
AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Final remarks

Principles of AI Planning
Planning by satisfiability testing

Malte Helmert Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

November 24th, 2006

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning in the propositional logic

Early work on deductive planning viewed plans as proofs
that lead to a desired goal (theorem).
Planning as satisfiability testing was proposed in 1992.

1 A propositional formula represents all length n action
sequences from the initial state to a goal state.

2 If the formula is satisfiable then a plan of length n exists
(and can be extracted from the satisfying valuation).

Heuristic search and satisfiability planning are currently
the best approaches for planning.

Satisfiability planning is often more efficient for small, but
difficult problems.
Heuristic search is often more efficient for big, but easy
problems.

Bounded model-checking in Computer Aided Verification
was introduced in 1998 as an extension of satisfiability
planning after the success of the latter had been noticed
outside the AI community.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning in the propositional logic

Early work on deductive planning viewed plans as proofs
that lead to a desired goal (theorem).
Planning as satisfiability testing was proposed in 1992.

1 A propositional formula represents all length n action
sequences from the initial state to a goal state.

2 If the formula is satisfiable then a plan of length n exists
(and can be extracted from the satisfying valuation).

Heuristic search and satisfiability planning are currently
the best approaches for planning.

Satisfiability planning is often more efficient for small, but
difficult problems.
Heuristic search is often more efficient for big, but easy
problems.

Bounded model-checking in Computer Aided Verification
was introduced in 1998 as an extension of satisfiability
planning after the success of the latter had been noticed
outside the AI community.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning in the propositional logic

Early work on deductive planning viewed plans as proofs
that lead to a desired goal (theorem).
Planning as satisfiability testing was proposed in 1992.

1 A propositional formula represents all length n action
sequences from the initial state to a goal state.

2 If the formula is satisfiable then a plan of length n exists
(and can be extracted from the satisfying valuation).

Heuristic search and satisfiability planning are currently
the best approaches for planning.

Satisfiability planning is often more efficient for small, but
difficult problems.
Heuristic search is often more efficient for big, but easy
problems.

Bounded model-checking in Computer Aided Verification
was introduced in 1998 as an extension of satisfiability
planning after the success of the latter had been noticed
outside the AI community.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning in the propositional logic

Early work on deductive planning viewed plans as proofs
that lead to a desired goal (theorem).
Planning as satisfiability testing was proposed in 1992.

1 A propositional formula represents all length n action
sequences from the initial state to a goal state.

2 If the formula is satisfiable then a plan of length n exists
(and can be extracted from the satisfying valuation).

Heuristic search and satisfiability planning are currently
the best approaches for planning.

Satisfiability planning is often more efficient for small, but
difficult problems.
Heuristic search is often more efficient for big, but easy
problems.

Bounded model-checking in Computer Aided Verification
was introduced in 1998 as an extension of satisfiability
planning after the success of the latter had been noticed
outside the AI community.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning in the propositional logic
Abstractly

1 Represent actions (= binary relations) as propositional
formulae.

2 Construct a formula saying “execute one of the actions”.

3 Construct a formula saying “execute a sequence of n
actions, starting from the initial state, ending in a goal
state”.

4 Test the satisfiability of this formula by a satisfiability
algorithm.

5 If the formula is satisfiable, construct a plan from a
satisfying valuation.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning in the propositional logic
Abstractly

1 Represent actions (= binary relations) as propositional
formulae.

2 Construct a formula saying “execute one of the actions”.

3 Construct a formula saying “execute a sequence of n
actions, starting from the initial state, ending in a goal
state”.

4 Test the satisfiability of this formula by a satisfiability
algorithm.

5 If the formula is satisfiable, construct a plan from a
satisfying valuation.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning in the propositional logic
Abstractly

1 Represent actions (= binary relations) as propositional
formulae.

2 Construct a formula saying “execute one of the actions”.

3 Construct a formula saying “execute a sequence of n
actions, starting from the initial state, ending in a goal
state”.

4 Test the satisfiability of this formula by a satisfiability
algorithm.

5 If the formula is satisfiable, construct a plan from a
satisfying valuation.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning in the propositional logic
Abstractly

