
Principles of AI Planning
December 15th, 2006 — Computational complexity
Motivation
NP-hardness of deterministic planning
Turing Machines

Alternating Turing Machines
(Non-) Deterministic Turing Machines
Computations
Acceptance

Complexity Classes
Complexity Measures
Complexity Classes
Relationships

Complexity Results
The Planning Problem
Propositional Planning
PSPACE
Polynomial Plan Size
First-Order Tasks
EXPSPACE
Bounded Plan Existence?
Undecidability of Planning with Function Terms

Domain-Dependent Planning
Domain-Dependent Planning
Logistics
Logistics: PLANEX
Logistics: PLANLEN
Other Domains

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 1 / 47

Principles of AI Planning
Computational complexity

Malte Helmert Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

December 15th, 2006

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 2 / 47

Motivation

Computational Complexity
Motivation

I We have seen that planning in transition systems can be done in time
polynomial in the size of the transition system

I This appears not to be true for planning in succinct transition systems
(= planning tasks)

1. What is the precise computational complexity of the planning
problem?

2. How does the computational complexity vary with the expressiveness
of the planning language?

3. What is the computational complexity of planning in a particular
domain (e.g. blocks world)?

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 3 / 47

Motivation

Why Computational Complexity?

I understand the problem

I know what is not possible

I find interesting subproblems that are easier to solve

I distinguish essential features from syntactic sugar

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 4 / 47

NP-hardness

Deterministic planning: NP-hardness

Definition
The decision problem SAT: test whether a given propositional formula φ is
satisfiable.

Reduction from SAT to deterministic planning

A = the set of propositional variables occurring in φ
I = any state, e.g. all state variables have value 0

O = ({>} × A) ∪ ({〈>,¬a〉|a ∈ A})

There is a plan for 〈A, I ,O, φ〉 if and only if φ is satisfiable.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 5 / 47

NP-hardness

Deterministic planning: NP-hardness

I Because there is a polynomial-time translation from SAT into
deterministic planning, and SAT is an NP-complete problem, there is
a polynomial time translation from every decision problem in NP into
deterministic planning. Hence the problem is NP-hard.

1. Does NP-hardness depend on having Boolean formulae as
preconditions?

2. Does deterministic planning have the power of NP, or is it still more
powerful?

3. We show that it is more powerful: The decision problem of testing
whether a plan exists is PSPACE-complete.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 6 / 47

Turing Machines ATMs

Alternating Turing Machines

Definition: Alternating Turing Machine

Alternating Turing Machine (ATM) 〈Σ,�,Q, q0, l , δ〉:
1. input alphabet Σ and blank symbol � /∈ Σ

I alphabets always non-empty and finite
I tape alphabet Σ� = Σ ∪ {�}

2. finite set Q of internal states with initial state q0 ∈ Q

3. state labeling l : Q → {Y,N,∃,∀}
I accepting, rejecting, existential, universal states

QY, QN, Q∃, Q∀
I terminal states Q? = QY ∪ QN

I nonterminal states Q ′ = Q∃ ∪ Q∀

4. transition relation δ ⊆ (Q ′ × Σ�)× (Q × Σ� × {−1,+1})

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 7 / 47

Turing Machines (N)TMs

(Non-) Deterministic Turing Machines

Definition: Non-deterministic Turing Machine

A non-deterministic Turing Machine (NTM) is an ATM where all
nonterminal states are existential.

I no universal states

Definition: Deterministic Turing Machine

A deterministic Turing Machine (DTM) is an NTM
where the transition relation is functional.

I for all (q, a) ∈ Q ′ × Σ�, there is exactly one triple (q′, a′,∆) with
((q, a), (q′, a′,∆)) ∈ δ

I notation: δ(q, a) = (q′, a′,∆)

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 8 / 47

Turing Machines Computations

Turing Machine Configurations

Let M = 〈Σ,�,Q, q0, l , δ〉 be an ATM.

Definition: Configuration

A configuration of M is a triple (w , q, x) ∈ Σ∗
� × Q × Σ+

�.

I w : tape contents before tape head

I q: current state

I x : tape contents after and including tape head

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 9 / 47

Turing Machines Computations

Turing Machine Transitions

Let M = 〈Σ,�,Q, q0, l , δ〉 be an ATM.

