1, |x| ≥ 1
(w, q, a) ` (wa′, q′,�) if ∆ = +1

(wb, q, ax) ` (w, q′, ba′x) if ∆ = −1
(ε, q, ax) ` (ε, q′,�a′x) if ∆ = −1

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

ATMs

(N)TMs

Computations

Acceptance

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Turing Machine Transitions

Let M = 〈Σ,�, Q, q0, l, δ〉 be an ATM.

Definition: Yields relation

A configuration c of M yields a configuration c′ of M ,
in symbols c ` c′, as defined by the following rules,
where a, a′, b ∈ Σ�, w, x ∈ Σ∗

�, q, q′ ∈ Q and
((q, a), (q′, a′,∆)) ∈ δ:

(w, q, ax) ` (wa′, q′, x) if ∆ = +1, |x| ≥ 1
(w, q, a) ` (wa′, q′,�) if ∆ = +1

(wb, q, ax) ` (w, q′, ba′x) if ∆ = −1
(ε, q, ax) ` (ε, q′,�a′x) if ∆ = −1

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

ATMs

(N)TMs

Computations

Acceptance

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Turing Machine Transitions

Let M = 〈Σ,�, Q, q0, l, δ〉 be an ATM.

Definition: Yields relation

A configuration c of M yields a configuration c′ of M ,
in symbols c ` c′, as defined by the following rules,
where a, a′, b ∈ Σ�, w, x ∈ Σ∗

�, q, q′ ∈ Q and
((q, a), (q′, a′,∆)) ∈ δ:

(w, q, ax) ` (wa′, q′, x) if ∆ = +1, |x| ≥ 1
(w, q, a) ` (wa′, q′,�) if ∆ = +1

(wb, q, ax) ` (w, q′, ba′x) if ∆ = −1
(ε, q, ax) ` (ε, q′,�a′x) if ∆ = −1

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

ATMs

(N)TMs

Computations

Acceptance

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Turing Machine Transitions

Let M = 〈Σ,�, Q, q0, l, δ〉 be an ATM.

Definition: Yields relation

A configuration c of M yields a configuration c′ of M ,
in symbols c ` c′, as defined by the following rules,
where a, a′, b ∈ Σ�, w, x ∈ Σ∗

�, q, q′ ∈ Q and
((q, a), (q′, a′,∆)) ∈ δ:

(w, q, ax) ` (wa′, q′, x) if ∆ = +1, |x| ≥ 1
(w, q, a) ` (wa′, q′,�) if ∆ = +1

(wb, q, ax) ` (w, q′, ba′x) if ∆ = −1
(ε, q, ax) ` (ε, q′,�a′x) if ∆ = −1

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

ATMs

(N)TMs

Computations

Acceptance

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Acceptance (Time)

Let M = 〈Σ,�, Q, q0, l, δ〉 be an ATM.

Definition: Acceptance (time)

Let c = (w, q, x) be a configuration of M .

M accepts c = (w, q, x) with q ∈ QY in time n
for all n ∈ N0.

M accepts c = (w, q, x) with q ∈ Q∃ in time n
iff M accepts some c′ with c ` c′ in time n− 1.

M accepts c = (w, q, x) with q ∈ Q∀ in time n
iff M accepts all c′ with c ` c′ in time n− 1.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

ATMs

(N)TMs

Computations

Acceptance

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Acceptance (Time)

Let M = 〈Σ,�, Q, q0, l, δ〉 be an ATM.

Definition: Acceptance (time)

Let c = (w, q, x) be a configuration of M .

M accepts c = (w, q, x) with q ∈ QY in time n
for all n ∈ N0.

M accepts c = (w, q, x) with q ∈ Q∃ in time n
iff M accepts some c′ with c ` c′ in time n− 1.

M accepts c = (w, q, x) with q ∈ Q∀ in time n
iff M accepts all c′ with c ` c′ in time n− 1.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

ATMs

(N)TMs

Computations

Acceptance

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Acceptance (Time)

Let M = 〈Σ,�, Q, q0, l, δ〉 be an ATM.

Definition: Acceptance (time)

Let c = (w, q, x) be a configuration of M .

M accepts c = (w, q, x) with q ∈ QY in time n
for all n ∈ N0.

M accepts c = (w, q, x) with q ∈ Q∃ in time n
iff M accepts some c′ with c ` c′ in time n− 1.

M accepts c = (w, q, x) with q ∈ Q∀ in time n
iff M accepts all c′ with c ` c′ in time n− 1.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

ATMs

(N)TMs

Computations

Acceptance

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Acceptance (Space)

Let M = 〈Σ,�, Q, q0, l, δ〉 be an ATM.

Definition: Acceptance (space)

Let c = (w, q, x) be a configuration of M .

M accepts c = (w, q, x) with q ∈ QY in space n
iff |w|+ |x| ≤ n.

M accepts c = (w, q, x) with q ∈ Q∃ in space n
iff M accepts some c′ with c ` c′ in space n.

M accepts c = (w, q, x) with q ∈ Q∀ in space n
iff M accepts all c′ with c ` c′ in space n.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

ATMs

(N)TMs

Computations

Acceptance

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Acceptance (Space)

Let M = 〈Σ,�, Q, q0, l, δ〉 be an ATM.

Definition: Acceptance (space)

Let c = (w, q, x) be a configuration of M .

M accepts c = (w, q, x) with q ∈ QY in space n
iff |w|+ |x| ≤ n.

M accepts c = (w, q, x) with q ∈ Q∃ in space n
iff M accepts some c′ with c ` c′ in space n.

M accepts c = (w, q, x) with q ∈ Q∀ in space n
iff M accepts all c′ with c ` c′ in space n.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

ATMs

(N)TMs

Computations

Acceptance

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Acceptance (Space)

Let M = 〈Σ,�, Q, q0, l, δ〉 be an ATM.

Definition: Acceptance (space)

Let c = (w, q, x) be a configuration of M .

M accepts c = (w, q, x) with q ∈ QY in space n
iff |w|+ |x| ≤ n.

M accepts c = (w, q, x) with q ∈ Q∃ in space n
iff M accepts some c′ with c ` c′ in space n.

M accepts c = (w, q, x) with q ∈ Q∀ in space n
iff M accepts all c′ with c ` c′ in space n.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

ATMs

(N)TMs

Computations

Acceptance

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Accepting Words and Languages

Let M = 〈Σ,�, Q, q0, l, δ〉 be an ATM.

Definition: Accepting words

M accepts the word w ∈ Σ∗ in time (space) n ∈ N0

iff M accepts (ε, q0, w) in time (space) n.

Special case: M accepts ε in time (space) n ∈ N0

iff M accepts (ε, q0,�) in time (space) n.