1 Represent actions (= binary relations) as propositional
formulae.

2 Construct a formula saying “execute one of the actions”.

3 Construct a formula saying “execute a sequence of n
actions, starting from the initial state, ending in a goal
state”.

4 Test the satisfiability of this formula by a satisfiability
algorithm.

5 If the formula is satisfiable, construct a plan from a
satisfying valuation.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning in the propositional logic
Abstractly

1 Represent actions (= binary relations) as propositional
formulae.

2 Construct a formula saying “execute one of the actions”.

3 Construct a formula saying “execute a sequence of n
actions, starting from the initial state, ending in a goal
state”.

4 Test the satisfiability of this formula by a satisfiability
algorithm.

5 If the formula is satisfiable, construct a plan from a
satisfying valuation.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Satisfiability testing vs. state-space search

Like our earlier algorithms (progression and regression
planning, possibly with heuristics), planning as satisfiability
testing can be interpreted as a search algorithm.

However, unlike these algorithms, satisfiability testing is
undirected search:

As the first decision, the algorithm may decide to include a
certain action as the 7th operator of the plan.
As the second decision, it may require a certain state
variable to be true after the 5th operator of the plan.
. . .

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Sets (of states) as formulae

Reminder: Formulae on A as sets of states

We view formulae φ as representing sets of states
s : A→ {0, 1}.

Example

Formula a ∨ b on the state variables a, b, c represents the set
{010, 011, 100, 101, 110, 111}.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Relations/actions as formulae

Formulae on A ∪A′ as binary relations

Let A = {a1, . . . , an} represent state variables in the current
state, and A′ = {a′1, . . . , a′n} state variables in the successor
state.
Formulae φ on A ∪A′ represent binary relations on states: a
valuation of A ∪A′ → {0, 1} represents a pair of states
s : A→ {0, 1}, s′ : A′ → {0, 1}.

Example

Formula (a→ a′) ∧ ((a′ ∨ b)→ b′) on a, b, a′, b′ represents the
binary relation
{(00, 00), (00, 01), (00, 11), (01, 01), (01, 11), (10, 11), (11, 11)}.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Matrices as formulae

Example (Formulae as relations as matrices)

Binary relation
{(00, 00), (00, 01),
(00, 11), (01, 01),
(01, 11), (10, 11),
(11, 11)}

can be represented as
the adjacency matrix:

a′b′ a′b′ a′b′ a′b′

ab 00 01 10 11

00 1 1 0 1
01 0 1 0 1
10 0 0 0 1
11 0 0 0 1

Representation of big matrices is possible

For n state variables, a formula (over 2n variables) represents
an adjacency matrix of size 2n × 2n.
For n = 20, matrix size is 220 × 220 ∼ 106 × 106.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Actions/relations as propositional formulae
Example

φ = (a1 ↔ ¬a′1) ∧ (a2 ↔ ¬a′2) as a matrix

a′1a
′
2 a′1a

′
2 a′1a

′
2 a′1a

′
2

a1a2 00 01 10 11

00 0 0 0 1
01 0 0 1 0
10 0 1 0 0
11 1 0 0 0

and as a conventional truth table:

a1 a2 a′1 a′2 φ
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Actions/relations as propositional formulae
Example

φ = (a1 ↔ ¬a′1) ∧ (a2 ↔ ¬a′2) as a matrix

a′1a
′
2 a′1a

′
2 a′1a

′
2 a′1a

′
2

a1a2 00 01 10 11

00 0 0 0 1
01 0 0 1 0
10 0 1 0 0
11 1 0 0 0

and as a conventional truth table:

a1 a2 a′1 a′2 φ
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Actions/relations as propositional formulae
Example

(a1 ↔ a′2) ∧ (a2 ↔ a′3) ∧ (a3 ↔ a′1) represents the matrix:

000 001 010 011 100 101 110 111

000 1 0 0 0 0 0 0 0
001 0 0 0 0 1 0 0 0
010 0 1 0 0 0 0 0 0
011 0 0 0 0 0 1 0 0
100 0 0 1 0 0 0 0 0
101 0 0 0 0 0 0 1 0
110 0 0 0 1 0 0 0 0
111 0 0 0 0 0 0 0 1

This action rotates the value of the state variables a1, a2, a3
one step forward.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Translating operators into formulae

Any operator can be translated into a propositional
formula.