Definition: Yields relation
A configuration c of M yields a configuration c ′ of M,
in symbols c ` c ′, as defined by the following rules,
where a, a′, b ∈ Σ�, w , x ∈ Σ∗

�, q, q′ ∈ Q and
((q, a), (q′, a′,∆)) ∈ δ:

(w , q, ax) ` (wa′, q′, x) if ∆ = +1, |x | ≥ 1

(w , q, a) ` (wa′, q′,�) if ∆ = +1

(wb, q, ax) ` (w , q′, ba′x) if ∆ = −1

(ε, q, ax) ` (ε, q′,�a′x) if ∆ = −1

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 10 / 47

Turing Machines Acceptance

Acceptance (Time)

Let M = 〈Σ,�,Q, q0, l , δ〉 be an ATM.

Definition: Acceptance (time)

Let c = (w , q, x) be a configuration of M.

I M accepts c = (w , q, x) with q ∈ QY in time n
for all n ∈ N0.

I M accepts c = (w , q, x) with q ∈ Q∃ in time n
iff M accepts some c ′ with c ` c ′ in time n − 1.

I M accepts c = (w , q, x) with q ∈ Q∀ in time n
iff M accepts all c ′ with c ` c ′ in time n − 1.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 11 / 47

Turing Machines Acceptance

Acceptance (Space)

Let M = 〈Σ,�,Q, q0, l , δ〉 be an ATM.

Definition: Acceptance (space)

Let c = (w , q, x) be a configuration of M.

I M accepts c = (w , q, x) with q ∈ QY in space n
iff |w |+ |x | ≤ n.

I M accepts c = (w , q, x) with q ∈ Q∃ in space n
iff M accepts some c ′ with c ` c ′ in space n.

I M accepts c = (w , q, x) with q ∈ Q∀ in space n
iff M accepts all c ′ with c ` c ′ in space n.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 12 / 47

Turing Machines Acceptance

Accepting Words and Languages

Let M = 〈Σ,�,Q, q0, l , δ〉 be an ATM.

Definition: Accepting words

M accepts the word w ∈ Σ∗ in time (space) n ∈ N0

iff M accepts (ε, q0,w) in time (space) n.

I Special case: M accepts ε in time (space) n ∈ N0

iff M accepts (ε, q0,�) in time (space) n.

Definition: Accepting languages

Let f : N0 → N0.
M accepts the language L ⊆ Σ∗ in time (space) f
iff M accepts each word w ∈ L in time (space) f (|w |),
and M does not accept any word w /∈ L.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 13 / 47

Complexity Classes Complexity Measures

Time Complexity

Definition: DTIME, NTIME, ATIME
Let f : N0 → N0.

Complexity class DTIME(f) contains all languages accepted in time f by
some DTM.

Complexity class NTIME(f) contains all languages accepted in time f by
some NTM.

Complexity class ATIME(f) contains all languages accepted in time f by
some ATM.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 14 / 47

Complexity Classes Complexity Measures

Space Complexity

Definition: DSPACE, NSPACE, ASPACE
Let f : N0 → N0.

Complexity class DSPACE(f) contains all languages accepted in space f
by some DTM.

Complexity class NSPACE(f) contains all languages accepted in space f
by some NTM.

Complexity class ASPACE(f) contains all languages accepted in space f
by some ATM.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 15 / 47

Complexity Classes Complexity Classes

Polynomial Complexity Classes

Let P be the set of polynomials p : N0 → N0.

Definition: P, NP, . . .
P =

⋃
p∈P DTIME(p)

NP =
⋃

p∈P NTIME(p)

AP =
⋃

p∈P ATIME(p)

PSPACE =
⋃

p∈P DSPACE(p)

NPSPACE =
⋃

p∈P NSPACE(p)

APSPACE =
⋃

p∈P ASPACE(p)

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 16 / 47

Complexity Classes Complexity Classes

Exponential Complexity Classes

Let P be the set of polynomials p : N0 → N0.

Definition: EXP, NEXP, . . .
EXP =

⋃
p∈P DTIME(2p)

NEXP =
⋃

p∈P NTIME(2p)

AEXP =
⋃

p∈P ATIME(2p)

EXPSPACE =
⋃

p∈P DSPACE(2p)

NEXPSPACE =
⋃

p∈P NSPACE(2p)

AEXPSPACE =
⋃

p∈P ASPACE(2p)

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 17 / 47

Complexity Classes Complexity Classes

Doubly Exponential Complexity Classes

Let P be the set of polynomials p : N0 → N0.

Definition: 2-EXP, . . .
2-EXP =

⋃
p∈P DTIME(22p

)

. . .

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 18 / 47

Complexity Classes Relationships

Standard Complexity Classes Relationships

Theorem
P⊆ NP ⊆AP

PSPACE⊆ NPSPACE ⊆APSPACE
EXP⊆ NEXP ⊆AEXP

EXPSPACE⊆NEXPSPACE⊆AEXPSPACE
2-EXP⊆ . . .