Definition: Accepting languages

Let f : N0 → N0.
M accepts the language L ⊆ Σ∗ in time (space) f
iff M accepts each word w ∈ L in time (space) f(|w|),
and M does not accept any word w /∈ L.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

ATMs

(N)TMs

Computations

Acceptance

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Accepting Words and Languages

Let M = 〈Σ,�, Q, q0, l, δ〉 be an ATM.

Definition: Accepting words

M accepts the word w ∈ Σ∗ in time (space) n ∈ N0

iff M accepts (ε, q0, w) in time (space) n.

Special case: M accepts ε in time (space) n ∈ N0

iff M accepts (ε, q0,�) in time (space) n.

Definition: Accepting languages

Let f : N0 → N0.
M accepts the language L ⊆ Σ∗ in time (space) f
iff M accepts each word w ∈ L in time (space) f(|w|),
and M does not accept any word w /∈ L.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Measures

Complexity
Classes

Relationships

Complexity
Results

Domain-
Dependent
Planning

Time Complexity

Definition: DTIME, NTIME, ATIME

Let f : N0 → N0.

Complexity class DTIME(f) contains all languages accepted in
time f by some DTM.

Complexity class NTIME(f) contains all languages accepted in
time f by some NTM.

Complexity class ATIME(f) contains all languages accepted in
time f by some ATM.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Measures

Complexity
Classes

Relationships

Complexity
Results

Domain-
Dependent
Planning

Time Complexity

Definition: DTIME, NTIME, ATIME

Let f : N0 → N0.

Complexity class DTIME(f) contains all languages accepted in
time f by some DTM.

Complexity class NTIME(f) contains all languages accepted in
time f by some NTM.

Complexity class ATIME(f) contains all languages accepted in
time f by some ATM.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Measures

Complexity
Classes

Relationships

Complexity
Results

Domain-
Dependent
Planning

Time Complexity

Definition: DTIME, NTIME, ATIME

Let f : N0 → N0.

Complexity class DTIME(f) contains all languages accepted in
time f by some DTM.

Complexity class NTIME(f) contains all languages accepted in
time f by some NTM.

Complexity class ATIME(f) contains all languages accepted in
time f by some ATM.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Measures

Complexity
Classes

Relationships

Complexity
Results

Domain-
Dependent
Planning

Time Complexity

Definition: DTIME, NTIME, ATIME

Let f : N0 → N0.

Complexity class DTIME(f) contains all languages accepted in
time f by some DTM.

Complexity class NTIME(f) contains all languages accepted in
time f by some NTM.

Complexity class ATIME(f) contains all languages accepted in
time f by some ATM.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Measures

Complexity
Classes

Relationships

Complexity
Results

Domain-
Dependent
Planning

Space Complexity

Definition: DSPACE, NSPACE, ASPACE

Let f : N0 → N0.

Complexity class DSPACE(f) contains all languages accepted
in space f by some DTM.

Complexity class NSPACE(f) contains all languages accepted
in space f by some NTM.

Complexity class ASPACE(f) contains all languages accepted
in space f by some ATM.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Measures

Complexity
Classes

Relationships

Complexity
Results

Domain-
Dependent
Planning

Space Complexity

Definition: DSPACE, NSPACE, ASPACE

Let f : N0 → N0.

Complexity class DSPACE(f) contains all languages accepted
in space f by some DTM.

Complexity class NSPACE(f) contains all languages accepted
in space f by some NTM.

Complexity class ASPACE(f) contains all languages accepted
in space f by some ATM.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Measures

Complexity
Classes

Relationships

Complexity
Results

Domain-
Dependent
Planning

Space Complexity

Definition: DSPACE, NSPACE, ASPACE

Let f : N0 → N0.

Complexity class DSPACE(f) contains all languages accepted
in space f by some DTM.

Complexity class NSPACE(f) contains all languages accepted
in space f by some NTM.

Complexity class ASPACE(f) contains all languages accepted
in space f by some ATM.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Measures

Complexity
Classes

Relationships

Complexity
Results

Domain-
Dependent
Planning

Space Complexity

Definition: DSPACE, NSPACE, ASPACE

Let f : N0 → N0.

Complexity class DSPACE(f) contains all languages accepted
in space f by some DTM.

Complexity class NSPACE(f) contains all languages accepted
in space f by some NTM.

Complexity class ASPACE(f) contains all languages accepted
in space f by some ATM.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Measures

Complexity
Classes

Relationships

Complexity
Results

Domain-
Dependent
Planning

Polynomial Complexity Classes

Let P be the set of polynomials p : N0 → N0.

Definition: P, NP, . . .

P =
⋃

p∈P DTIME(p)
NP =

⋃
p∈P NTIME(p)

AP =
⋃

p∈P ATIME(p)
PSPACE =

⋃
p∈P DSPACE(p)

NPSPACE =
⋃

p∈P NSPACE(p)
APSPACE =

⋃
p∈P ASPACE(p)

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Measures

Complexity
Classes

Relationships

Complexity
Results

Domain-
Dependent
Planning

Exponential Complexity Classes

Let P be the set of polynomials p : N0 → N0.

Definition: EXP, NEXP, . . .

EXP =
⋃

p∈P DTIME(2p)
NEXP =

⋃
p∈P NTIME(2p)

AEXP =
⋃

p∈P ATIME(2p)
EXPSPACE =

⋃
p∈P DSPACE(2p)

NEXPSPACE =
⋃

p∈P NSPACE(2p)
AEXPSPACE =

⋃
p∈P ASPACE(2p)

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Measures

Complexity
Classes

Relationships

Complexity
Results

Domain-
Dependent
Planning

Doubly Exponential Complexity Classes

Let P be the set of polynomials p : N0 → N0.

Definition: 2-EXP, . . .

2-EXP =
⋃

p∈P DTIME(22p
)

. . .

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Measures

Complexity
Classes

Relationships

Complexity
Results

Domain-
Dependent
Planning

Standard Complexity Classes Relationships

Theorem

P⊆ NP ⊆AP
PSPACE⊆ NPSPACE ⊆APSPACE

EXP⊆ NEXP ⊆AEXP
EXPSPACE⊆NEXPSPACE⊆AEXPSPACE

2-EXP⊆ . . .

