Principles of AI Planning

December 1st, 2006 - Invariants
Invariants
Motivation
Definition
Example
vs. Plan existence
Algorithms
Idea
Example
Invariant test
Main procedure
Example

Principles of AI Planning

Invariants

Malte Helmert Bernhard Nebel

Albert-Ludwigs-Universität Freiburg
December 1st, 2006
Applications
SAT Planning
Regression
Reformulation
Summary
M. Helmert, B. Nebel (Universität Freiburg)

AI Planning
\square Invariants Motivation

Invariants

Motivation

Example

Consider the goal formula

$$
A o n B \wedge B o n C
$$

regressed with operator

$$
\langle\text { Aon } C \wedge \text { Aclear } \wedge \text { Bclear, Aon } B \wedge \neg \text { Bclear } \wedge \text { Cclear }\rangle
$$

resulting in the new goal

$$
\text { Aon } C \wedge \text { Aclear } \wedge \text { Bclear } \wedge \text { BonC. }
$$

It is intuitively clear that no state satisfying this formula is reachable by any plan from a legal blocks world state.

Invariants

Goal: Restriction to states that are reachable.
Problem: Testing reachability is computationally as complex as testing whether a plan exists
Solution: Use an approximate notion of reachability.
Implementation: Compute in polynomial time formulae that characterize a superset of the reachable states.
M. Helmert, B. Nebel (Universität Freiburg)

Invariants: the strongest invariant

Definition

An invariant ϕ is the strongest invariant of $\langle A, I, O, G\rangle$ if for any invariant $\psi, \phi \models \psi$.
The strongest invariant exactly characterizes the set of all states that are reachable from the initial state:
For all states $s, s \models \phi$ if and only if s is reachable.
Remark
There are infinitely many strongest invariants for any given planning task, but they are all logically equivalent. (If ϕ is a strongest invariant, then so is $\phi \vee \phi \ldots$.

Invariants: definition

Definition
A formula ϕ is an invariant of $\langle A, I, O, G\rangle$ if $s \models \phi$ for every state s reachable from I.

Example
The formula $\neg($ Aon $B \wedge A o n C)$ is an invariant in a blocks world task.
Remark
Invariants are usually proved inductively:

- Prove that ϕ is true in the initial state.
- Prove that operator application preserves ϕ.

[^0]Al Planning

Invariants

Example: the strongest invariant for blocks world

The strongest invariant for the blocks world
Let X be the set of blocks, for example $X=\{A, B, C, D\}$.
The conjunction of the following formulae is the strongest invariant for the set of all states for the blocks X.

$$
\begin{aligned}
& \text { For all } x \in X: \operatorname{clear}(x) \leftrightarrow \bigwedge_{y \in X} \neg \operatorname{on}(y, x) \\
& \text { For all } x \in X: \text { ontable }(x) \leftrightarrow \bigwedge_{y \in X} \neg \operatorname{on}(x, y) \\
& \text { For all } x, y, z \in X \text { with } y \neq z: \neg \operatorname{on}(x, y) \vee \neg \operatorname{on}(x, z) \\
& \text { For all } x, y, z \in X \text { with } y \neq z: \neg \operatorname{on}(y, x) \vee \neg \text { on }(z, x) \\
& \text { For all } n \geq 1 \text { and } x_{1}, \ldots, x_{n} \in X: \\
& \neg\left(\operatorname{on}\left(x_{1}, x_{2}\right) \wedge \text { on }\left(x_{2}, x_{3}\right) \wedge \cdots \wedge \operatorname{on}\left(x_{n-1}, x_{n}\right) \wedge \operatorname{on}\left(x_{n}, x_{1}\right)\right)
\end{aligned}
$$

Invariants: connection to plan existence

Theorem

Let ϕ be the strongest invariant for $\langle A, I, O, G\rangle$. Then $\langle A, I, O, G\rangle$ has a plan if and only if $G \wedge \phi$ is satisfiable.

