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Invariants Motivation

Invariants
Motivation

Example

Consider the goal formula

AonB ∧ BonC

regressed with operator

〈AonC ∧ Aclear ∧ Bclear,AonB ∧ ¬Bclear ∧ Cclear〉

resulting in the new goal

AonC ∧ Aclear ∧ Bclear ∧ BonC.

It is intuitively clear that no state satisfying this formula is reachable by
any plan from a legal blocks world state.
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Invariants Motivation

Invariants
Motivation

I Goal formulae and formulae obtained by regressing them often
represent some states that are not reachable from the initial state.

I If none of the states is reachable from the initial state, there are no
plans reaching the formula.

I We would like to have reachable states only, if possible.

I The same problem shows up in satisfiability planning: partial
valuations considered by satisfiability algorithms may represent
unreachable states, and this may result in unnecessary search.
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Invariants Motivation

Invariants

Goal: Restriction to states that are reachable.

Problem: Testing reachability is computationally as complex as
testing whether a plan exists.

Solution: Use an approximate notion of reachability.

Implementation: Compute in polynomial time formulae that characterize a
superset of the reachable states.
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Invariants Definition

Invariants: definition

Definition
A formula φ is an invariant of 〈A, I ,O,G 〉 if s |= φ for every state s
reachable from I .

Example

The formula ¬(AonB ∧ AonC) is an invariant in a blocks world task.

Remark
Invariants are usually proved inductively:

I Prove that φ is true in the initial state.

I Prove that operator application preserves φ.
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Invariants Definition

Invariants: the strongest invariant

Definition
An invariant φ is the strongest invariant of 〈A, I ,O,G 〉 if for any invariant
ψ, φ |= ψ.

The strongest invariant exactly characterizes the set of all states that are
reachable from the initial state:
For all states s, s |= φ if and only if s is reachable.

Remark
There are infinitely many strongest invariants for any given planning task,
but they are all logically equivalent. (If φ is a strongest invariant, then so
is φ ∨ φ. . . )
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Invariants Example

Invariants
Example: the strongest invariant for blocks world

The strongest invariant for the blocks world

Let X be the set of blocks, for example X = {A,B,C ,D}.
The conjunction of the following formulae is the strongest invariant for the
set of all states for the blocks X .

For all x ∈ X : clear(x) ↔
∧

y∈X ¬on(y , x)

For all x ∈ X : ontable(x) ↔
∧

y∈X ¬on(x , y)

For all x , y , z ∈ X with y 6= z : ¬on(x , y) ∨ ¬on(x , z)
For all x , y , z ∈ X with y 6= z : ¬on(y , x) ∨ ¬on(z , x)
For all n ≥ 1 and x1, . . . , xn ∈ X :
¬(on(x1, x2) ∧ on(x2, x3) ∧ · · · ∧ on(xn−1, xn) ∧ on(xn, x1))
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Invariants vs. Plan existence

Invariants: connection to plan existence

Theorem
Let φ be the strongest invariant for 〈A, I ,O,G 〉. Then 〈A, I ,O,G 〉 has a
plan if and only if G ∧ φ is satisfiable.

Proof.
Very easy!

Theorem
Computing the strongest invariant φ is PSPACE-hard.
Even deciding whether or not > is the strongest invariant is already
PSPACE-hard.
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Invariants vs. Plan existence

Invariants: connection to plan existence

Proof.
By reduction from the plan existence problem.
Fact: Testing plan existence for 〈A, I ,O,G 〉 is PSPACE-hard. (We’ll show
this later this month!)

Let a′ /∈ A be a new state variable. Then a plan exists for T = 〈A, I ,O,G 〉
iff > is the strongest invariant of the planning task
T ′ = 〈A ∪ {a′}, I ∪ {a′ 7→ 0},O ∪ O ′,G 〉, where
O ′ = {〈G , a′ ∧

∧
a∈A a〉}

∪ { 〈a′,¬a〉 | a ∈ A ∪ {a′} }.
. . .
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Invariants vs. Plan existence

Invariants: connection to plan existence

Proof continues. . .
(⇒): If a plan exists for T , then the same plan is applicable in T ′. We
can thus reach a state satisfying G in T ′.
From this state, we can reach any state s by first applying 〈G , a′ ∧

∧
a∈A a〉

and then applying the operators 〈a′,¬a〉 for each variable a with s(a) = 0.
(If s(a′) = 0, the corresponding operator must be applied last.)
If all states are reachable in T ′, then > is the strongest invariant for T ′.