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Measures

Complexity
Classes

Relationships

Complexity
Results

Domain-
Dependent
Planning

The Power of Nondeterministic Space

Theorem (Savitch 1970)

NSPACE(f) ⊆ DSPACE(f2), and thus:

PSPACE = NPSPACE
EXPSPACE = NEXPSPACE

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Measures

Complexity
Classes

Relationships

Complexity
Results

Domain-
Dependent
Planning

The Power of Alternation

Theorem (Chandra et al. 1981)

AP = PSPACE
APSPACE = EXP

AEXP = EXPSPACE
AEXPSPACE = 2-EXP

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Measures

Complexity
Classes

Relationships

Complexity
Results

Domain-
Dependent
Planning

The Hierarchy of complexity classes

2-EXPSPACE= 2-NEXPSPACE

2-NEXP

2-EXP= AEXPSPACE

EXPSPACE= NEXPSPACE= AEXP

NEXP

EXP= APSPACE

PSPACE = NPSPACE = AP

NP

P

6=

6=
6=

6=
6=

6=

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Measures

Complexity
Classes

Relationships

Complexity
Results

Domain-
Dependent
Planning

The Hierarchy of complexity classes

2-EXPSPACE= 2-NEXPSPACE

2-NEXP

2-EXP= AEXPSPACE

EXPSPACE= NEXPSPACE= AEXP

NEXP

EXP= APSPACE

PSPACE = NPSPACE = AP

NP

P

6=

6=
6=

6=
6=

6=

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Measures

Complexity
Classes

Relationships

Complexity
Results

Domain-
Dependent
Planning

The Hierarchy of complexity classes

2-EXPSPACE= 2-NEXPSPACE

2-NEXP

2-EXP= AEXPSPACE

EXPSPACE= NEXPSPACE= AEXP

NEXP

EXP= APSPACE

PSPACE = NPSPACE = AP

NP

P

6=

6=
6=

6=
6=

6=

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Measures

Complexity
Classes

Relationships

Complexity
Results

Domain-
Dependent
Planning

The Hierarchy of complexity classes

2-EXPSPACE= 2-NEXPSPACE

2-NEXP

2-EXP= AEXPSPACE

EXPSPACE= NEXPSPACE= AEXP

NEXP

EXP= APSPACE

PSPACE = NPSPACE = AP

NP

P

6=

6=
6=

6=
6=

6=

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Measures

Complexity
Classes

Relationships

Complexity
Results

Domain-
Dependent
Planning

The Hierarchy of complexity classes

2-EXPSPACE= 2-NEXPSPACE

2-NEXP

2-EXP= AEXPSPACE

EXPSPACE= NEXPSPACE= AEXP

NEXP

EXP= APSPACE

PSPACE = NPSPACE = AP

NP

P

6=

6=
6=

6=
6=

6=

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Measures

Complexity
Classes

Relationships

Complexity
Results

Domain-
Dependent
Planning

The Hierarchy of complexity classes

2-EXPSPACE= 2-NEXPSPACE

2-NEXP

2-EXP= AEXPSPACE

EXPSPACE= NEXPSPACE= AEXP

NEXP

EXP= APSPACE

PSPACE = NPSPACE = AP

NP

P

6=

6=
6=

6=
6=

6=

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Measures

Complexity
Classes

Relationships

Complexity
Results

Domain-
Dependent
Planning

The Hierarchy of complexity classes

2-EXPSPACE= 2-NEXPSPACE

2-NEXP

2-EXP= AEXPSPACE

EXPSPACE= NEXPSPACE= AEXP

NEXP

EXP= APSPACE

PSPACE = NPSPACE = AP

NP

P

6=

6=
6=

6=
6=

6=

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

The Planning Problem

PlanEx (Plan Existence)

Given: Planning task 〈A, I, O, G〉
Question: Is there a plan for 〈A, I, O, G〉?

PlanLen (Bounded Plan Existence)

Given: Planning task 〈A, I, O, G〉, bound K ∈ N0

Question: Is there a plan for 〈A, I, O, G〉 of length at most K?

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Plan Existence vs. Bounded Plan Existence

PlanEx ≤p PlanLen

A planning task with n state variables has a plan
iff it has a plan of length at most 2n − 1.
 polynomial reduction

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Membership in PSPACE

PlanLen ∈ PSPACE

Show PlanLen ∈ NPSPACE and use Savitch’s theorem.
Nondeterministic algorithm:

def plan(〈A, I, O, G〉, K):
s := I
k := K
repeat until s |= G:

guess o ∈ O
reject if o not applicable in s
set s := appo(s)
reject if k = 0
set k := k − 1

accept

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Hardness for PSPACE

Idea: generic reduction

For a fixed polynomial p, given DTM M and input w,
generate planning task which is solvable
iff M accepts w in space p(|w|)
For simplicity, restrict to TMs which
never move to the left of the initial head position
(no loss of generality)

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Hardness for PSPACE

Idea: generic reduction

For a fixed polynomial p, given DTM M and input w,
generate planning task which is solvable
iff M accepts w in space p(|w|)
For simplicity, restrict to TMs which
never move to the left of the initial head position
(no loss of generality)

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Hardness for PSPACE

Idea: generic reduction

For a fixed polynomial p, given DTM M and input w,
generate planning task which is solvable
iff M accepts w in space p(|w|)
For simplicity, restrict to TMs which
never move to the left of the initial head position
(no loss of generality)

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Reduction: State Variables

Let p be the space-bound polynomial.

Given DTM 〈Σ,�, Q, q0, l, δ〉 and input w1 . . . wn,
define relevant tape positions X = {1, . . . , p(n)}.

State variables

stateq for all q ∈ Q

headi for all i ∈ X ∪ {0, p(n) + 1}
contenti,a for all i ∈ X, a ∈ Σ�

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Reduction: State Variables

Let p be the space-bound polynomial.

Given DTM 〈Σ,�, Q, q0, l, δ〉 and input w1 . . . wn,
define relevant tape positions X = {1, . . . , p(n)}.

State variables

stateq for all q ∈ Q

headi for all i ∈ X ∪ {0, p(n) + 1}
contenti,a for all i ∈ X, a ∈ Σ�

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Reduction: State Variables

Let p be the space-bound polynomial.

Given DTM 〈Σ,�, Q, q0, l, δ〉 and input w1 . . . wn,
define relevant tape positions X = {1, . . . , p(n)}.

State variables

stateq for all q ∈ Q

headi for all i ∈ X ∪ {0, p(n) + 1}
contenti,a for all i ∈ X, a ∈ Σ�

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Reduction: State Variables

Let p be the space-bound polynomial.

Given DTM 〈Σ,�, Q, q0, l, δ〉 and input w1 . . . wn,
define relevant tape positions X = {1, . . . , p(n)}.

State variables

stateq for all q ∈ Q

headi for all i ∈ X ∪ {0, p(n) + 1}
contenti,a for all i ∈ X, a ∈ Σ�

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Reduction: Initial State

Let p be the space bound polynomial.

Given DTM 〈Σ,�, Q, q0, l, δ〉 and input w1 . . . wn,
define relevant tape positions X = {1, . . . , p(n)}.

Initial state

Initially true:

stateq0

head1

contenti,wi for all i ∈ {1, . . . , n}
contenti,� for all i ∈ X \ {1, . . . , n}

Initially false:

all others

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Reduction: Initial State

Let p be the space bound polynomial.