Translation takes polynomial time.

Resulting formula has polynomial size.

Two main applications in planning algorithms are:
1 planning as satisfiability and
2 progression & regression for state sets as used in symbolic

state-space traversal, typically implemented with the help
of binary decision diagrams.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Translating operators into formulae

Definition (operators in propositional logic)

Let o = 〈c, e〉 be an operator and A a set of state variables.
Define τA(o) as the conjunction of

c (1)∧
a∈A((EPCa(e) ∨ (a ∧ ¬EPC¬a(e)))↔ a′) (2)∧
a∈A ¬(EPCa(e) ∧ EPC¬a(e)) (3)

Condition (1) states that the precondition of o is satisfied.
Condition (2) states that the new value of a, represented by a′,
is 1 if the old value was 1 and it did not become 0, or if it
became 1.
Condition (3) states that none of the state variables is assigned
both 0 and 1. Together with (1), this encodes applicability of
the operator.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Translating operators into formulae
Example

Example

Let the state variables be A = {a, b, c}.
Consider the operator 〈a ∨ b, (b B a) ∧ (c B ¬a) ∧ (a B b)〉.
The corresponding propositional formula is

(a ∨ b) ∧ ((b ∨ (a ∧ ¬c))↔ a′)
∧ ((a ∨ (b ∧ ¬⊥))↔ b′)
∧ ((⊥ ∨ (c ∧ ¬⊥))↔ c′)
∧ ¬(b ∧ c) ∧ ¬(a ∧ ⊥) ∧ ¬(⊥ ∧⊥)

≡ (a ∨ b) ∧ ((b ∨ (a ∧ ¬c))↔ a′)
∧ ((a ∨ b)↔ b′)
∧ (c↔ c′)
∧ ¬(b ∧ c)

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Translating operators into formulae
Example

Example

Let A = {a, b, c, d, e} be the state variables.
Consider the operator 〈a ∧ b, c ∧ (d B e)〉.
After simplifications, the formula τA(o) is

(a ∧ b) ∧ (a↔ a′) ∧ (b↔ b′) ∧ c′ ∧ (d↔ d′) ∧ ((d ∨ e)↔ e′)

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Correctness

Lemma

Let s and s′ be states and o an operator. Let
v : A ∪A′ → {0, 1} be a valuation such that

1 for all a ∈ A, v(a) = s(a), and

2 for all a ∈ A, v(a′) = s′(a).

Then v |= τA(o) if and only if s′ = appo(s).

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability

1 Encode operator sequences of length 0, 1, 2, . . . as
formulae Φseq

0 , Φseq
1 , Φseq

2 , . . . (see next slide).

2 Test satisfiability of Φseq
0 , Φseq

1 , Φseq
2 ,

3 If a satisfying valuation v is found, a plan can be
constructed from v.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability

Definition (transition relation in propositional logic)

For 〈A, I,O,G〉 define R1(A,A
′) =

∨
o∈O τA(o).

Definition (bounded-length plans in propositional logic)

Existence of plans of length t is represented by the following
formula over propositions A0 ∪ · · · ∪At, where
Ai = { ai | a ∈ A } for all i ∈ {0, . . . , t}:

Φseq
t = ι0 ∧R1(A

0, A1)∧R1(A
1, A2)∧ · · · ∧R1(A

t−1, At)∧Gt

where ι0 =
∧
a∈A,I(a)=1 a

0 ∧
∧
a∈A,I(a)=0 ¬a0

and Gt is G with propositions a replaced by at.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability
Example

Example

Consider
I |= b ∧ c
G = (b ∧ ¬c) ∨ (¬b ∧ c)
o1 = 〈>, (c B ¬c) ∧ (¬c B c)〉
o2 = 〈>, (b B ¬b) ∧ (¬b B b)〉

The formula Φseq
3 for plans of length 3 is:

(b0 ∧ c0)
∧ (((b0 ↔ b1) ∧ (c0 ↔ ¬c1)) ∨ ((b0 ↔ ¬b1) ∧ (c0 ↔ c1)))
∧ (((b1 ↔ b2) ∧ (c1 ↔ ¬c2)) ∨ ((b1 ↔ ¬b2) ∧ (c1 ↔ c2)))
∧ (((b2 ↔ b3) ∧ (c2 ↔ ¬c3)) ∨ ((b2 ↔ ¬b3) ∧ (c2 ↔ c3)))
∧ ((b3 ∧ ¬c3) ∨ (¬b3 ∧ c3)).