(⇐) (by contraposition): If T is not solvable, then no state satisfying G is
reachable in T . In that case, no state satisfying G is reachable in T ′, and
thus a′ cannot be made true in T ′. Thus, ¬a′ is an invariant in T ′ which
is stronger than >, so > is not the strongest invariant in T ′.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 1st, 2006 11 / 32

Algorithms Idea

Computation of invariants: informally

Compute sets Ci of n-literal clauses characterizing (giving an upper
bound!) the states that are reachable in i steps.

Example

C0 = {a,¬b, c} ∼ {101}
C1 = {a ∨ b,¬a ∨ ¬b, c} ∼ {101, 011}
C2 = {¬a ∨ ¬b, c} ∼ {001, 011, 101}
C3 = {¬a ∨ ¬b, c ∨ a} ∼ {001, 011, 100, 101}
C4 = {¬a ∨ ¬b} ∼ {000, 001, 010, 011, 100, 101}
C5 = {¬a ∨ ¬b} ∼ {000, 001, 010, 011, 100, 101}
Ci = C5 for all i > 5

¬a ∨ ¬b is the only invariant found.
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Algorithms Idea

Computation of invariants: informally

1. Start with all 1-literal clauses that are true in the initial state.

2. Repeatedly test every operator vs. every clause to check whether the
clause can be shown to be true after applying the operator:

2.1 One of the literals in the clause is necessarily true: retain.
2.2 Otherwise, if the clause is too long: forget it.
2.3 Otherwise, replace the clause by new clauses obtained by adding literals

that are now true.

3. When all clauses are retained, stop: they are invariants.
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Algorithms Example

Computation of invariants
Example

Example

Let C0 = {Aclear,¬Bclear,AonB,¬BonA,¬AonT,BonT} and
o = 〈Aclear ∧ AonB,Bclear ∧ ¬AonB ∧ AonT〉.

1. C0 ∪ {Aclear ∧ AonB} is satisfiable: o is applicable.

2. The 1-literal clauses ¬Bclear, AonB and ¬AonT become false when o
is applied.

3. They are not thrown away, though:
they are replaced by weaker clauses.

4. Literals true after applying o in state s such that s |= C0: Aclear,
Bclear, ¬AonB, ¬BonA, AonT, BonT.

5. 2-literal clauses that are weaker than ¬Bclear and now true are
¬Bclear ∨ Aclear, ¬Bclear ∨ Bclear, ¬Bclear ∨ ¬AonB,
¬Bclear ∨ ¬BonA, ¬Bclear ∨ AonT, and ¬Bclear ∨ BonT.
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Algorithms Example

Computation of invariants
Example

Example (continues. . . )

6. Similar 2-literal clauses are obtained from AonB and from ¬AonT.

7. By eliminating logically equivalent ones, tautologies, and clauses that
follow from those in C0 not falsified we get
C1 = {Aclear,¬BonA,BonT,

¬Bclear ∨ ¬AonB,¬Bclear ∨ AonT,
AonB ∨ Bclear,AonB ∨ AonT,
¬AonT ∨ Bclear,¬AonT ∨ ¬AonB}

for distance 1 states.

8. Some clauses in C1 can be refined further by checking other operators
whose preconditions are consistent with C1. With a bit more
computation, Ci settles to a set containing all invariants for two
blocks.
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Algorithms Example

Computation of invariants
Example

Example
Let Ci = {¬AinRome ∨ ¬AinParis,

¬AinRome ∨ ¬AinNYC,
¬AinParis ∨ ¬AinNYC},

o = 〈AinRome,AinParis ∧ ¬AinRome〉.
1. Does o preserve truth of ¬AinParis ∨ ¬AinNYC?

2. Because o makes ¬AinParis false, we must show that ¬AinNYC is
true after applying o.

3. But ¬AinNYC is not even mentioned in o!

4. However, since AinRome is the precondition of o and
¬AinRome ∨ ¬AinNYC was true before applying o, we can infer that
¬AinNYC was true before applying o.