Given DTM 〈Σ,�, Q, q0, l, δ〉 and input w1 . . . wn,
define relevant tape positions X = {1, . . . , p(n)}.

Initial state

Initially true:

stateq0

head1

contenti,wi for all i ∈ {1, . . . , n}
contenti,� for all i ∈ X \ {1, . . . , n}

Initially false:

all others

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Reduction: Initial State

Let p be the space bound polynomial.

Given DTM 〈Σ,�, Q, q0, l, δ〉 and input w1 . . . wn,
define relevant tape positions X = {1, . . . , p(n)}.

Initial state

Initially true:

stateq0

head1

contenti,wi for all i ∈ {1, . . . , n}
contenti,� for all i ∈ X \ {1, . . . , n}

Initially false:

all others

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Reduction: Initial State

Let p be the space bound polynomial.

Given DTM 〈Σ,�, Q, q0, l, δ〉 and input w1 . . . wn,
define relevant tape positions X = {1, . . . , p(n)}.

Initial state

Initially true:

stateq0

head1

contenti,wi for all i ∈ {1, . . . , n}
contenti,� for all i ∈ X \ {1, . . . , n}

Initially false:

all others

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Reduction: Initial State

Let p be the space bound polynomial.

Given DTM 〈Σ,�, Q, q0, l, δ〉 and input w1 . . . wn,
define relevant tape positions X = {1, . . . , p(n)}.

Initial state

Initially true:

stateq0

head1

contenti,wi for all i ∈ {1, . . . , n}
contenti,� for all i ∈ X \ {1, . . . , n}

Initially false:

all others

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Reduction: Initial State

Let p be the space bound polynomial.

Given DTM 〈Σ,�, Q, q0, l, δ〉 and input w1 . . . wn,
define relevant tape positions X = {1, . . . , p(n)}.

Initial state

Initially true:

stateq0

head1

contenti,wi for all i ∈ {1, . . . , n}
contenti,� for all i ∈ X \ {1, . . . , n}

Initially false:

all others

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Reduction: Operators

Let p be the space bound polynomial.

Given DTM 〈Σ,�, Q, q0, l, δ〉 and input w1 . . . wn,
define relevant tape positions X = {1, . . . , p(n)}.

Operators

One operator for each transition rule δ(q, a) = (q′, a′,∆) and
each cell position i ∈ X:

precondition: stateq ∧ headi ∧ contenti,a

effect: ¬stateq ∧ ¬headi ∧ ¬contenti,a
∧ stateq′ ∧ headi+∆ ∧ contenti,a′

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Reduction: Operators

Let p be the space bound polynomial.

Given DTM 〈Σ,�, Q, q0, l, δ〉 and input w1 . . . wn,
define relevant tape positions X = {1, . . . , p(n)}.

Operators

One operator for each transition rule δ(q, a) = (q′, a′,∆) and
each cell position i ∈ X:

precondition: stateq ∧ headi ∧ contenti,a

effect: ¬stateq ∧ ¬headi ∧ ¬contenti,a
∧ stateq′ ∧ headi+∆ ∧ contenti,a′

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Reduction: Operators

Let p be the space bound polynomial.

Given DTM 〈Σ,�, Q, q0, l, δ〉 and input w1 . . . wn,
define relevant tape positions X = {1, . . . , p(n)}.

Operators

One operator for each transition rule δ(q, a) = (q′, a′,∆) and
each cell position i ∈ X:

precondition: stateq ∧ headi ∧ contenti,a

effect: ¬stateq ∧ ¬headi ∧ ¬contenti,a
∧ stateq′ ∧ headi+∆ ∧ contenti,a′

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Reduction: Operators

Let p be the space bound polynomial.

Given DTM 〈Σ,�, Q, q0, l, δ〉 and input w1 . . . wn,
define relevant tape positions X = {1, . . . , p(n)}.

Operators

One operator for each transition rule δ(q, a) = (q′, a′,∆) and
each cell position i ∈ X:

precondition: stateq ∧ headi ∧ contenti,a

effect: ¬stateq ∧ ¬headi ∧ ¬contenti,a
∧ stateq′ ∧ headi+∆ ∧ contenti,a′

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Reduction: Goal

Let p be the space bound polynomial.

Given DTM 〈Σ,�, Q, q0, l, δ〉 and input w1 . . . wn,
define relevant tape positions X = {1, . . . , p(n)}.

Goal∨
q∈QY

stateq

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Reduction: Goal

Let p be the space bound polynomial.

Given DTM 〈Σ,�, Q, q0, l, δ〉 and input w1 . . . wn,
define relevant tape positions X = {1, . . . , p(n)}.

Goal∨
q∈QY

stateq

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

PSPACE-completeness for STRIPS

Theorem (PSPACE-completeness (Bylander))

PlanEx and PlanLen are PSPACE-complete even if the
planning task is given in STRIPS form (preconditions and goals
are conjunctions of literals and no conditional effects).

Proof.

Hardness and membership for the general formalism follows
from the above. Hardness holds for STRIPS as well because of
the style of the reduction: only simple preconditions and no
conditional effects. The only problem is the disjunction in the
goal formula. This can be eliminated by transforming the TM
beforehand, though.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

PSPACE-completeness for STRIPS

Theorem (PSPACE-completeness (Bylander))

PlanEx and PlanLen are PSPACE-complete even if the
planning task is given in STRIPS form (preconditions and goals
are conjunctions of literals and no conditional effects).

Proof.

Hardness and membership for the general formalism follows
from the above. Hardness holds for STRIPS as well because of
the style of the reduction: only simple preconditions and no
conditional effects. The only problem is the disjunction in the
goal formula. This can be eliminated by transforming the TM
beforehand, though.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

PSPACE-completeness for STRIPS

Theorem (PSPACE-completeness (Bylander))

PlanEx and PlanLen are PSPACE-complete even if the
planning task is given in STRIPS form (preconditions and goals
are conjunctions of literals and no conditional effects).

Proof.

Hardness and membership for the general formalism follows
from the above. Hardness holds for STRIPS as well because of
the style of the reduction: only simple preconditions and no
conditional effects. The only problem is the disjunction in the
goal formula. This can be eliminated by transforming the TM
beforehand, though.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

PSPACE-completeness for STRIPS

Theorem (PSPACE-completeness (Bylander))

PlanEx and PlanLen are PSPACE-complete even if the
planning task is given in STRIPS form (preconditions and goals
are conjunctions of literals and no conditional effects).

Proof.

Hardness and membership for the general formalism follows
from the above. Hardness holds for STRIPS as well because of
the style of the reduction: only simple preconditions and no
conditional effects. The only problem is the disjunction in the
goal formula. This can be eliminated by transforming the TM
beforehand, though.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Polynomial plan size

The PSPACE result depends on the fact that plans can become
exponentially long. What if restrict them to be only of
polynomial length?