Proof.
Very easy!
Theorem
Computing the strongest invariant ϕ is PSPACE-hard.
Even deciding whether or not T is the strongest invariant is already PSPACE-hard.
M. Helmert, B. Nebel (Universität Freiburg)

Invariants: connection to plan existence

Proof continues. .
(\Rightarrow) : If a plan exists for \mathcal{T}, then the same plan is applicable in \mathcal{T}^{\prime}. We can thus reach a state satisfying G in \mathcal{T}^{\prime}.
From this state, we can reach any state s by first applying $\left\langle G, a^{\prime} \wedge \bigwedge_{a \in A} a\right\rangle$ and then applying the operators $\left\langle a^{\prime}, \neg a\right\rangle$ for each variable a with $s(a)=0$. (If $s\left(a^{\prime}\right)=0$, the corresponding operator must be applied last.)
If all states are reachable in \mathcal{T}^{\prime}, then T is the strongest invariant for \mathcal{T}^{\prime}.
(\Leftarrow) (by contraposition): If \mathcal{T} is not solvable, then no state satisfying G is reachable in \mathcal{T}. In that case, no state satisfying G is reachable in \mathcal{T}^{\prime}, and thus a^{\prime} cannot be made true in \mathcal{T}^{\prime}. Thus, $\neg a^{\prime}$ is an invariant in \mathcal{T}^{\prime} which is stronger than T , so T is not the strongest invariant in \mathcal{T}^{\prime}.

Invariants: connection to plan existence

Proof.

By reduction from the plan existence problem.
Fact: Testing plan existence for $\langle A, I, O, G\rangle$ is PSPACE-hard. (We'll show this later this month!)

Let $a^{\prime} \notin A$ be a new state variable. Then a plan exists for $\mathcal{T}=\langle A, I, O, G\rangle$
iff T is the strongest invariant of the planning task
$\mathcal{T}^{\prime}=\left\langle A \cup\left\{a^{\prime}\right\}, I \cup\left\{a^{\prime} \mapsto 0\right\}, O \cup O^{\prime}, G\right\rangle$, where
$O^{\prime}=\left\{\left\langle G, a^{\prime} \wedge \bigwedge_{a \in A} a\right\rangle\right\}$
$\cup\left\{\left\langle a^{\prime}, \neg a\right\rangle \mid a \in A \cup\left\{a^{\prime}\right\}\right\}$.
...
M. Helmert, B. Nebel (Universität Freiburg)

Al Planning
December 1st, 2006

Algorithms Idea
Computation of invariants: informally

Compute sets C_{i} of n-literal clauses characterizing (giving an upper bound!) the states that are reachable in i steps.
Example

$$
\begin{array}{rlrl}
C_{0} & =\{a, \neg b, c\} & & \sim\{101\} \\
C_{1} & =\{a \vee b, \neg a \vee \neg b, c\} & & \sim\{101,011\} \\
C_{2} & =\{\neg a \vee \neg b, c\} & & \sim\{001,011,101\} \\
C_{3} & =\{\neg a \vee \neg b, c \vee a\} & & \sim\{001,011,100,101\} \\
C_{4} & =\{\neg a \vee \neg \neg\} & & \sim\{000,001,010,011,100,101\} \\
C_{5} & =\{\neg a \vee \neg b\} & & \sim\{000,001,010,011,100,101\} \\
C_{i} & =C_{5} \text { for all } i>5 & & \\
\neg a \vee \neg b \text { is the only invariant found. } &
\end{array}
$$

Algorithms Idea
Computation of invariants: informally

1. Start with all 1-literal clauses that are true in the initial state.
2. Repeatedly test every operator vs. every clause to check whether the clause can be shown to be true after applying the operator:
2.1 One of the literals in the clause is necessarily true: retain.
2.2 Otherwise, if the clause is too long: forget it.
2.3 Otherwise, replace the clause by new clauses obtained by adding literals that are now true.
3. When all clauses are retained, stop: they are invariants.
M. Helmert, B. Nebel (Universität Freiburg)

Computation of invariants

Example
Example (continues...)
6. Similar 2-literal clauses are obtained from AonB and from \neg Aon T.
7. By eliminating logically equivalent ones, tautologies, and clauses that follow from those in C_{0} not falsified we get
$C_{1}=\{$ Aclear,\neg BonA, BonT,
\neg Bclear $\vee \neg$ Aon B, \neg Bclear \vee Aon T,
Aon $B \vee$ Bclear, Aon $B \vee \operatorname{Aon} T$,
\neg Aon $T \vee$ Bclear, \neg Aon $T \vee \neg$ Aon $B\}$
for distance 1 states.
8. Some clauses in C_{1} can be refined further by checking other operators whose preconditions are consistent with C_{1}. With a bit more computation, C_{i} settles to a set containing all invariants for two blocks.

