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BDDs Motivation

Dealing with large state spaces

I One way to explore very large state spaces is to use selective
exploration methods (such as heuristic search) that only explore a
fraction of states.

I Another method is to concisely represent large sets of states and deal
with large state sets at the same time.
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BDDs Motivation

Breadth-first search with progression and state sets

Progression breadth-first search

def bfs-progression(A, I , O, G ):
goal := formula-to-set(G )
reached := {I}
loop:

if reached ∩ goal 6= ∅:
return solution found

new-reached := reached ∪ apply(reached,O)
if new-reached = reached:

return no solution exists
reached := new-reached

 If we can implement operations formula-to-set, {I}, ∩, 6= ∅, ∪, apply
and = efficiently, this is a reasonable algorithm.
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BDDs Motivation

Formulae to represent state sets

I We have previously considered boolean formulae as a means of
representing set of states.

I Compared to explicit representations of state sets, boolean formulae
have very nice performance characteristics.

Note: In the following, we assume that formulae are implemented as trees,
not strings, so that we can e.g. compute χ ∧ ψ from χ and ψ in constant
time.
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BDDs Motivation

Performance characteristics
Explicit representations vs. formulae

Let k be the number of state variables, |S | the number of states in S and
‖S‖ the size of the representation of S .

Sorted vector Hash table Formula

s ∈ S? O(k log |S |) O(k) O(‖S‖)
S := S ∪ {s} O(k log |S | + |S |) O(k) O(k)
S := S \ {s} O(k log |S | + |S |) O(k) O(k)
S ∪ S ′ O(k|S | + k|S ′|) O(k|S | + k|S ′|) O(1)
S ∩ S ′ O(k|S | + k|S ′|) O(k|S | + k|S ′|) O(1)
S \ S ′ O(k|S | + k|S ′|) O(k|S | + k|S ′|) O(1)

S O(k2k) O(k2k) O(1)
{s | s(a) = 1} O(k2k) O(k2k) O(1)
S = ∅? O(1) O(1) co-NP-complete
S = S ′? O(k|S |) O(k|S |) co-NP-complete
|S | O(1) O(1) #P-complete
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BDDs Motivation

Which operations are important?

I Explicit representations such as hash tables are not suitable because
their size grows linearly with the number of represented states.

I Formulae are very efficient for some operations, but not very well
suited for other important operations needed by the progression
algorithm.

I Examples: S 6= ∅?, S = S ′?

I One of the sources of difficulty is that formulae allow many different
representations for a given set.

I For example, all unsatisfiable formulae represent ∅.
This makes equality tests expensive.

 We are interested in canonical representations, i.e. representations for
which there is only one possible representation for every state set.

Binary decision diagrams (BDDs) are an example of an efficient canonical
representation.
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BDDs Motivation

Performance characteristics
Formulae vs. BDDs

Let k be the number of state variables, |S | the number of states in S and
‖S‖ the size of the representation of S .

Formula BDD

s ∈ S? O(‖S‖) O(k)
S := S ∪ {s} O(k) O(k)
S := S \ {s} O(k) O(k)
S ∪ S ′ O(1) O(‖S‖‖S ′‖)
S ∩ S ′ O(1) O(‖S‖‖S ′‖)
S \ S ′ O(1) O(‖S‖‖S ′‖)
S O(1) O(‖S‖)
{s | s(a) = 1} O(1) O(1)
S = ∅? co-NP-complete O(1)
S = S ′? co-NP-complete O(1)
|S | #P-complete O(‖S‖)

Remark: Optimizations allow BDDs with complementation (S) in constant
time, but we will not discuss this here.
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BDDs Definition

Binary decision diagrams
Definition

Definition (BDD)

Let A be a set of propositional variables.
A binary decision diagram (BDD) over A is a directed acyclic graph with
labeled arcs and labeled vertices satisfying the following conditions:

I There is exactly one node without incoming arcs.

I All sinks (nodes without outgoing arcs) are labeled 0 or 1.

I All other nodes are labeled with a variable a ∈ A and have exactly two
outgoing arcs, labeled 0 and 1.
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BDDs Definition

Binary decision diagrams
Terminology

BDD terminology

I The node without incoming arcs is called the root.