Theorem (NP-completeness for polynomial plan size)

PlanEx and PlanLen are NP-complete even if the planning
task is given in STRIPS form provided only plans of length
polynomial in the size of the planning task are permitted.

Membership follows easily by using a guess-and-check
algorithm.
Hardness needs a bit more . . .
Note: Answers earlier questions whether we need the Boolean
precondition formula for NP-hardness

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Polynomial plan size

The PSPACE result depends on the fact that plans can become
exponentially long. What if restrict them to be only of
polynomial length?

Theorem (NP-completeness for polynomial plan size)

PlanEx and PlanLen are NP-complete even if the planning
task is given in STRIPS form provided only plans of length
polynomial in the size of the planning task are permitted.

Membership follows easily by using a guess-and-check
algorithm.
Hardness needs a bit more . . .
Note: Answers earlier questions whether we need the Boolean
precondition formula for NP-hardness

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Polynomial plan size

The PSPACE result depends on the fact that plans can become
exponentially long. What if restrict them to be only of
polynomial length?

Theorem (NP-completeness for polynomial plan size)

PlanEx and PlanLen are NP-complete even if the planning
task is given in STRIPS form provided only plans of length
polynomial in the size of the planning task are permitted.

Membership follows easily by using a guess-and-check
algorithm.
Hardness needs a bit more . . .
Note: Answers earlier questions whether we need the Boolean
precondition formula for NP-hardness

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Polynomial plan size

The PSPACE result depends on the fact that plans can become
exponentially long. What if restrict them to be only of
polynomial length?

Theorem (NP-completeness for polynomial plan size)

PlanEx and PlanLen are NP-complete even if the planning
task is given in STRIPS form provided only plans of length
polynomial in the size of the planning task are permitted.

Membership follows easily by using a guess-and-check
algorithm.
Hardness needs a bit more . . .
Note: Answers earlier questions whether we need the Boolean
precondition formula for NP-hardness

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Polynomial plan size

The PSPACE result depends on the fact that plans can become
exponentially long. What if restrict them to be only of
polynomial length?

Theorem (NP-completeness for polynomial plan size)

PlanEx and PlanLen are NP-complete even if the planning
task is given in STRIPS form provided only plans of length
polynomial in the size of the planning task are permitted.

Membership follows easily by using a guess-and-check
algorithm.
Hardness needs a bit more . . .
Note: Answers earlier questions whether we need the Boolean
precondition formula for NP-hardness

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

First-Order Tasks

we considered
propositional state variables (0-ary predicates) and
grounded operators (0-ary schematic operators)

reasonable: most planning algorithms
work on grounded representations

predicate arity is typically small (a constant?)

How do the complexity results change if we introduce
first-order predicates and schematic operators?

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

First-Order Tasks

we considered
propositional state variables (0-ary predicates) and
grounded operators (0-ary schematic operators)

reasonable: most planning algorithms
work on grounded representations

predicate arity is typically small (a constant?)

How do the complexity results change if we introduce
first-order predicates and schematic operators?

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Membership in EXPSPACE

PlanEx,PlanLen ∈ EXPSPACE

input size n

 at most 2n grounded state variables

 at most 2n grounded operators

can ground the task in exponential time, then use the
earlier PSPACE algorithms

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Hardness for EXPSPACE

Idea: Adapt the earlier reduction from PlanEx to encode
Turing Machine contents more succinctly. Assume relevant
tape positions are now X = {1, . . . , 2n}. We need to encode
the computation as a planning task in polynomial time!

Objects

0, 1

Predicates

stateq() for all q ∈ Q

head(?b1, . . . , ?bn)
contenta(?b1, . . . , ?bn) for all a ∈ Σ�

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Hardness for EXPSPACE

Idea: Adapt the earlier reduction from PlanEx to encode
Turing Machine contents more succinctly. Assume relevant
tape positions are now X = {1, . . . , 2n}. We need to encode
the computation as a planning task in polynomial time!

Objects

0, 1

Predicates

stateq() for all q ∈ Q

head(?b1, . . . , ?bn)
contenta(?b1, . . . , ?bn) for all a ∈ Σ�

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Hardness for EXPSPACE

Idea: Adapt the earlier reduction from PlanEx to encode
Turing Machine contents more succinctly. Assume relevant
tape positions are now X = {1, . . . , 2n}. We need to encode
the computation as a planning task in polynomial time!

Objects

0, 1

Predicates

stateq() for all q ∈ Q

head(?b1, . . . , ?bn)
contenta(?b1, . . . , ?bn) for all a ∈ Σ�

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Hardness for EXPSPACE

Idea: Adapt the earlier reduction from PlanEx to encode
Turing Machine contents more succinctly. Assume relevant
tape positions are now X = {1, . . . , 2n}. We need to encode
the computation as a planning task in polynomial time!

Objects

0, 1

Predicates

stateq() for all q ∈ Q

head(?b1, . . . , ?bn)
contenta(?b1, . . . , ?bn) for all a ∈ Σ�

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Hardness for EXPSPACE

Idea: Adapt the earlier reduction from PlanEx to encode
Turing Machine contents more succinctly. Assume relevant
tape positions are now X = {1, . . . , 2n}. We need to encode
the computation as a planning task in polynomial time!

Objects

0, 1

Predicates

stateq() for all q ∈ Q

head(?b1, . . . , ?bn)
contenta(?b1, . . . , ?bn) for all a ∈ Σ�

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Reduction: Example Operator

Operator example

Schematic operator for transition rule δ(q, a) = (q′, a′,+1)
parameters: ?b1, . . . , ?bn

precondition:
stateq

∧ head(?b1, . . . , ?bn)
∧ contenta(?b1, . . . , ?bn)
effect:
¬stateq

∧¬head(?b1, . . . , ?bn)
∧¬contenta(?b1, . . . , ?bn)
∧ stateq′

∧ advance-head
∧ contenta′(?b1, . . . , ?bn)

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Reduction: Example Operator (continued)

Operator example (ctd.)

advance-head = ((?bn = 0)
B head(?b1, . . . , ?bn−1, 1))

∧ ((?bn−1 = 0∧?bn = 1)
B head(?b1, . . . , ?bn−2, 1, 0))

∧ ((?bn−2 = 0∧?bn−1 = 1∧?bn = 1)
B head(?b1, . . . , ?bn−3, 1, 0, 0))

∧ . . .

∧ ((?b1 = 0∧?b2 = 1 ∧ · · · ∧?bn = 1)
B head(1, 0, . . . , 0))

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Plan Existence vs. Bounded Plan Existence

Our earlier reduction from PlanEx to PlanLen no
longer works: the shortest plan can have length doubly
exponentially in the input size, so that the bound cannot
be written down in polynomial time.

Indeed, PlanLen is actually easier than PlanEx
for this planning formalism (NEXP-complete).