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 19 / 47

Complexity Classes Relationships

The Power of Nondeterministic Space

Theorem (Savitch 1970)

NSPACE(f) ⊆ DSPACE(f 2), and thus:

PSPACE = NPSPACE
EXPSPACE = NEXPSPACE

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 20 / 47

Complexity Classes Relationships

The Power of Alternation

Theorem (Chandra et al. 1981)
AP = PSPACE

APSPACE = EXP
AEXP = EXPSPACE

AEXPSPACE = 2-EXP

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 21 / 47

Complexity Classes Relationships

The Hierarchy of complexity classes

2-EXPSPACE= 2-NEXPSPACE

2-NEXP

2-EXP= AEXPSPACE

EXPSPACE= NEXPSPACE= AEXP

NEXP

EXP= APSPACE

PSPACE = NPSPACE = AP

NP

P

6=

6=
6=

6=
6=

6=

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 22 / 47

Complexity Results The Planning Problem

The Planning Problem

PlanEx (Plan Existence)
Given: Planning task 〈A, I ,O,G 〉
Question: Is there a plan for 〈A, I ,O,G 〉?

PlanLen (Bounded Plan Existence)
Given: Planning task 〈A, I ,O,G 〉, bound K ∈ N0

Question: Is there a plan for 〈A, I ,O,G 〉 of length at most K?

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 23 / 47

Complexity Results Propositional Planning

Plan Existence vs. Bounded Plan Existence

PlanEx ≤p PlanLen

A planning task with n state variables has a plan
iff it has a plan of length at most 2n − 1.
 polynomial reduction

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 24 / 47

Complexity Results PSPACE

Membership in PSPACE

PlanLen ∈ PSPACE
Show PlanLen ∈ NPSPACE and use Savitch’s theorem.
Nondeterministic algorithm:

def plan(〈A, I ,O,G 〉, K):
s := I
k := K
repeat until s |= G :

guess o ∈ O
reject if o not applicable in s
set s := appo(s)
reject if k = 0
set k := k − 1

accept

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 25 / 47

Complexity Results PSPACE

Hardness for PSPACE

Idea: generic reduction

I For a fixed polynomial p, given DTM M and input w ,
generate planning task which is solvable
iff M accepts w in space p(|w |)

I For simplicity, restrict to TMs which
never move to the left of the initial head position
(no loss of generality)

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 26 / 47

Complexity Results PSPACE

Reduction: State Variables

Let p be the space-bound polynomial.

Given DTM 〈Σ,�,Q, q0, l , δ〉 and input w1 . . .wn,
define relevant tape positions X = {1, . . . , p(n)}.

State variables

I stateq for all q ∈ Q

I headi for all i ∈ X ∪ {0, p(n) + 1}
I contenti ,a for all i ∈ X , a ∈ Σ�

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 27 / 47

Complexity Results PSPACE

Reduction: Initial State

Let p be the space bound polynomial.

Given DTM 〈Σ,�,Q, q0, l , δ〉 and input w1 . . .wn,
define relevant tape positions X = {1, . . . , p(n)}.

Initial state
Initially true:

I stateq0

I head1

I contenti ,wi
for all i ∈ {1, . . . , n}

I contenti ,� for all i ∈ X \ {1, . . . , n}
Initially false:

I all others

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 28 / 47

Complexity Results PSPACE

Reduction: Operators

Let p be the space bound polynomial.

Given DTM 〈Σ,�,Q, q0, l , δ〉 and input w1 . . .wn,
define relevant tape positions X = {1, . . . , p(n)}.

Operators

One operator for each transition rule δ(q, a) = (q′, a′,∆) and each cell
position i ∈ X :

I precondition: stateq ∧ headi ∧ contenti ,a
I effect: ¬stateq ∧ ¬headi ∧ ¬contenti ,a

∧ stateq′ ∧ headi+∆ ∧ contenti ,a′

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 29 / 47

Complexity Results PSPACE

Reduction: Goal

Let p be the space bound polynomial.

Given DTM 〈Σ,�,Q, q0, l , δ〉 and input w1 . . .wn,
define relevant tape positions X = {1, . . . , p(n)}.

Goal∨
q∈QY

stateq

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 30 / 47

Complexity Results PSPACE

PSPACE-completeness for STRIPS

Theorem (PSPACE-completeness (Bylander))

PlanEx and PlanLen are PSPACE-complete even if the planning task
is given in STRIPS form (preconditions and goals are conjunctions of
literals and no conditional effects).