Algorithms Example

Computation of invariants

Example
Example
Let $C_{0}=\{$ Aclear, \neg Bclear, Aon B, \neg BonA, \neg Aon $T, B o n T\}$ and $o=\langle$ Aclear \wedge Aon B, Bclear $\wedge \neg$ Aon $B \wedge$ Aon $T\rangle$.

1. $C_{0} \cup\{$ Aclear \wedge Aon $B\}$ is satisfiable: o is applicable.
2. The 1 -literal clauses \neg Bclear, $A o n B$ and $\neg A o n T$ become false when o is applied.
3. They are not thrown away, though:
they are replaced by weaker clauses.
4. Literals true after applying o in state s such that $s \vDash C_{0}$: Aclear, Bclear, \neg AonB, \neg BonA, AonT, BonT.
5. 2-literal clauses that are weaker than $\neg B c$ clear and now true are \neg Bclear \vee Aclear, \neg Bclear \vee Bclear, \neg Bclear $\vee \neg$ Aon B,

$$
\neg \text { Bclear } \vee \neg \text { BonA, } \neg \text { Bclear } \vee \text { Aon } T \text {, and } \neg \text { Bclear } \vee \text { Bon } T \text {. }
$$

M. Helmert, B. Nebel (Universität Freiburg)

Al Planning

Algorithms Example

Computation of invariants

Example
Example
Let $C_{i}=\{\neg$ AinRome $\vee \neg$ AinParis,
\neg AinRome $\vee \neg$ AinNYC,
\neg AinParis $\vee \neg$ AinNYC\},
$o=\langle$ AinRome, AinParis $\wedge \neg$ AinRome \rangle.

1. Does o preserve truth of \neg AinParis $\vee \neg$ Ain $N Y C$?
2. Because o makes \neg AinParis false, we must show that \neg AinNYC is true after applying o.
3. But \neg AinNYC is not even mentioned in o!
4. However, since AinRome is the precondition of o and \neg AinRome $\vee \neg$ AinNYC was true before applying o, we can infer that \neg AinNYC was true before applying o.
5. Since o does not make \neg AinNYC false, it is true also after applying o, and then so is \neg AinParis $\vee \neg$ AinNYC.

Algorithms Invariant test
Computation of invariants: function preserved
Test whether a clause remains true when operator is applied
Test if an operator preserves a clause
def preserved $\left(I_{1} \vee \cdots \vee I_{n}, C\right.$, $\left.o\right)$:
for each $I \in\left\{I_{1}, \ldots, I_{n}\right\}$:
if not preserved-literal $\left(C, O,\left\{I_{1}, \ldots, I_{n}\right\} \backslash\{I\}, I\right)$:

return false

return true

Test if an operator preserves a literal
def preserved-literal ($\left.C, O, L^{\prime}, I\right)$:
$\langle c, e\rangle:=0$
$C_{\bar{l}}:=C \cup\{c\} \cup\left\{E P C_{\bar{l}}(e)\right\}$
return $C_{\bar{T}}$ is unsatisfiable
or $C_{\bar{l}} \models E P C_{I^{\prime}}(e)$ for some $I^{\prime} \in L^{\prime}$
or $C_{\bar{I}} \models I^{\prime} \wedge \neg E P C_{\overline{I^{\prime}}}(e)$ for some $I^{\prime} \in L^{\prime}$
M. Helmert, B. Nebel (Universität Freiburg)

Al Planning

Computation of invariants: function preserved

Let C be a set of clauses, $\phi=I_{1} \vee \cdots \vee I_{n}$ a clause, and o an operator. If preserved (ϕ, C, o) returns true, then $\operatorname{app}_{\circ}(s) \models \phi$ for every state s such

Computation of invariants: function preserved

Let $C=\{c \vee b\}$.

1. preserved $(a \vee b, C,\langle\neg c, c \wedge d\rangle)$ returns true
2. preserved $(a \vee b, C,\langle\neg c, \neg a \wedge b\rangle)$ returns true
3. preserved $(a \vee b, C,\langle b, \neg a\rangle)$ returns true
4. preserved $(a \vee b, C,\langle\neg c, \neg a\rangle)$ returns true
5. preserved $(a \vee b, C,\langle c, \neg a\rangle)$ returns false

Correctness

Lemma that $s \models C \cup\{\phi\}$ and appo (s) is defined.