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Plan Existence vs. Bounded Plan Existence

Our earlier reduction from PlanEx to PlanLen no
longer works: the shortest plan can have length doubly
exponentially in the input size, so that the bound cannot
be written down in polynomial time.

Indeed, PlanLen is actually easier than PlanEx
for this planning formalism (NEXP-complete).

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

The Planning
Problem

Propositional
Planning

PSPACE

Polynomial Plan
Size

First-Order
Tasks

EXPSPACE

Bounded Plan
Existence?

Undecidability

Domain-
Dependent
Planning

Planning with function terms

If we allow in addition function terms with arity > 0, then
planning becomes undecidable.

The state space is infinite: s(0), s(s(0)), s(s(s(0))), . . .
We can use function terms to describe (the index of) tape
cells of a Turing machine.

We can use operators to describe the Turing machine
control.

The existence of a plan is then equivalent to the existence
of a successful computation on the Turing machine.

PlanEx for planning tasks with function terms can be
used to decide the Halting problem.

Theorem

PlanEx for planning tasks with function terms is undecidable.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

Domain-Dependent Planning

Planning (and its complexity) for particular domains is
interesting, since we want to judge planning benchmarks
. . . and perhaps want to go for domain-dependent planning.
Consider fixed domains and determine complexity.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

Domain-Dependent Planning

Planning (and its complexity) for particular domains is
interesting, since we want to judge planning benchmarks
. . . and perhaps want to go for domain-dependent planning.
Consider fixed domains and determine complexity.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

Domain-Dependent Planning

Planning (and its complexity) for particular domains is
interesting, since we want to judge planning benchmarks
. . . and perhaps want to go for domain-dependent planning.
Consider fixed domains and determine complexity.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

A Concrete Domain: Logistics

There are several cities, each containing several locations, some
of which are airports. There are also trucks, which drive within
a single city, and airplanes, which can fly between airports. The
goal is to get some packages from various locations to various
new locations [McDermott, 1998].

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

A Concrete Domain: Logistics

There are several cities, each containing several locations, some
of which are airports. There are also trucks, which drive within
a single city, and airplanes, which can fly between airports. The
goal is to get some packages from various locations to various
new locations [McDermott, 1998].

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

Plan Existence for Logistics

Theorem

PLANEX for Logistics can be decided in polynomial time.

Proof.

Consider the subgraphs formed by the connected airport
networks (for planes) and city networks (for trucks). If at least
one vehicle (truck or plane) is in one of the subgraphs, all
nodes in the subgraph are internally reachable, otherwise only
the externally connected nodes can be reached. Check for each
package delivery, whether there are connected subgraphs such
that the package can pass through the subgraphs to the target
node. This is a simple reachability test, which can be done in
poly. time.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

Plan Existence for Logistics

Theorem

PLANEX for Logistics can be decided in polynomial time.

Proof.

Consider the subgraphs formed by the connected airport
networks (for planes) and city networks (for trucks). If at least
one vehicle (truck or plane) is in one of the subgraphs, all
nodes in the subgraph are internally reachable, otherwise only
the externally connected nodes can be reached. Check for each
package delivery, whether there are connected subgraphs such
that the package can pass through the subgraphs to the target
node. This is a simple reachability test, which can be done in
poly. time.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

Plan Existence for Logistics

Theorem

PLANEX for Logistics can be decided in polynomial time.

Proof.

Consider the subgraphs formed by the connected airport
networks (for planes) and city networks (for trucks). If at least
one vehicle (truck or plane) is in one of the subgraphs, all
nodes in the subgraph are internally reachable, otherwise only
the externally connected nodes can be reached. Check for each
package delivery, whether there are connected subgraphs such
that the package can pass through the subgraphs to the target
node. This is a simple reachability test, which can be done in
poly. time.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

Plan Existence for Logistics

Theorem

PLANEX for Logistics can be decided in polynomial time.

Proof.

Consider the subgraphs formed by the connected airport
networks (for planes) and city networks (for trucks). If at least
one vehicle (truck or plane) is in one of the subgraphs, all
nodes in the subgraph are internally reachable, otherwise only
the externally connected nodes can be reached. Check for each
package delivery, whether there are connected subgraphs such
that the package can pass through the subgraphs to the target
node. This is a simple reachability test, which can be done in
poly. time.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

Plan Existence for Logistics

Theorem

PLANEX for Logistics can be decided in polynomial time.

Proof.

Consider the subgraphs formed by the connected airport
networks (for planes) and city networks (for trucks). If at least
one vehicle (truck or plane) is in one of the subgraphs, all
nodes in the subgraph are internally reachable, otherwise only
the externally connected nodes can be reached. Check for each
package delivery, whether there are connected subgraphs such
that the package can pass through the subgraphs to the target
node. This is a simple reachability test, which can be done in
poly. time.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

Optimizing Delivery: Shortest Plans for Logistics

Definition (Feedback Vertex Set)

Given: a directed graph G = (V,A) and a natural number k
Question: Does there exists a subset V ′ ⊆ V with |V ′| ≤ k
such that removing V ′ results in an acyclic graph?

This problem is NP-complete and can be used to prove the
following result:

Theorem

PLANLEN for Logistics is NP-complete, even if there is only one
complete city graph and one truck in this graph.

Proof.

Membership follows because there is an obvious polynomial
upper bound of moves for all solvable instances.
Hardness is shown using a reduction from FVS.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

Optimizing Delivery: Shortest Plans for Logistics

Definition (Feedback Vertex Set)

Given: a directed graph G = (V,A) and a natural number k
Question: Does there exists a subset V ′ ⊆ V with |V ′| ≤ k
such that removing V ′ results in an acyclic graph?

This problem is NP-complete and can be used to prove the
following result:

Theorem

PLANLEN for Logistics is NP-complete, even if there is only one
complete city graph and one truck in this graph.

Proof.

Membership follows because there is an obvious polynomial
upper bound of moves for all solvable instances.
Hardness is shown using a reduction from FVS.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

Optimizing Delivery: Shortest Plans for Logistics

Definition (Feedback Vertex Set)

Given: a directed graph G = (V,A) and a natural number k
Question: Does there exists a subset V ′ ⊆ V with |V ′| ≤ k
such that removing V ′ results in an acyclic graph?

This problem is NP-complete and can be used to prove the
following result:

Theorem

PLANLEN for Logistics is NP-complete, even if there is only one
complete city graph and one truck in this graph.

Proof.

Membership follows because there is an obvious polynomial
upper bound of moves for all solvable instances.
Hardness is shown using a reduction from FVS.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

Optimizing Delivery: Shortest Plans for Logistics

Definition (Feedback Vertex Set)

Given: a directed graph G = (V,A) and a natural number k
Question: Does there exists a subset V ′ ⊆ V with |V ′| ≤ k
such that removing V ′ results in an acyclic graph?