Proof.
Hardness and membership for the general formalism follows from the
above. Hardness holds for STRIPS as well because of the style of the
reduction: only simple preconditions and no conditional effects. The only
problem is the disjunction in the goal formula. This can be eliminated by
transforming the TM beforehand, though.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 31 / 47

Complexity Results Polynomial Plan Size

Polynomial plan size

The PSPACE result depends on the fact that plans can become
exponentially long. What if restrict them to be only of polynomial length?

Theorem (NP-completeness for polynomial plan size)

PlanEx and PlanLen are NP-complete even if the planning task is
given in STRIPS form provided only plans of length polynomial in the size
of the planning task are permitted.

Membership follows easily by using a guess-and-check algorithm.
Hardness needs a bit more . . .
Note: Answers earlier questions whether we need the Boolean precondition
formula for NP-hardness

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 32 / 47

Complexity Results First-Order Tasks

First-Order Tasks

I we considered
propositional state variables (0-ary predicates) and
grounded operators (0-ary schematic operators)

I reasonable: most planning algorithms
work on grounded representations

I predicate arity is typically small (a constant?)

How do the complexity results change if we introduce first-order predicates
and schematic operators?

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 33 / 47

Complexity Results EXPSPACE

Membership in EXPSPACE

PlanEx,PlanLen ∈ EXPSPACE

I input size n

I at most 2n grounded state variables

I at most 2n grounded operators

I can ground the task in exponential time, then use the earlier PSPACE
algorithms

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 34 / 47

Complexity Results EXPSPACE

Hardness for EXPSPACE

Idea: Adapt the earlier reduction from PlanEx to encode Turing
Machine contents more succinctly. Assume relevant tape positions are
now X = {1, . . . , 2n}. We need to encode the computation as a planning
task in polynomial time!

Objects

0, 1

Predicates

I stateq() for all q ∈ Q

I head(?b1, . . . , ?bn)

I contenta(?b1, . . . , ?bn) for all a ∈ Σ�

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 35 / 47

Complexity Results EXPSPACE

Reduction: Example Operator

Operator example

Schematic operator for transition rule δ(q, a) = (q′, a′,+1)

I parameters: ?b1, . . . , ?bn

I precondition:
stateq

∧ head(?b1, . . . , ?bn)
∧ contenta(?b1, . . . , ?bn)

I effect:
¬stateq

∧¬head(?b1, . . . , ?bn)
∧¬contenta(?b1, . . . , ?bn)
∧ stateq′

∧ advance-head
∧ contenta′(?b1, . . . , ?bn)

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 36 / 47

Complexity Results EXPSPACE

Reduction: Example Operator (continued)

Operator example (ctd.)

advance-head = ((?bn = 0)

B head(?b1, . . . , ?bn−1, 1))

∧ ((?bn−1 = 0∧?bn = 1)

B head(?b1, . . . , ?bn−2, 1, 0))

∧ ((?bn−2 = 0∧?bn−1 = 1∧?bn = 1)

B head(?b1, . . . , ?bn−3, 1, 0, 0))

∧ . . .

∧ ((?b1 = 0∧?b2 = 1 ∧ · · · ∧?bn = 1)

B head(1, 0, . . . , 0))

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 37 / 47

Complexity Results Bounded Plan Existence?

Plan Existence vs. Bounded Plan Existence

I Our earlier reduction from PlanEx to PlanLen no longer works:
the shortest plan can have length doubly exponentially in the input
size, so that the bound cannot be written down in polynomial time.

I Indeed, PlanLen is actually easier than PlanEx
for this planning formalism (NEXP-complete).

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 38 / 47

Complexity Results Undecidability

Planning with function terms

I If we allow in addition function terms with arity > 0, then planning
becomes undecidable.

I The state space is infinite: s(0), s(s(0)), s(s(s(0))), . . .

I We can use function terms to describe (the index of) tape cells of a
Turing machine.

I We can use operators to describe the Turing machine control.

I The existence of a plan is then equivalent to the existence of a
successful computation on the Turing machine.

I PlanEx for planning tasks with function terms can be used to
decide the Halting problem.

Theorem
PlanEx for planning tasks with function terms is undecidable.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 39 / 47

Domain-Dependent Planning Domain-Dependent Planning

Domain-Dependent Planning

Planning (and its complexity) for particular domains is interesting, since
we want to judge planning benchmarks
. . . and perhaps want to go for domain-dependent planning.
Consider fixed domains and determine complexity.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 40 / 47

Domain-Dependent Planning Logistics

A Concrete Domain: Logistics

There are several cities, each containing several locations, some of which
are airports. There are also trucks, which drive within a single city, and
airplanes, which can fly between airports. The goal is to get some packages
from various locations to various new locations [McDermott, 1998].