Algorithms Invariant test
Computation of invariants: function preserved
Why is preserved incomplete?

Example (incompleteness)
Let $o=\langle a, \neg b \wedge(c \triangleright d) \wedge(\neg c \triangleright e)\rangle$.
preserved $(b \vee d \vee e, \emptyset, o)$ returns false because the preserved-literal check for $I=b$ fails:

- Operator o can make b false.
- It is not guaranteed that d is true in the resulting state.
- It is not guaranteed that e is true in the resulting state.

However, $d \vee e$ is true after applying o, and hence $b \vee d \vee e$ will be true as well.

Algorithms Main procedure

Computation of invariants: the main procedure

Outline

1. $C=$ the set of 1 -literal clauses that are true in the initial state.
2. For each operator o and clause $\phi \in C$, test if ϕ remains true when o is applied.
3. If not, remove ϕ, and if the number of literals in ϕ is less than n, add clauses $\phi \vee /$ for each literal / which is guaranteed to be true after applying o
4. Remove all dominated invariants.
5. Repeat from step 2 if C has changed in the previous two steps.
6. Otherwise every clause in C is an invariant.

For any fixed limit n on the size of the clauses, the number of iterations is $\mathcal{O}\left(m^{n}\right)$ (where $m=|A|$ is the number of state variables) and hence polynomial.
M. Helmert, B. Nebel (Universität Freiburg)

Computation of invariants: the main procedure
Correctness

Theorem

The procedure invariants (A, I, O, n) returns a set C of clauses with at most n literals such that for any applicable operator sequence $o_{1}, \ldots, o_{m} \in O: \operatorname{app}_{o_{1} ; \ldots ; o_{m}}(I) \models C$.

Proof.
A $I \models C$:

- The initial state satisfies the initial set of 1-literal clauses.
- All modifications to the clause set only make it logically weaker (i.e., $C^{\prime} \models C$ after each iteration of the main loop.)
- Thus the initial state satisfies the resulting clause set C by induction over the number of iterations.

Algorithms Main procedure

Computation of invariants: the main procedure

Invariant computation

def invariants (A, I, O, n) :
$C:=\{a \in A|I|=a\} \cup\{\neg a|a \in A, I| \vDash a\}$ repeat:
$C^{\prime}:=C$
for each $I_{1} \vee \cdots \vee I_{m} \in C^{\prime}$ and $o=\langle c, e\rangle \in O$ with preserved $\left(I_{1} \vee \cdots \vee I_{m}, C^{\prime}, o\right)=$ false:
$C:=C \backslash\left\{I_{1} \vee \cdots \vee I_{m}\right\}$
if $m<n$:
for each literal /:
if $C^{\prime} \cup\{c\} \models E P C_{l}(e) \vee\left(I \wedge \neg E P C_{\bar{l}}(e)\right)$:
$C:=C \cup\left\{I_{1} \vee \cdots \vee I_{m} \vee I\right\}$
$C:=\left\{\phi \in C \mid \neg \exists \phi^{\prime} \in C: \phi^{\prime} \models \phi \wedge \phi^{\prime} \not \equiv \phi\right\}$
until $C=C^{\prime}$
return C
M. Helmert, B. Nebel (Universität Freiburg)

Al Planning

Algorithms Main procedure
Computation of invariants: the main procedure
Correctness

Proof continues. . .
B If $s \models C$ and $a p p_{o}(s)$ is defined, then $\operatorname{app} p_{o}(s) \models C$.

- In the last iteration of the procedure, no formula is removed from $C=C^{\prime}$, and hence preserved (ϕ, C, o) is true for all clauses $\phi \in C$ and operators $o \in O$.
- By the lemma, this means that $a p p_{o}(s) \models \phi$ for every state s such that $s \models C$ and $a p p_{o}(s)$ is defined.
- Since this is true for all clauses $\phi \in C$, we get $\operatorname{app}_{\circ}(s) \models C$ for every state s such that $s \models C$ and $a p p_{o}(s)$ is defined.
From A and B, the theorem follows by induction over the length of the operator sequence.

Algorithms Main procedure

Why is the strongest invariant not always found?

1. Practical implementations of the algorithm use polynomial time approximations of the tests for satisfiability and \models
2. The function preserved is incomplete for operators in general (but complete for STRIPS operators.) Making it complete makes it NP-hard.
3. The strongest invariant may require arbitrarily long clauses, so the restriction to clauses of any fixed length makes it impossible to represent it.