I The labeling variable of an internal node is called the decision variable
of the node.

I The nodes reached from node n via the arc labeled i ∈ {0, 1} is called
the i-successor of n.

I The BDDs which only consist of a single sink are called the zero BDD
and one BDD, respectively.

Observation: If B is a BDD and n is a node of B, then the subgraph
induced by all nodes reachable from n is also a BDD.

I This BDD is called the BDD rooted at n.
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BDDs Definition

BDD example

Possible BDD for (u ∧ v) ∨ w

u

v

w w

0 1 0 1

0

1

0 1

0

1

01
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BDDs Definition

BDD semantics

Testing whether a BDD includes a valuation

def bdd-includes(B: BDD, v : valuation):
Set n to the root of B.
while n is not a sink:

Set a to the decision variable of n.
Set n to the v(a)-successor of n.

return true if n is labeled 1, false if it is labeled 0.

Definition (set represented by a BDD)

Let B be a BDD over variables A. The set represented by B, in symbols
r(B) consists of all valuations v : A → {0, 1} for which bdd-includes(B, v)
returns true.
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BDDs Definition

Ordered BDDs
Motivation

In general, BDDs are not a canonical representation for sets of valuations.
Here is a simple counter-example (A = {u, v})):

BDDs for u ∧ ¬v with different variable order

u

v

0 1

0

1

01

v

u

1 0

0

1

01

Both BDDs represent the same state set, namely the singleton set
{{u 7→ 1, v 7→ 0}}.
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BDDs Definition

Ordered BDDs
Definition

I As a first step towards a canonical representation, we will in the
following assume that the set of variables A is totally ordered by some
ordering ≺.

I In particular, we will only use variables v1, v2, v3, . . . and assume the
ordering vi ≺ vj iff i < j .

Definition (ordered BDD)

A BDD is ordered iff for each arc from an internal node with decision
variable u to an internal node with decision variable v , we have u ≺ v .
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BDDs Definition

Ordered BDDs
Example

Ordered and unordered BDD

v1

v2

0 1

0

1

01

v2

v1

1 0

0

1

01

The left BDD is ordered, the right one is not.
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BDDs Definition

Reduced ordered BDDs
Are ordered BDDs canonical?

Two equivalent BDDs that can be reduced

v1

v2

v3 v3

0 1 0 1

0

1

0 1

0

1

01

v1

v2

v3 v3

0 1

0

1

0
1

0 1

0 1

I Ordered BDDs are not canonical: Both ordered BDDs represent the
same set.

I However, ordered BDDs can easily be made canonical.
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BDDs Definition

Reduced ordered BDDs
Reductions

There are two important operations on BDDs that do not change the set
represented by it:

Definition (Isomorphism reduction)

If the BDDs rooted at two different nodes n and n′ are isomorphic, then
all incoming arcs of n′ can be redirected to n, and all parts of the BDD no
longer reachable from the root removed.
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BDDs Definition

Reduced ordered BDDs
Reductions

Isomorphism reduction

v1

v2

1

v3

0

0

0

1

1
v3

0

01

0

1

1
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BDDs Definition

Reduced ordered BDDs
Reductions

Isomorphism reduction

v1

v2

1

v3

0

0

0

1

1

0

1

1
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BDDs Definition

Reduced ordered BDDs
Reductions

Isomorphism reduction

v1

v2

1

v3

0

0

0

1

1

0

1
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BDDs Definition

Reduced ordered BDDs
Reductions

There are two important operations on BDDs that do not change the set
represented by it:

Definition (Shannon reduction)

If both outgoing arcs of an internal node n of a BDD lead to the same
node m, then n can be removed from the BDD, with all incoming arcs of n
going to m instead.
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BDDs Definition

Reduced ordered BDDs
Reductions

Shannon reduction

v1

v2

v3

0 1

0

1

0
1

0

v3

0 1

1
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BDDs Definition

Reduced ordered BDDs
Reductions

Shannon reduction

v1

v2

v3

0 1

0

1

0
1

0

1
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BDDs Definition

Definition

Definition (reduced ordered BDD)

An ordered BDD is reduced iff it does not admit any isomorphism
reduction or Shannon reduction.