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability
Existence of (optimal) plans

Theorem

Let Φseq
t be the formula for 〈A, I,O,G〉 and plan length t.

The formula Φseq
t is satisfiable if and only if there is a sequence

of states s0, . . . , st and operators o1, . . . , ot such that s0 = I,
si = appoi(si−1) for all i ∈ {1, . . . , t}, and st |= G.

Consequence

If Φseq
0 ,Φseq

1 , . . . ,Φseq
i−1 are unsatisfiable and Φseq

i is satisfiable,
then the length of shortest plans is i.
Satisfiability planning with Φseq

i yields optimal plans, like
heuristic search with admissible heuristics and optimal
algorithms like A∗ or IDA∗.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability
Plan extraction

All satisfiability algorithms give a valuation v that satisfies Φseq
i

upon finding out that Φseq
i is satisfiable.

This makes it possible to construct a plan.

Constructing a plan from a satisfying valuation

Let v be a valuation so that v |= Φseq
t . Then define

si(a) = v(ai) for all a ∈ A and i ∈ {0, . . . , t}.
The i-th operator in the plan is o ∈ O if appo(si−1) = si.
Note: There may be more than one such operator, in which
case any of them may be chosen.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability
Example, continued

Example

One valuation that satisfies Φseq
3 :

time i
0 1 2 3

bi 1 1 0 0
ci 1 0 0 1

Note:

1 There also exists a plan of length 1.

2 No plan of length 2 exists.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Conjunctive normal form

Many satisfiability algorithms require formulas in the
conjunctive normal form: transformation by repeated
applications of the following equivalences.

¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ
¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ
¬¬φ ≡ φ

φ ∨ (ψ1 ∧ ψ2) ≡ (φ ∨ ψ1) ∧ (φ ∨ ψ2)

The formula is a conjunction of clauses (disjunctions of literals).

Example

(A ∨ ¬B ∨ C) ∧ (¬C ∨ ¬B) ∧A

Note: Transformation to conjunctive normal form can increase
formula size exponentially. There are also polynomial
translations which introduce additional variables.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

The unit resolution rule

Unit resolution

From l1 ∨ l2 ∨ · · · ∨ ln (here n ≥ 1) and l1, infer l2 ∨ · · · ∨ ln.

Example

From a ∨ b ∨ c and ¬a infer b ∨ c.

Unit resolution: a special case

From A and ¬A we get the empty clause ⊥
(“disjunction consisting of zero disjuncts”).

Unit subsumption

The clause l1 ∨ l2 ∨ · · · ∨ ln can be eliminated if we have the
unit clause l1.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

The Davis-Putnam-Logemann-Loveland procedure

The first efficient decision procedure for any logic
(Davis, Putnam, Logemann & Loveland, 1960/62).

Based on binary search through the valuations of a
formula.

Unit resolution and unit subsumption help pruning the
search tree.

The currently most efficient satisfiability algorithms are
variants of the DPLL procedure.
(Although there is currently a shift toward viewing these
procedures as performing more general reasoning: clause
learning.)

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Satisfiability test by the DPLL procedure

Davis-Putnam-Logemann-Loveland Procedure

def DPLL(C: clauses):
while there are clauses (l1 ∨ · · · ∨ ln) ∈ C and l1 ∈ C:

C := (C \ {l1 ∨ · · · ∨ ln}) ∪ {l2 ∨ · · · ∨ ln}
while there are clauses (l1 ∨ · · · ∨ ln) ∈ C (n ≥ 2) and

l1 ∈ C:
C := C \ {l1 ∨ · · · ∨ ln}

if ⊥ ∈ C:
return false

if C contains only unit clauses:
return true

Pick some variable a such that a /∈ C and ¬a /∈ C.
return DPLL(C ∪ {a}) or DPLL(C ∪ {¬a})

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability
Example: plan search with DPLL

Consider the problem from a previous slide, with two operators
each inverting the value of one state variable, for plan length 3.