Example

The acyclicity of the on relation in the blocks world needs clauses of length n when there are n blocks.
M. Helmert, B. Nebel (Universität Freiburg)

Invariants in satisfiability planning

Invariants in satisfiability planning
For every invariant $I_{1} \vee \cdots \vee I_{n}$, add the clauses

$$
I_{1}^{t} \vee \cdots \vee I_{n}^{t}
$$

for all time points t.

Notice that the above formulae are logical consequences of $\Phi_{i}^{\text {seq }}$ and $\Phi_{i}^{\text {par }}$, so the invariants do not change the set of valuations of these formulae.

Invariants are critical for the efficiency of satisfiability planning on many types of problems.

Computation of invariants

Example

Initial state: $\mid=a \wedge \neg b \wedge \neg c$
Operators: $o_{1}=\langle a, \neg a \wedge b\rangle$,
$o_{2}=\langle b, \neg b \wedge c\rangle$,
$O_{3}=\langle c, \neg c \wedge a\rangle$
Computation: Find invariants with at most 2 literals:

$$
\begin{aligned}
& C_{0}=\{a, \neg b, \neg c\} \\
& C_{1}=\{\neg c, a \vee b, \neg b \vee \neg a\} \\
& C_{2}=\{\neg b \vee \neg a, \neg c \vee \neg a, \neg c \vee \neg b\} \\
& C_{3}=\{\neg b \vee \neg a, \neg c \vee \neg a, \neg c \vee \neg b\} \\
& C_{j}=C_{2} \text { for all } j \geq 2
\end{aligned}
$$

M. Helmert, B. Nebel (Universität Freiburg)

Al Planning

Invariants in backward search
Motivating example

Example

Regression of in(A, Freiburg) by
\langle in(A, Strassburg), $\neg i n(A$, Strassburg $) \wedge i n(A$, Paris $)\rangle$
gives in (A, Freiburg) \wedge in (A, Strassburg)
No state satisfying in(A, Freiburg) \wedge in(A,Strassburg) makes sense if A denotes some usual physical object.

Invariants in backward search

Motivating example

Problem: Regression produces sets T of states such that

1. some states in T are not reachable from I, or
2. none of the states in T are reachable from I.

The first is not always a serious problem (but may worsen the quality of distance estimates, for example.)
Solution: Use invariants to avoid formulae that do not represent any reachable states.

1. Compute invariant ϕ.
2. Do only regression steps such that $\operatorname{regr}_{\circ}(\psi) \wedge \phi$ is satisfiable.

Invariants for problem reformulation

Multi-valued state variables

If a group of n literals $G=\left\{I_{1}, \ldots, I_{n}\right\}$ over N different variables $A_{G}=\left\{a_{1}, \ldots, a_{n}\right\}$ are mutually exclusive, then the planning task can be rephrased using a single multi-valued (i.e., non-binary) state variable v_{G} with $n+1$ possible values in place of the n variables in A_{G} :

- n of the possible values represent situations in which exactly one of the literals in G is true.
- The remaining value represents situations in which none of the literals in G is true.

In many cases, the reduction in the number of variables can dramatically improve performance of a planning algorithm.

Invariants for problem reformulation

Mutexes

Binary clause invariants are called mutexes because they state that certain variable assignments cannot be simultaneously true and are hence mutually exclusive.

Example
The invariant $\neg A o n B \vee \neg A o n C$ states that $A o n B$ and $A o n C$ are mutex. Often, a larger set of literals is mutually exclusive because every pair of them forms a mutex.
Example
In blocks world, BonA, ConA, DonA and Aclear are mutex.

Summary

- Invariants are needed for making backward search and satisfiability planning more efficient and (in the case of mutexes) can be used for problem reformulation.
- We gave an algorithm for computing a class of invariants.

1. Start with 1-literal clauses true in the initial state.
2. Repeatedly weaken clauses that could not be shown to be invariants.
3. Stop when all clauses are guaranteed to be invariants.

- The algorithm runs in polynomial time if the satisfiability and logical consequence tests are approximated by a polynomial time algorithm and the size of the invariant clauses is bounded by a constant.

[^0]: M. Helmert, B. Nebel (Universität Freiburg)