5. Since o does not make ¬AinNYC false, it is true also after applying o,
and then so is ¬AinParis ∨ ¬AinNYC.
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Algorithms Invariant test

Computation of invariants: function preserved
Test whether a clause remains true when operator is applied

Test if an operator preserves a clause

def preserved(l1 ∨ · · · ∨ ln, C , o):
for each l ∈ {l1, . . . , ln}:

if not preserved-literal(C , o, {l1, . . . , ln} \ {l}, l):
return false

return true

Test if an operator preserves a literal

def preserved-literal(C , o, L′, l):
〈c , e〉 := o
Cl := C ∪ {c} ∪ {EPCl(e)}
return Cl is unsatisfiable

or Cl |= EPCl ′(e) for some l ′ ∈ L′

or Cl |= l ′ ∧ ¬EPCl ′(e) for some l ′ ∈ L′
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Algorithms Invariant test

Computation of invariants: function preserved

Let C = {c ∨ b}.

1. preserved(a ∨ b, C , 〈¬c , c ∧ d〉) returns true

2. preserved(a ∨ b, C , 〈¬c ,¬a ∧ b〉) returns true

3. preserved(a ∨ b, C , 〈b,¬a〉) returns true

4. preserved(a ∨ b, C , 〈¬c ,¬a〉) returns true

5. preserved(a ∨ b, C , 〈c ,¬a〉) returns false
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Algorithms Invariant test

Computation of invariants: function preserved
Correctness

Lemma
Let C be a set of clauses, φ = l1 ∨ · · · ∨ ln a clause, and o an operator.
If preserved(φ, C , o) returns true, then appo(s) |= φ for every state s such
that s |= C ∪ {φ} and appo(s) is defined.
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Algorithms Invariant test

Computation of invariants: function preserved
Why is preserved incomplete?

Example (incompleteness)

Let o = 〈a,¬b ∧ (c B d) ∧ (¬c B e)〉.
preserved(b ∨ d ∨ e, ∅, o) returns false because the preserved-literal check
for l = b fails:

I Operator o can make b false.

I It is not guaranteed that d is true in the resulting state.

I It is not guaranteed that e is true in the resulting state.

However, d ∨ e is true after applying o, and hence b ∨ d ∨ e will be true as
well.
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Algorithms Main procedure

Computation of invariants: the main procedure
Outline

1. C = the set of 1-literal clauses that are true in the initial state.

2. For each operator o and clause φ ∈ C , test if φ remains true when o
is applied.

3. If not, remove φ, and if the number of literals in φ is less than n, add
clauses φ ∨ l for each literal l which is guaranteed to be true after
applying o.

4. Remove all dominated invariants.

5. Repeat from step 2 if C has changed in the previous two steps.

6. Otherwise every clause in C is an invariant.

For any fixed limit n on the size of the clauses, the number of iterations is
O(mn) (where m = |A| is the number of state variables) and hence
polynomial.
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Algorithms Main procedure

Computation of invariants: the main procedure

Invariant computation
def invariants(A, I , O, n):

C := { a ∈ A | I |= a } ∪ { ¬a | a ∈ A, I 6|= a }
repeat:

C ′ := C
for each l1 ∨ · · · ∨ lm ∈ C ′ and o = 〈c , e〉 ∈ O

with preserved(l1 ∨ · · · ∨ lm, C ′, o) = false:
C := C \ {l1 ∨ · · · ∨ lm}
if m < n:

for each literal l :
if C ′ ∪ {c} |= EPCl(e) ∨ (l ∧ ¬EPCl(e)):

C := C ∪ {l1 ∨ · · · ∨ lm ∨ l}
C := { φ ∈ C | ¬∃φ′ ∈ C : φ′ |= φ ∧ φ′ 6≡ φ }

until C = C ′

return C
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Algorithms Main procedure

Computation of invariants: the main procedure
Correctness

Theorem
The procedure invariants(A, I ,O, n) returns a set C of clauses with at
most n literals such that for any applicable operator sequence
o1, . . . , om ∈ O: appo1;...;om(I ) |= C.

Proof.

A I |= C :
I The initial state satisfies the initial set of 1-literal clauses.
I All modifications to the clause set only make it logically weaker (i.e.,

C ′ |= C after each iteration of the main loop.)
I Thus the initial state satisfies the resulting clause set C by induction

over the number of iterations.

. . .
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Algorithms Main procedure

Computation of invariants: the main procedure
Correctness

Proof continues. . .

B If s |= C and appo(s) is defined, then appo(s) |= C .
I In the last iteration of the procedure, no formula is removed from

C = C ′, and hence preserved(φ, C , o) is true for all clauses φ ∈ C and
operators o ∈ O.