Theorem (Bryant 1986)

For every state set S and a fixed variable ordering, there exists exactly one
reduced ordered BDD representing S.

Moreover, given any ordered BDD B, the equivalent reduced ordered BDD
can be computed in linear time in the size of B.

 Reduced ordered BDDs are the canonical representation we were
looking for.
From now on, we simply say BDD for reduced ordered BDD.
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Operations Ideas

Efficient BDD implementation
Ideas

I Earlier, we showed some BDD performance characteristics.
I Example: S = S ′? can be tested in time O(1).

I The critical idea for achieving this performance is to share structure
not only within a BDD, but also between different BDDs.

BDD representation

I Every BDD (including sub-BDDs) B is represented by a single natural
number id(B) called its ID.

I The zero BDD has ID −2.
I The one BDD has ID −1.
I Other BDDs have IDs ≥ 0.

I The BDD operations must satisfy the following invariant: Two BDDs
with different ID are never identical.
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Operations Ideas

Efficient BDD implementation
Data structures

Data structures

I There are three global vectors (dynamic arrays) to represent
information on non-sink BDDs with ID i ≥ 0:

I var[i ] denotes the decision variable.
I low[i ] denotes the ID of the 0-successor.
I high[i ] denotes the ID of the 1-successor.

I There is some mechanism that keeps track of IDs that are currently
unused (garbage collection, reference counting).

I This can be implemented without amortized overhead.

I There is a global hash table lookup which maps, for each ID i ≥ 0
representing a BDD in use, the triple 〈var[i ], low[i ], high[i ]〉 to i .

I Randomized hashing allows constant-time access in the expected case.
More sophisticated methods allow deterministic constant-time access.
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Operations Ideas

Efficient BDD implementation
Data structures example

0 1

v3

0 1

v1

0

1

v1

v3

0 1

0

1

0 1

−2 −1

12

14

0 1

v3

0 1

v2

0

1

v2

v3

0 1

0

1

0 1

−2 −1

12

17

formula ID i var[i ] low[i ] high[i ]
⊥ −2 – – –
> −1 – – –
v3 12 3 −2 −1

v1 ∧ v3 14 1 −2 12
¬v2 ∧ v3 17 2 12 −2
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Operations Ideas

Core BDD operations

Building the zero BDD

def zero():
return −2

Building the one BDD

def one():
return −1
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Operations Ideas

Core BDD operations

Building other BDDs

def bdd(v : variable, l : ID, h: ID):
if l = h:

return l
if 〈v , l , h〉 /∈ lookup:

Set i to a new unused ID.
var[i ], low[i ], high[i ] := v , l , h
lookup[〈v , l , h〉] := i

return lookup[〈v , l , h〉]

We only create BDDs with zero, one and bdd (i.e., function bdd is the
only function writing to var, low, high and lookup). Thus:

I BDDs are guaranteed to be reduced.

I BDDs with different IDs always represent different sets.
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Operations Ideas

BDD operations
Notations

For convenience, we introduce some additional notations:

I We define 0 := zero(), 1 := one().
I We write var, low, high as attributes:

I B.var for var[B]
I B.low for low[B]
I B.high for high[B]
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Operations Essential

Essential vs. derived BDD operations

We distinguish between

I essential BDD operations, which are implemented directly on top of
zero, one and bdd, and

I derived BDD operations, which are implemented in terms of the
essential operations.
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Operations Essential

Essential BDD operations

We study the following essential operations:

I bdd-includes(B, s): Test s ∈ r(B).

I bdd-equals(B, B ′): Test r(B) = r(B ′).

I bdd-atom(a): Build BDD representing {s | s(a) = 1}.
I bdd-state(s): Build BDD representing {s}.
I bdd-union(B, B ′): Build BDD representing r(B) ∪ r(B ′).

I bdd-complement(B): Build BDD representing r(B).

I bdd-countmodels(B): Compute |r(B)|.
I bdd-forget(B, a): Described later.
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Operations Essential

Essential operations
Memoization

I The essential functions are all defined recursively and are free of side
effects.