(b0 ∧ c0)
∧ (((b0 ↔ b1) ∧ (c0 ↔ ¬c1)) ∨ ((b0 ↔ ¬b1) ∧ (c0 ↔ c1)))

∧ (((b1 ↔ b2) ∧ (c1 ↔ ¬c2)) ∨ ((b1 ↔ ¬b2) ∧ (c1 ↔ c2)))

∧ (((b2 ↔ b3) ∧ (c2 ↔ ¬c3)) ∨ ((b2 ↔ ¬b3) ∧ (c2 ↔ c3)))

∧ ((b3 ∧ ¬c3) ∨ (¬b3 ∧ c3)).

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability
Example: plan search with DPLL

To obtain a short CNF formula, we introduce auxiliary variables
oi1 and oi2 for i ∈ {1, 2, 3} denoting operator applications.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
(b3 ∧ ¬c3) ∨ (¬b3 ∧ c3)

o11 → ((b0 ↔ b1) ∧ (c0 ↔ ¬c1))
o12 → ((b0 ↔ ¬b1) ∧ (c0 ↔ c1))
o21 → ((b1 ↔ b2) ∧ (c1 ↔ ¬c2))
o22 → ((b1 ↔ ¬b2) ∧ (c1 ↔ c2))
o31 → ((b2 ↔ b3) ∧ (c2 ↔ ¬c3))
o32 → ((b2 ↔ ¬b3) ∧ (c2 ↔ c3))

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability
Example: plan search with DPLL

We rewrite the formulae for operator applications by using the
equivalence φ→ (l↔ l′) ≡ ((φ ∧ l→ l′) ∧ (φ ∧ l→ l′)).

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

o11 ∧ b0 → b1

o11 ∧ ¬b0 → ¬b1
o11 ∧ c0 → ¬c1
o11 ∧ ¬c0 → c1

o12 ∧ b0 → ¬b1
o12 ∧ ¬b0 → b1

o12 ∧ c0 → c1

o12 ∧ ¬c0 → c1

o21 ∧ b1 → b2

o21 ∧ ¬b1 → ¬b2
o21 ∧ c1 → ¬c2
o21 ∧ ¬c1 → c2

o22 ∧ b1 → ¬b2
o22 ∧ ¬b1 → b2

o22 ∧ c1 → c2

o22 ∧ ¬c1 → c2

o31 ∧ b2 → b3

o31 ∧ ¬b2 → ¬b3
o31 ∧ c2 → ¬c3
o31 ∧ ¬c2 → c3

o32 ∧ b2 → ¬b3
o32 ∧ ¬b2 → b3

o32 ∧ c2 → c3

o32 ∧ ¬c2 → c3

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability
Example: plan search with DPLL

Eliminate implications with ((l1 ∧ l2)→ l3) ≡ (l1 ∨ l2 ∨ l3).

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ ¬c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ ¬c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ ¬c3

Valuation constructed by the DPLL procedure

0 1 2 3
bi

1 1 0 0

ci

1 0 0 1

1 2 3
oi1

1 0 1

oi2

0 1 0

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability
Example: plan search with DPLL

Identify unit clauses.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ ¬c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ ¬c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ ¬c3

Valuation constructed by the DPLL procedure

0 1 2 3
bi 1

1 0 0

ci 1

0 0 1

1 2 3
oi1

1 0 1

oi2

0 1 0

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability
Example: plan search with DPLL

Perform unit resolution with b0 and c0.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ ¬c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ ¬c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ ¬c3

Valuation constructed by the DPLL procedure

0 1 2 3
bi 1

1 0 0

ci 1

0 0 1

1 2 3
oi1

1 0 1

oi2

0 1 0

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability
Example: plan search with DPLL

Perform unit subsumption with b0 and c0.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ ¬c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ ¬c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ ¬c3

Valuation constructed by the DPLL procedure

0 1 2 3
bi 1

1 0 0

ci 1

0 0 1

1 2 3
oi1

1 0 1

oi2

0 1 0

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability
Example: plan search with DPLL

No unhandled unit clauses exist. Must branch.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ ¬c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ ¬c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ ¬c3