I By the lemma, this means that appo(s) |= φ for every state s such that
s |= C and appo(s) is defined.

I Since this is true for all clauses φ ∈ C , we get appo(s) |= C for every
state s such that s |= C and appo(s) is defined.

From A and B, the theorem follows by induction over the length of the
operator sequence.
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Algorithms Main procedure

Why is the strongest invariant not always found?

1. Practical implementations of the algorithm use polynomial time
approximations of the tests for satisfiability and |=.

2. The function preserved is incomplete for operators in general (but
complete for STRIPS operators.) Making it complete makes it
NP-hard.

3. The strongest invariant may require arbitrarily long clauses, so the
restriction to clauses of any fixed length makes it impossible to
represent it.

Example

The acyclicity of the on relation in the blocks world needs clauses of
length n when there are n blocks.
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Algorithms Example

Computation of invariants
Example

Initial state: I |= a ∧ ¬b ∧ ¬c

Operators: o1 = 〈a,¬a ∧ b〉,
o2 = 〈b,¬b ∧ c〉,
o3 = 〈c ,¬c ∧ a〉

Computation: Find invariants with at most 2 literals:

C0 = {a,¬b,¬c}
C1 = {¬c , a ∨ b,¬b ∨ ¬a}
C2 = {¬b ∨ ¬a,¬c ∨ ¬a,¬c ∨ ¬b}
C3 = {¬b ∨ ¬a,¬c ∨ ¬a,¬c ∨ ¬b}
Cj = C2 for all j ≥ 2
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Applications SAT Planning

Invariants in satisfiability planning

Invariants in satisfiability planning

For every invariant l1 ∨ · · · ∨ ln, add the clauses

l t1 ∨ · · · ∨ l tn

for all time points t.

Notice that the above formulae are logical consequences of Φseq
i and Φpar

i ,
so the invariants do not change the set of valuations of these formulae.

Invariants are critical for the efficiency of satisfiability planning on many
types of problems.
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Applications Regression

Invariants in backward search
Motivating example

Example

Regression of in(A, Freiburg) by
〈in(A, Strassburg), ¬in(A, Strassburg) ∧ in(A, Paris)〉
gives in(A, Freiburg) ∧ in(A, Strassburg)
No state satisfying in(A, Freiburg) ∧ in(A,Strassburg) makes sense if A
denotes some usual physical object.
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Applications Regression

Invariants in backward search
Motivating example

Problem: Regression produces sets T of states such that

1. some states in T are not reachable from I , or
2. none of the states in T are reachable from I .

The first is not always a serious problem (but may worsen the
quality of distance estimates, for example.)

Solution: Use invariants to avoid formulae that do not represent any
reachable states.

1. Compute invariant φ.
2. Do only regression steps such that regro(ψ) ∧ φ is

satisfiable.
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Applications Reformulation

Invariants for problem reformulation
Mutexes

Binary clause invariants are called mutexes because they state that certain
variable assignments cannot be simultaneously true and are hence
mutually exclusive.

Example

The invariant ¬AonB ∨ ¬AonC states that AonB and AonC are mutex.

Often, a larger set of literals is mutually exclusive because every pair of
them forms a mutex.

Example

In blocks world, BonA, ConA, DonA and Aclear are mutex.
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Applications Reformulation

Invariants for problem reformulation
Multi-valued state variables

If a group of n literals G = {l1, . . . , ln} over N different variables
AG = {a1, . . . , an} are mutually exclusive, then the planning task can be
rephrased using a single multi-valued (i.e., non-binary) state variable vG

with n + 1 possible values in place of the n variables in AG :

I n of the possible values represent situations in which exactly one of
the literals in G is true.

I The remaining value represents situations in which none of the literals
in G is true.

In many cases, the reduction in the number of variables can dramatically
improve performance of a planning algorithm.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning December 1st, 2006 31 / 32

Summary

Summary

I Invariants are needed for making backward search and satisfiability
planning more efficient and (in the case of mutexes) can be used for
problem reformulation.

I We gave an algorithm for computing a class of invariants.

1. Start with 1-literal clauses true in the initial state.
2. Repeatedly weaken clauses that could not be shown to be invariants.
3. Stop when all clauses are guaranteed to be invariants.

I The algorithm runs in polynomial time if the satisfiability and logical
consequence tests are approximated by a polynomial time algorithm
and the size of the invariant clauses is bounded by a constant.
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