I We assume (without explicit mention in the pseudo-code) that they
all use dynamic programming (memoization):

I Every return statement stores the arguments and result in a memo
hash table.

I Whenever a function is invoked, the memo is checked if the same call
was made previously. If so, the result from the memo is taken to avoid
recomputations.

I The memo may be cleared when the “outermost” recursive call
terminates.

I The bdd-forget function calls the bdd-union function internally. In this
case, the memo for bdd-union may only be cleared once bdd-forget
finishes, not after each bdd-union invocation finishes.

Memoization is critical for the mentioned runtime bounds.
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Operations Essential

Essential BDD operations
bdd-includes

Test s ∈ r(B)

def bdd-includes(B, s):
if B = 0:

return false
else if B = 1:

return true
else if s[B.var] = 1:

return bdd-includes(B.high, s)
else:

return bdd-includes(B.low, s)

I Runtime: O(k)

I This works for partial or full valuations s, as long as all variables
appearing in the BDD are defined.
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Operations Essential

Essential BDD operations
bdd-equals

Test r(B) = r(B ′)

def bdd-equals(B, B ′):
return B = B ′

I Runtime: O(1)
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Operations Essential

Essential BDD operations
bdd-atom

Build BDD representing {s | s(a) = 1}
def bdd-atom(a):

return bdd(a, 0, 1)

I Runtime: O(1)
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Operations Essential

Essential BDD operations
bdd-state

Build BDD representing {s}
def bdd-state(s):

B := 1
for each variable v of s, in reverse variable order:

if s(v) = 1:
B := bdd(v , 0,B)

else:
B := bdd(v ,B, 0)

return B

I Runtime: O(k)

I Works for partial or full valuations s.
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Operations Essential

Essential BDD operations
bdd-state: Example

bdd-state({v1 7→ 1, v3 7→ 0, v4 7→ 1})

1

v4

0

0
1

v3

0
1

v1

0

1
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Operations Essential

Essential BDD operations
bdd-union

Build BDD representing r(B) ∪ r(B ′)
def bdd-union(B, B ′):

if B = 0 and B ′ = 0:
return 0

else if B = 1 or B ′ = 1:
return 1

else if B.var < B ′.var:
return bdd(B.var, bdd-union(B.low,B ′),

bdd-union(B.high,B ′))
else if B.var = B ′.var:

return bdd(B.var, bdd-union(B.low,B ′.low),
bdd-union(B.high,B ′.high))

else if B.var > B ′.var:
return bdd(B ′.var, bdd-union(B,B ′.low),

bdd-union(B,B ′.high))

I Runtime: O(‖B‖ · ‖B ′‖)
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Operations Essential

Essential BDD operations
bdd-complement

Build BDD representing r(B)

def bdd-complement(B):
if B = 0:

return 1
else if B = 1:

return 0
else:

return bdd(B.var, bdd-complement(B.low),
bdd-complement(B.high))

I Runtime: O(‖B‖)
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Operations Essential

Essential BDD operations
bdd-countmodels

Compute |r(B)|
def bdd-countmodels(B):

return count(B, 0)

def count(B, i):
if B = 0:

return 0
else if B = 1:

return 2k−i

else:
Set j so that B.var = vj .
return 2j−i−1 · (count(B.low, j) + count(B.high, j))

I Runtime: O(‖B‖)
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Operations Essential

Essential BDD operations
bdd-countmodels: Example

1 0

B4

B2

B1

1 0

v4

v2

v1

12

0
2

0

4
8

4

BDD represents v4∧ (¬v1∨ v2) over variables
{v1, v2, v3, v4, v5}, i.e. k = 5.

count(B1, 0)= 1 · (count(B4, 1) + count(B2, 1)) = 12
count(B4, 1)= 4 · (count(0, 4) + count(1, 4)) = 8
count(0, 4)= 0
count(1, 4)= 2

count(B2, 1)= 1 · (count(0, 2) + count(B4, 2)) = 4
count(0, 2)= 0

count(B4, 2)= 2 · (count(0, 4) + count(1, 4)) = 4
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Operations Essential

Essential BDD operations
bdd-forget

The last essential BDD operation is a bit more unusual, but we will need it
for defining the semantics of operator application.