Valuation constructed by the DPLL procedure

0 1 2 3
bi 1

1 0 0

ci 1

0 0 1

1 2 3
oi1

1 0 1

oi2

0 1 0

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability
Example: plan search with DPLL

We branch on b1, first trying out b1 = 1.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ ¬c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ ¬c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ ¬c3

Valuation constructed by the DPLL procedure

0 1 2 3
bi 1 1

0 0

ci 1

0 0 1

1 2 3
oi1

1 0 1

oi2

0 1 0

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability
Example: plan search with DPLL

Perform unit resolution and unit subsumption with b1.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ ¬c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ ¬c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ ¬c3

Valuation constructed by the DPLL procedure

0 1 2 3
bi 1 1

0 0

ci 1

0 0 1

1 2 3
oi1

1 0 1

oi2

0 1 0

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability
Example: plan search with DPLL

Perform unit resolution and unit subsumption with ¬o12.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ ¬c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ ¬c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ ¬c3

Valuation constructed by the DPLL procedure

0 1 2 3
bi 1 1

0 0

ci 1

0 0 1

1 2 3
oi1

1 0 1

oi2 0

1 0

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability
Example: plan search with DPLL

Perform unit resolution and unit subsumption with o11.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ ¬c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ ¬c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ ¬c3

Valuation constructed by the DPLL procedure

0 1 2 3
bi 1 1

0 0

ci 1

0 0 1

1 2 3
oi1 1

0 1

oi2 0

1 0

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability
Example: plan search with DPLL

Perform unit resolution and unit subsumption with ¬c1.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ ¬c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ ¬c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ ¬c3

Valuation constructed by the DPLL procedure

0 1 2 3
bi 1 1

0 0

ci 1 0

0 1

1 2 3
oi1 1

0 1

oi2 0

1 0

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability
Example: plan search with DPLL

No unhandled unit clauses exist. Must branch a second time.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ ¬c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ ¬c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ ¬c3

Valuation constructed by the DPLL procedure

0 1 2 3
bi 1 1

0 0

ci 1 0

0 1

1 2 3
oi1 1

0 1

oi2 0

1 0

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability
Example: plan search with DPLL

We branch on c3, first trying out c3 = 1.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ ¬c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ ¬c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ ¬c3

Valuation constructed by the DPLL procedure

0 1 2 3
bi 1 1

0 0

ci 1 0

0

1

1 2 3
oi1 1

0 1

oi2 0

1 0

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability
Example: plan search with DPLL

Perform unit resolution and unit subsumption with c3.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ ¬c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ ¬c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ ¬c3

Valuation constructed by the DPLL procedure

0 1 2 3
bi 1 1

0 0

ci 1 0

0

1

1 2 3
oi1 1

0 1

oi2 0

1 0

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability
Example: plan search with DPLL

Perform unit resolution and unit subsumption with ¬b3.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ ¬c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ ¬c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ ¬c3

Valuation constructed by the DPLL procedure

0 1 2 3
bi 1 1

0

0
ci 1 0

0

1

1 2 3
oi1 1

0 1

oi2 0

1 0

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability
Example: plan search with DPLL

No unhandled unit clauses exist. Must branch a third time.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ ¬c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ ¬c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ ¬c3

Valuation constructed by the DPLL procedure

0 1 2 3
bi 1 1

0

0
ci 1 0

0

1

1 2 3
oi1 1

0 1

oi2 0

1 0

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability
Example: plan search with DPLL

We branch on o22, first trying out o22 = 1.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ ¬c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ ¬c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ ¬c3

Valuation constructed by the DPLL procedure

0 1 2 3
bi 1 1

0

0
ci 1 0

0

1

1 2 3
oi1 1

0 1

oi2 0 1

0

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability
Example: plan search with DPLL

Perform unit resolution and unit subsumption with o22.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ ¬c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ ¬c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ ¬c3

Valuation constructed by the DPLL procedure

0 1 2 3
bi 1 1

0

0
ci 1 0

0

1

1 2 3
oi1 1

0 1

oi2 0 1

0

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability
Example: plan search with DPLL

Perform unit resolution and unit subsumption with with ¬b2 and ¬c2.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ ¬c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ ¬c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ ¬c3