This problem is NP-complete and can be used to prove the
following result:

Theorem

PLANLEN for Logistics is NP-complete, even if there is only one
complete city graph and one truck in this graph.

Proof.

Membership follows because there is an obvious polynomial
upper bound of moves for all solvable instances.
Hardness is shown using a reduction from FVS.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

PLANLEN for Logistics: NP-hardness contd. (1)

Proof. (continued)

Let G = (V,A) be a directed graph and k a natural number.
Then G contains a FVS of size k iff the logistics problem
constructed below has a plan of length at most 3|V |+2|A|+ k.
Construct a Logistics task with just one truck and one city
network which is a complete graph containing V and an extra
node v0, where the truck starts. The truck has to deliver one
package from v0 to each other location and one package from
u to v for each (u, v) ∈ A.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

PLANLEN for Logistics: NP-hardness contd. (1)

Proof. (continued)

Let G = (V,A) be a directed graph and k a natural number.
Then G contains a FVS of size k iff the logistics problem
constructed below has a plan of length at most 3|V |+2|A|+ k.
Construct a Logistics task with just one truck and one city
network which is a complete graph containing V and an extra
node v0, where the truck starts. The truck has to deliver one
package from v0 to each other location and one package from
u to v for each (u, v) ∈ A.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

PLANLEN for Logistics: NP-hardness contd. (1)

Proof. (continued)

Let G = (V,A) be a directed graph and k a natural number.
Then G contains a FVS of size k iff the logistics problem
constructed below has a plan of length at most 3|V |+2|A|+ k.
Construct a Logistics task with just one truck and one city
network which is a complete graph containing V and an extra
node v0, where the truck starts. The truck has to deliver one
package from v0 to each other location and one package from
u to v for each (u, v) ∈ A.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

PLANLEN for Logistics: NP-hardness contd. (1)

Proof. (continued)

Let G = (V,A) be a directed graph and k a natural number.
Then G contains a FVS of size k iff the logistics problem
constructed below has a plan of length at most 3|V |+2|A|+ k.
Construct a Logistics task with just one truck and one city
network which is a complete graph containing V and an extra
node v0, where the truck starts. The truck has to deliver one
package from v0 to each other location and one package from
u to v for each (u, v) ∈ A.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

PLANLEN for Logistics: NP-hardness contd. (2)

Proof. (continued).

Let V ′ ⊆ V the feedback vertex set. Solve task by moving to
V ′ in any order, then to all V − V ′ using a topological ordering
on these nodes, and finally to V ′ again. Requires |A|+ |V |
load and unload actions each, and |V ′|+ |V − V ′|+ |V ′|
movements, i.e., 3|V |+ 2|A|+ k actions if |V ′| = k.
Conversely, at least 3|V |+ 2|A| actions are needed. If a plan
contains not more than 3|V |+ 2|A|+ k, then no more than k
nodes are visited twice. These nodes form a FVS of size k.

Note: It is not route planning that makes the task difficult,
but the interaction of sub-goals!

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

PLANLEN for Logistics: NP-hardness contd. (2)

Proof. (continued).

Let V ′ ⊆ V the feedback vertex set. Solve task by moving to
V ′ in any order, then to all V − V ′ using a topological ordering
on these nodes, and finally to V ′ again. Requires |A|+ |V |
load and unload actions each, and |V ′|+ |V − V ′|+ |V ′|
movements, i.e., 3|V |+ 2|A|+ k actions if |V ′| = k.
Conversely, at least 3|V |+ 2|A| actions are needed. If a plan
contains not more than 3|V |+ 2|A|+ k, then no more than k
nodes are visited twice. These nodes form a FVS of size k.

Note: It is not route planning that makes the task difficult,
but the interaction of sub-goals!

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

PLANLEN for Logistics: NP-hardness contd. (2)

Proof. (continued).

Let V ′ ⊆ V the feedback vertex set. Solve task by moving to
V ′ in any order, then to all V − V ′ using a topological ordering
on these nodes, and finally to V ′ again. Requires |A|+ |V |
load and unload actions each, and |V ′|+ |V − V ′|+ |V ′|
movements, i.e., 3|V |+ 2|A|+ k actions if |V ′| = k.
Conversely, at least 3|V |+ 2|A| actions are needed. If a plan
contains not more than 3|V |+ 2|A|+ k, then no more than k
nodes are visited twice. These nodes form a FVS of size k.

Note: It is not route planning that makes the task difficult,
but the interaction of sub-goals!

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

PLANLEN for Logistics: NP-hardness contd. (2)

Proof. (continued).

Let V ′ ⊆ V the feedback vertex set. Solve task by moving to
V ′ in any order, then to all V − V ′ using a topological ordering
on these nodes, and finally to V ′ again. Requires |A|+ |V |
load and unload actions each, and |V ′|+ |V − V ′|+ |V ′|
movements, i.e., 3|V |+ 2|A|+ k actions if |V ′| = k.
Conversely, at least 3|V |+ 2|A| actions are needed. If a plan
contains not more than 3|V |+ 2|A|+ k, then no more than k
nodes are visited twice. These nodes form a FVS of size k.

Note: It is not route planning that makes the task difficult,
but the interaction of sub-goals!

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

PLANLEN for Logistics: NP-hardness contd. (2)

Proof. (continued).

Let V ′ ⊆ V the feedback vertex set. Solve task by moving to
V ′ in any order, then to all V − V ′ using a topological ordering
on these nodes, and finally to V ′ again. Requires |A|+ |V |
load and unload actions each, and |V ′|+ |V − V ′|+ |V ′|
movements, i.e., 3|V |+ 2|A|+ k actions if |V ′| = k.
Conversely, at least 3|V |+ 2|A| actions are needed. If a plan
contains not more than 3|V |+ 2|A|+ k, then no more than k
nodes are visited twice. These nodes form a FVS of size k.

Note: It is not route planning that makes the task difficult,
but the interaction of sub-goals!

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

PLANLEN for Logistics: NP-hardness contd. (2)

Proof. (continued).

Let V ′ ⊆ V the feedback vertex set. Solve task by moving to
V ′ in any order, then to all V − V ′ using a topological ordering
on these nodes, and finally to V ′ again. Requires |A|+ |V |
load and unload actions each, and |V ′|+ |V − V ′|+ |V ′|
movements, i.e., 3|V |+ 2|A|+ k actions if |V ′| = k.
Conversely, at least 3|V |+ 2|A| actions are needed. If a plan
contains not more than 3|V |+ 2|A|+ k, then no more than k
nodes are visited twice. These nodes form a FVS of size k.

Note: It is not route planning that makes the task difficult,
but the interaction of sub-goals!

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

PLANLEN for Logistics: NP-hardness contd. (2)

Proof. (continued).