Definition (Existential abstraction)

Let A be a set of propositional variables, let S be a set of valuations over
A, and let v ∈ A.
The existential abstraction of v in S , in symbols ∃v .S , is the set of
valuations

{ s ′ : (A \ {v}) → {0, 1} | ∃s ∈ S : s ′ ⊂ s }

over A \ {v}.
Existential abstraction is also called forgetting.
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Operations Essential

Essential BDD operations
bdd-forget

Build BDD representing ∃v .r(B)

def bdd-forget(B, v):
if B = 0 or B = 1 or B.var � v :

return B
else if B.var ≺ v :

return bdd(B.var, bdd-forget(B.low, v),
bdd-forget(B.high, v))

else:
return bdd-union(B.low,B.high)

I Runtime: O(‖B‖2)
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Operations Essential

Essential BDD operations
bdd-forget: Example

Forgetting v2

0

v1

0

v2

1

v3 v3

01 0 1

0
1

1
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Operations Essential

Essential BDD operations
bdd-forget: Example

Forgetting v2

0

v1

0

bdd-union

1 10 0

v3 v3

01 0 1

1

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 8th, 2006 46 / 73



Operations Essential

Essential BDD operations
bdd-forget: Example

Forgetting v2

0

v1

0

bdd

v3 bdd-union bdd-union

1 0 0 1

1

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 8th, 2006 47 / 73



Operations Essential

Essential BDD operations
bdd-forget: Example

Forgetting v2

0

v1

0

bdd

v3 1 1

1
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Operations Essential

Essential BDD operations
bdd-forget: Example

Forgetting v2

0

v1

0

1

1
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Operations Derived

Derived BDD operations

We study the following derived operations:

I bdd-intersection(B, B ′):
Build BDD representing r(B) ∩ r(B ′).

I bdd-setdifference(B, B ′):
Build BDD representing r(B) \ r(B ′).

I bdd-isempty(B):
Test r(B) = ∅.

I bdd-rename(B, v , v ′):
Build BDD representing {rename(s, v , v ′) | s ∈ r(B) }, where
rename(s, v , v ′) is the valuation s with variable v renamed to v ′.

I If variable v ′ occurs in B already, the result is undefined.
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Operations Derived

Derived BDD operations
bdd-intersection, bdd-setdifference

Build BDD representing r(B) ∩ r(B ′)

def bdd-intersection(B, B ′):
not-B := bdd-complement(B)
not-B’ := bdd-complement(B ′)
return bdd-complement(bdd-union(not-B, not-B’))

Build BDD representing r(B) \ r(B ′)

def bdd-setdifference(B, B ′):
return bdd-intersection(B, bdd-complement(B ′))

I Runtime: O(‖B‖ · ‖B ′‖)
I These functions can also be easily implemented directly, following the

structure of bdd-union.
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Operations Derived

Derived BDD operations
bdd-isempty

Test r(B) = ∅
def bdd-isempty(B):

return bdd-equals(B, 0)

I Runtime: O(1)
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Operations Derived

Derived BDD operations
bdd-rename

Build BDD representing {rename(s, v , v ′) | s ∈ r(B) }
def bdd-rename(B, v , v ′):

v-and-v’ := bdd-intersection(bdd-atom(v), bdd-atom(v ′))
not-v := bdd-complement(bdd-atom(v))
not-v’ := bdd-complement(bdd-atom(v ′))
not-v-and-not-v’ := bdd-intersection(not-v, not-v’)
v-eq-v’ := bdd-union(v-and-v’, not-v-and-not-v’)
return bdd-forget(bdd-intersection(B, v-eq-v’), v)

I Runtime: O(‖B‖2)
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Operations Derived

Derived BDD operations
bdd-rename: Remarks

I Renaming sounds like a simple operation.

I Why is it so expensive?

This is not because the algorithm is bad:
I Renaming must take at least quadratic time:

I There exist families of BDDs Bn with k variables such that renaming
v1 to vk+1 increases the size of the BDD from Θ(n) to Θ(n2).