Valuation constructed by the DPLL procedure

0 1 2 3
bi 1 1 0 0
ci 1 0 0 1

1 2 3
oi1 1

0 1

oi2 0 1

0

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability
Example: plan search with DPLL

Perform unit resolution and unit subsumption with with ¬o21 and ¬o32.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ ¬c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ ¬c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ ¬c3

Valuation constructed by the DPLL procedure

0 1 2 3
bi 1 1 0 0
ci 1 0 0 1

1 2 3
oi1 1 0

1

oi2 0 1 0

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability
Example: plan search with DPLL

Perform unit resolution and unit subsumption with o31.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ ¬c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ ¬c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ ¬c3

Valuation constructed by the DPLL procedure

0 1 2 3
bi 1 1 0 0
ci 1 0 0 1

1 2 3
oi1 1 0 1
oi2 0 1 0

AI Planning

M. Helmert,
B. Nebel

SAT planning

Relations in CPC

Actions in CPC

Plans in CPC

DPLL

Example

Parallel plans

Final remarks

Planning as satisfiability
Example: plan search with DPLL

The formula is satisfiable.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ ¬c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ ¬c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ ¬c3

Valuation constructed by the DPLL procedure

0 1 2 3
bi 1 1 0 0
ci 1 0 0 1

1 2 3
oi1 1 0 1
oi2 0 1 0

AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Parallelism

Interference

Parallel actions

Translation

Optimality

Example

Final remarks

Planning as satisfiability with parallel plans

Efficiency of satisfiability planning is strongly dependent
on the plan length because satisfiability algorithms have
runtime O(2n) where n is the formula size, and formula
sizes are linearly proportional to plan length.

Formula sizes can be reduced by allowing several operators
in parallel.

On many problems this leads to big speed-ups.

However there are no guarantees of optimality.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Parallelism

Interference

Parallel actions

Translation

Optimality

Example

Final remarks

Parallel operator application
Definition attempt

Similar to relaxed planning graphs, we consider the possibility
of executing several operators simultaneously.

Definition (?)

Let σ be a set of operators (a plan step) and s a state.
Define appσ(s) as the state that is obtained from s by making
the literals in

⋃
〈c,e〉∈σ[e]s true.

For appσ(s) to be defined, we require that s |= c for all
o = 〈c, e〉 ∈ σ and

⋃
〈c,e〉∈σ[e]s is consistent.

Unfortunately, the definition is flawed. Why?

AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Parallelism

Interference

Parallel actions

Translation

Optimality

Example

Final remarks

Parallel operator application
Definition attempt

Similar to relaxed planning graphs, we consider the possibility
of executing several operators simultaneously.

Definition (?)

Let σ be a set of operators (a plan step) and s a state.
Define appσ(s) as the state that is obtained from s by making
the literals in

⋃
〈c,e〉∈σ[e]s true.

For appσ(s) to be defined, we require that s |= c for all
o = 〈c, e〉 ∈ σ and

⋃
〈c,e〉∈σ[e]s is consistent.

Unfortunately, the definition is flawed. Why?

AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Parallelism

Interference

Parallel actions

Translation

Optimality

Example

Final remarks

Parallel actions
Non-interleavable actions

Example

According to the definition attempt, the operators 〈a,¬b〉 and
〈b,¬a〉 may be executed simultaneously in state
{a 7→ 1, b 7→ 1}, resulting in the state {a 7→ 0, b 7→ 0}.
But this state is not reachable by the two operators
sequentially, because executing any one operator makes the
precondition of the other false.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Parallelism

Interference

Parallel actions

Translation

Optimality

Example

Final remarks

Parallel actions
Comparison to relaxed planning tasks

When discussing relaxed planning tasks, we gave a
conservative definition of parallel operator application:

It is not guaranteed that each serialization of a plan step σ
(or even one of them) leads to the state appσ(s).
However, the resulting state of the serialized plan is
guaranteed to be at least as good as appσ(s).

Our general definition attempt was not conservative – not
even if we require positive normal form (as the example
shows).

A conservative definition extending the earlier one for
relaxed planning tasks is possible, but complicated.

Instead, we use a semantic definition based on
serializations.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Parallelism

Interference

Parallel actions

Translation

Optimality

Example

Final remarks

Parallel actions
Serializations and semantics

Definition (serialization)

A serialization of plan step σ = {o1, . . . , on} is a sequence
oπ(1), . . . , oπ(n) where π is a permutation of {1, . . . , n}.