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 41 / 47

Domain-Dependent Planning Logistics: PLANEX

Plan Existence for Logistics

Theorem
PLANEX for Logistics can be decided in polynomial time.

Proof.
Consider the subgraphs formed by the connected airport networks (for
planes) and city networks (for trucks). If at least one vehicle (truck or
plane) is in one of the subgraphs, all nodes in the subgraph are internally
reachable, otherwise only the externally connected nodes can be reached.
Check for each package delivery, whether there are connected subgraphs
such that the package can pass through the subgraphs to the target node.
This is a simple reachability test, which can be done in poly. time.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 42 / 47

Domain-Dependent Planning Logistics: PLANLEN

Optimizing Delivery: Shortest Plans for Logistics

Definition (Feedback Vertex Set)

I Given: a directed graph G = (V ,A) and a natural number k
I Question: Does there exists a subset V ′ ⊆ V with |V ′| ≤ k such that

removing V ′ results in an acyclic graph?

This problem is NP-complete and can be used to prove the following result:

Theorem
PLANLEN for Logistics is NP-complete, even if there is only one complete
city graph and one truck in this graph.

Proof.
Membership follows because there is an obvious polynomial upper bound of
moves for all solvable instances.
Hardness is shown using a reduction from FVS.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 43 / 47

Domain-Dependent Planning Logistics: PLANLEN

PLANLEN for Logistics: NP-hardness contd. (1)

Proof. (continued)

Let G = (V ,A) be a directed graph and k a natural number. Then G
contains a FVS of size k iff the logistics problem constructed below has a
plan of length at most 3|V |+ 2|A|+ k.
Construct a Logistics task with just one truck and one city network which
is a complete graph containing V and an extra node v0, where the truck
starts. The truck has to deliver one package from v0 to each other
location and one package from u to v for each (u, v) ∈ A.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 44 / 47

Domain-Dependent Planning Logistics: PLANLEN

PLANLEN for Logistics: NP-hardness contd. (2)

Proof. (continued).

Let V ′ ⊆ V the feedback vertex set. Solve task by moving to V ′ in any
order, then to all V − V ′ using a topological ordering on these nodes, and
finally to V ′ again. Requires |A|+ |V | load and unload actions each, and
|V ′|+ |V −V ′|+ |V ′| movements, i.e., 3|V |+ 2|A|+ k actions if |V ′| = k.
Conversely, at least 3|V |+ 2|A| actions are needed. If a plan contains not
more than 3|V |+ 2|A|+ k, then no more than k nodes are visited twice.
These nodes form a FVS of size k.

Note: It is not route planning that makes the task difficult, but the
interaction of sub-goals!

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 45 / 47

Domain-Dependent Planning Other Domains

Other Domains

I Generalizations of all the domains that have been used at the
international planning competition have been analyzed.

I Many show a similar behavior as Logistics: PLANEX is in P,
PLANLEN is NP-complete, e.g., Blocks world.

I Some are already NP-complete for PLANEX, e.g. Freecell.

I A few are even PSPACE-complete for PLANEX, e.g. Airport.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 46 / 47

Domain-Dependent Planning Other Domains

Summary

I Planning using general first-order terms is undecidable.

I Planning using a function free language is EXPSPACE-complete.

I Planning with a propositional language (no schema variables) is
PSPACE-complete.

I If we consider only “short” plans, the complexity comes down to
NP-completeness.

I Domain-dependent planning can be easier.

I For Logistics, the existence problem is in P, while the optimization
problem is NP-complete, which holds for many other domains as well.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 15th, 2006 47 / 47

	Motivation
	NP-hardness of deterministic planning
	Turing Machines
	Alternating Turing Machines
	(Non-) Deterministic Turing Machines
	Computations
	Acceptance

	Complexity Classes
	Complexity Measures
	Complexity Classes
	Relationships

	Complexity Results
	The Planning Problem
	Propositional Planning
	PSPACE
	Polynomial Plan Size
	First-Order Tasks
	EXPSPACE
	Bounded Plan Existence?
	Undecidability of Planning with Function Terms

	Domain-Dependent Planning
	Domain-Dependent Planning
	Logistics
	Logistics: PLANEX
	Logistics: PLANLEN
	Other Domains