Let V ′ ⊆ V the feedback vertex set. Solve task by moving to
V ′ in any order, then to all V − V ′ using a topological ordering
on these nodes, and finally to V ′ again. Requires |A|+ |V |
load and unload actions each, and |V ′|+ |V − V ′|+ |V ′|
movements, i.e., 3|V |+ 2|A|+ k actions if |V ′| = k.
Conversely, at least 3|V |+ 2|A| actions are needed. If a plan
contains not more than 3|V |+ 2|A|+ k, then no more than k
nodes are visited twice. These nodes form a FVS of size k.

Note: It is not route planning that makes the task difficult,
but the interaction of sub-goals!

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

PLANLEN for Logistics: NP-hardness contd. (2)

Proof. (continued).

Let V ′ ⊆ V the feedback vertex set. Solve task by moving to
V ′ in any order, then to all V − V ′ using a topological ordering
on these nodes, and finally to V ′ again. Requires |A|+ |V |
load and unload actions each, and |V ′|+ |V − V ′|+ |V ′|
movements, i.e., 3|V |+ 2|A|+ k actions if |V ′| = k.
Conversely, at least 3|V |+ 2|A| actions are needed. If a plan
contains not more than 3|V |+ 2|A|+ k, then no more than k
nodes are visited twice. These nodes form a FVS of size k.

Note: It is not route planning that makes the task difficult,
but the interaction of sub-goals!

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

PLANLEN for Logistics: NP-hardness contd. (2)

Proof. (continued).

Let V ′ ⊆ V the feedback vertex set. Solve task by moving to
V ′ in any order, then to all V − V ′ using a topological ordering
on these nodes, and finally to V ′ again. Requires |A|+ |V |
load and unload actions each, and |V ′|+ |V − V ′|+ |V ′|
movements, i.e., 3|V |+ 2|A|+ k actions if |V ′| = k.
Conversely, at least 3|V |+ 2|A| actions are needed. If a plan
contains not more than 3|V |+ 2|A|+ k, then no more than k
nodes are visited twice. These nodes form a FVS of size k.

Note: It is not route planning that makes the task difficult,
but the interaction of sub-goals!

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

Other Domains

Generalizations of all the domains that have been used at
the international planning competition have been analyzed.

Many show a similar behavior as Logistics: PLANEX is in
P, PLANLEN is NP-complete, e.g., Blocks world.

Some are already NP-complete for PLANEX, e.g. Freecell.

A few are even PSPACE-complete for PLANEX, e.g.
Airport.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

Other Domains

Generalizations of all the domains that have been used at
the international planning competition have been analyzed.

Many show a similar behavior as Logistics: PLANEX is in
P, PLANLEN is NP-complete, e.g., Blocks world.

Some are already NP-complete for PLANEX, e.g. Freecell.

A few are even PSPACE-complete for PLANEX, e.g.
Airport.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

Other Domains

Generalizations of all the domains that have been used at
the international planning competition have been analyzed.

Many show a similar behavior as Logistics: PLANEX is in
P, PLANLEN is NP-complete, e.g., Blocks world.

Some are already NP-complete for PLANEX, e.g. Freecell.

A few are even PSPACE-complete for PLANEX, e.g.
Airport.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

Other Domains

Generalizations of all the domains that have been used at
the international planning competition have been analyzed.

Many show a similar behavior as Logistics: PLANEX is in
P, PLANLEN is NP-complete, e.g., Blocks world.

Some are already NP-complete for PLANEX, e.g. Freecell.

A few are even PSPACE-complete for PLANEX, e.g.
Airport.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

Summary

Planning using general first-order terms is undecidable.

Planning using a function free language is
EXPSPACE-complete.

Planning with a propositional language (no schema
variables) is PSPACE-complete.

If we consider only “short” plans, the complexity comes
down to NP-completeness.

Domain-dependent planning can be easier.

For Logistics, the existence problem is in P, while the
optimization problem is NP-complete, which holds for
many other domains as well.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

Summary

Planning using general first-order terms is undecidable.

Planning using a function free language is
EXPSPACE-complete.

Planning with a propositional language (no schema
variables) is PSPACE-complete.

If we consider only “short” plans, the complexity comes
down to NP-completeness.

Domain-dependent planning can be easier.

For Logistics, the existence problem is in P, while the
optimization problem is NP-complete, which holds for
many other domains as well.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

Summary

Planning using general first-order terms is undecidable.

Planning using a function free language is
EXPSPACE-complete.

Planning with a propositional language (no schema
variables) is PSPACE-complete.

If we consider only “short” plans, the complexity comes
down to NP-completeness.

Domain-dependent planning can be easier.

For Logistics, the existence problem is in P, while the
optimization problem is NP-complete, which holds for
many other domains as well.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

Summary

Planning using general first-order terms is undecidable.

Planning using a function free language is
EXPSPACE-complete.

Planning with a propositional language (no schema
variables) is PSPACE-complete.

If we consider only “short” plans, the complexity comes
down to NP-completeness.

Domain-dependent planning can be easier.

For Logistics, the existence problem is in P, while the
optimization problem is NP-complete, which holds for
many other domains as well.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

Summary

Planning using general first-order terms is undecidable.

Planning using a function free language is
EXPSPACE-complete.

Planning with a propositional language (no schema
variables) is PSPACE-complete.

If we consider only “short” plans, the complexity comes
down to NP-completeness.

Domain-dependent planning can be easier.

For Logistics, the existence problem is in P, while the
optimization problem is NP-complete, which holds for
many other domains as well.

AI Planning

M. Helmert,
B. Nebel

Motivation

NP-hardness

Turing
Machines

Complexity
Classes

Complexity
Results

Domain-
Dependent
Planning

Domain-
Dependent
Planning

Logistics

Logistics:
PLANEX

Logistics:
PLANLEN

Other Domains

Summary

Planning using general first-order terms is undecidable.

Planning using a function free language is
EXPSPACE-complete.

Planning with a propositional language (no schema
variables) is PSPACE-complete.

If we consider only “short” plans, the complexity comes
down to NP-completeness.

Domain-dependent planning can be easier.

For Logistics, the existence problem is in P, while the
optimization problem is NP-complete, which holds for
many other domains as well.

	Motivation
	NP-hardness of deterministic planning
	Turing Machines
	Alternating Turing Machines
	(Non-) Deterministic Turing Machines
	Computations
	Acceptance

	Complexity Classes
	Complexity Measures
	Complexity Classes
	Relationships

	Complexity Results
	The Planning Problem
	Propositional Planning
	PSPACE
	Polynomial Plan Size
	First-Order Tasks
	EXPSPACE
	Bounded Plan Existence?
	Undecidability of Planning with Function Terms

	Domain-Dependent Planning
	Domain-Dependent Planning
	Logistics
	Logistics: PLANEX
	Logistics: PLANLEN
	Other Domains