I However, renaming is cheap in some cases:
I For example, renaming to a neighboring unused variable (e.g. from vi

to vi+1) is always possible in linear time by simply relabeling the
decision variables of the BDD.

I In practice, one can usually choose a variable ordering where
renaming only occurs between neighboring variables.
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BDD Planning Main algorithm

Breadth-first search with progression and BDDs

Progression breadth-first search

def bfs-progression(A, I , O, G ):
goal := formula-to-set(G )
reached := {I}
loop:

if reached ∩ goal 6= ∅:
return solution found

new-reached := reached ∪ apply(reached,O)
if new-reached = reached:

return no solution exists
reached := new-reached
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BDD Planning Main algorithm

Breadth-first search with progression and BDDs

Progression breadth-first search

def bfs-progression(A, I , O, G ):
goal := formula-to-set(G )
reached := {I}
loop:

if reached ∩ goal 6= ∅:
return solution found

new-reached := reached ∪ apply(reached,O)
if new-reached = reached:

return no solution exists
reached := new-reached

Use bdd-atom, bdd-complement, bdd-union, bdd-intersection.
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BDD Planning Main algorithm

Breadth-first search with progression and BDDs

Progression breadth-first search

def bfs-progression(A, I , O, G ):
goal := formula-to-set(G )
reached := {I}
loop:

if reached ∩ goal 6= ∅:
return solution found

new-reached := reached ∪ apply(reached,O)
if new-reached = reached:

return no solution exists
reached := new-reached

Use bdd-state.
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BDD Planning Main algorithm

Breadth-first search with progression and BDDs

Progression breadth-first search

def bfs-progression(A, I , O, G ):
goal := formula-to-set(G )
reached := {I}
loop:

if reached ∩ goal 6= ∅:
return solution found

new-reached := reached ∪ apply(reached,O)
if new-reached = reached:

return no solution exists
reached := new-reached

Use bdd-intersection, bdd-isempty.
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BDD Planning Main algorithm

Breadth-first search with progression and BDDs

Progression breadth-first search

def bfs-progression(A, I , O, G ):
goal := formula-to-set(G )
reached := {I}
loop:

if reached ∩ goal 6= ∅:
return solution found

new-reached := reached ∪ apply(reached,O)
if new-reached = reached:

return no solution exists
reached := new-reached

Use bdd-union.
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BDD Planning Main algorithm

Breadth-first search with progression and BDDs

Progression breadth-first search

def bfs-progression(A, I , O, G ):
goal := formula-to-set(G )
reached := {I}
loop:

if reached ∩ goal 6= ∅:
return solution found

new-reached := reached ∪ apply(reached,O)
if new-reached = reached:

return no solution exists
reached := new-reached

Use bdd-equals.
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BDD Planning Main algorithm

Breadth-first search with progression and BDDs

Progression breadth-first search

def bfs-progression(A, I , O, G ):
goal := formula-to-set(G )
reached := {I}
loop:

if reached ∩ goal 6= ∅:
return solution found

new-reached := reached ∪ apply(reached,O)
if new-reached = reached:

return no solution exists
reached := new-reached

How to do this?
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BDD Planning apply

The apply function

I We need an operation that, for a set of states reached (given as a
BDD) and a set of operators O, computes the set of states (as a
BDD) that can be reached by applying some operator o ∈ O in some
state s ∈ reached.

I We have seen something similar already. . .
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BDD Planning apply

Translating operators into formulae
(slide taken from the “planning by satisfiability testing” chapter)

Definition (operators in propositional logic)

Let o = 〈c , e〉 be an operator and A a set of state variables.
Define τA(o) as the conjunction of

c (1)∧
a∈A(EPCa(e) ∨ (a ∧ ¬EPC¬a(e))) ↔ a′ (2)∧
a∈A ¬(EPCa(e) ∧ EPC¬a(e)) (3)

Condition (1) states that the precondition of o is satisfied.
Condition (2) states that the new value of a, represented by a′, is 1 if the
old value was 1 and it did not become 0, or if it became 1.
Condition (3) states that none of the state variables is assigned both 0 and
1. Together with (1), this encodes applicability of the operator.
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BDD Planning apply

The apply function

I The formula τA(o) describes the applicability of a single operator o
and the effect of applying o as a binary formula over variables A
(describing the state in which o is applied) and A′ (describing the
resulting state).

I The formula
∨

o∈O τA(o) describes state transitions by any operator.

I We can translate this formula to a BDD (over variables A ∪ A′) using
bdd-atom, bdd-complement, bdd-union, bdd-intersection.

I The resulting BDD is called the transition relation of the planning
task, written as TA(O).
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BDD Planning apply

The apply function

Using the transition relation, we can compute apply(reached,O) as follows:

The apply function

def apply(reached, O):
B := TA(O)
B := bdd-intersection(B, reached)
for each a ∈ A:

B := bdd-forget(B, a)
for each a ∈ A:

B := bdd-rename(B, a′, a)
return B
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BDD Planning apply

The apply function

Using the transition relation, we can compute apply(reached,O) as follows:

The apply function

def apply(reached, O):
B := TA(O)
B := bdd-intersection(B, reached)
for each a ∈ A:

B := bdd-forget(B, a)
for each a ∈ A:

B := bdd-rename(B, a′, a)
return B

This describes the set of state pairs 〈s, s ′〉 where s ′ is a successor of s in
terms of variables A ∪ A′.
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BDD Planning apply

The apply function

Using the transition relation, we can compute apply(reached,O) as follows:

The apply function

def apply(reached, O):
B := TA(O)
B := bdd-intersection(B, reached)
for each a ∈ A:

B := bdd-forget(B, a)
for each a ∈ A:

B := bdd-rename(B, a′, a)
return B

This describes the set of state pairs 〈s, s ′〉 where s ′ is a successor of s and
s ∈ reached in terms of variables A ∪ A′.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 8th, 2006 67 / 73



BDD Planning apply

The apply function

Using the transition relation, we can compute apply(reached,O) as follows:

The apply function

def apply(reached, O):
B := TA(O)
B := bdd-intersection(B, reached)
for each a ∈ A:

B := bdd-forget(B, a)
for each a ∈ A:

B := bdd-rename(B, a′, a)
return B

This describes the set of states s ′ which are successors
of some state s ∈ reached in terms of variables A′.
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BDD Planning apply

The apply function

Using the transition relation, we can compute apply(reached,O) as follows:

The apply function

def apply(reached, O):
B := TA(O)
B := bdd-intersection(B, reached)
for each a ∈ A:

B := bdd-forget(B, a)
for each a ∈ A:

B := bdd-rename(B, a′, a)
return B

This describes the set of states s ′ which are successors
of some state s ∈ reached in terms of variables A.
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BDD Planning apply

The apply function

Using the transition relation, we can compute apply(reached,O) as follows:

The apply function

def apply(reached, O):
B := TA(O)
B := bdd-intersection(B, reached)
for each a ∈ A:

B := bdd-forget(B, a)
for each a ∈ A:

B := bdd-rename(B, a′, a)
return B

Thus, apply indeed computes the set of successors of reached using
operators O.
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BDD Planning Remarks

Planning with BDDs
Summary and conclusion

I Binary decision diagrams are a data structure to compactly represent
and manipulate sets of valuations.

I They can be used to implement a blind breadth-first search algorithm
in an efficient way.
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BDD Planning Remarks

Planning with BDDs
Performance

I For good performance, we need a good variable ordering.
I Variables that refer to the same state variable before and after operator

application (a and a′) should be neighbors in the transition relation
BDD.

I Use mutexes to reformulate as a multi-valued task.
I Use dlog2 ne BDD variables to represent a variable with n possible

values.

With these two ideas, performance is not bad for an algorithm that
generates optimal (sequential) plans.
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BDD Planning Remarks

Planning with BDDs
Outlook

Is this all there is to it?
I For classical deterministic planning, almost.

I Practical implementations also perform regression or bidirectional
searches.

I This is only a minor modification.

I However, BDDs are more commonly used for non-deterministic
planning.

I More about this later.
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