Definition (semantics of plan steps)

A plan step σ = {o1, . . . , on} is applicable in a state s iff each
serialization of σ is applicable in s and results in the same state
s′.
The result of applying σ in s is then defined as appσ(s) = s′.

Note: This definition does not extend the earlier definition for
relaxed planning tasks.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Parallelism

Interference

Parallel actions

Translation

Optimality

Example

Final remarks

Parallel plans

Definition (parallel plan)

A parallel plan for a general planning task 〈A, I,O,G〉 is a
sequence of plan steps σ1, . . . , σn of operators in O with:

s0 := I

For i = 1, . . . , n, step σi is applicable in si−1
and si := appσi(si−1).

sn |= G

Remark: By ordering the operators within each single step
arbitrarily, we obtain a (regular, non-parallel) plan.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Parallelism

Interference

Parallel actions

Translation

Optimality

Example

Final remarks

Parallel plans
Sufficient conditions

Testing the condition for parallel applicability is difficult:
even testing whether a set σ of operators is applicable in
all serializations is co-NP-hard.

Representing the executability test exactly as a
propositional formula seems complicated: doing this test
exactly would seem to cancel the benefits of parallel plans.

Instead, all work on parallel plans so far has used sufficient
but not necessary conditions that can be tested in
polynomial-time.

We use a simple syntactic test (which may be overly
strict).

AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Parallelism

Interference

Parallel actions

Translation

Optimality

Example

Final remarks

Interference
Example

Actions do not interfere

A B C D
A
B C

D

Actions can be taken simultaneously.

Actions interfere

A B C D
If A is moved first, B will not be clear and cannot be moved.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Parallelism

Interference

Parallel actions

Translation

Optimality

Example

Final remarks

Interference
Auxiliary definition: affects

Definition (affect)

Let A be a set of state variables and o = 〈c, e〉 and o′ = 〈c′, e′〉
operators over A. Then o affects o′ if there is a ∈ A such that

1 a is an atomic effect in e and a occurs in a formula in e′

or it occurs negatively in c′, or

2 ¬a is an atomic effect in e and a occurs in a formula in e′

or it occurs positively in c′.

Example

〈c, d〉 affects 〈¬d, e〉 and 〈e, d B f〉.
〈c, d〉 does not affect 〈d, e〉 nor 〈e,¬c〉.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Parallelism

Interference

Parallel actions

Translation

Optimality

Example

Final remarks

Interference

Definition (interference)

Operators o and o′ interfere if o affects o′ or o′ affects o.

Example

〈c, d〉 and 〈¬d, e〉 interfere.
〈c, d〉 and 〈e, f〉 do not interfere.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Parallelism

Interference

Parallel actions

Translation

Optimality

Example

Final remarks

Interference
Sufficient condition for applying a plan step

Lemma

Let s be a state and σ a set of operators so that each operator
in σ is applicable in s, no two operators in σ interfere, and⋃
〈c,e〉∈σ[e]s is consistent.

Then σ is applicable in s and results in the state that is
obtained from s by making the literals in

⋃
〈c,e〉∈σ[e]s true.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Parallelism

Interference

Parallel actions

Translation

Optimality

Example

Final remarks

Parallel operator application

We cannot simply use our current definition of τA(o) within a
satisfiability encoding for parallel planning:

The formula τA(o) completely defines the relationship
between current state and successor state when o is
applied.

It leaves no room for applying another operator in
sequence.

Basic idea for parallel plan encodings:

Decouple the parts of the formula that describe what
changes from parts that describe what does not change.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Parallelism

Interference

Parallel actions

Translation

Optimality

Example

Final remarks

Parallel operator application
Representation in propositional logic

Consider the formula τA(o) representing operator o = 〈c, e〉:
c
∧
∧
a∈A((EPCa(e) ∨ (a ∧ ¬EPC¬a(e)))↔ a′)

∧
∧
a∈A ¬(EPCa(e) ∧ EPC¬a(e)).

This can be logically equivalently written as follows:
c
∧
∧
a∈A(EPCa(e)→ a′)

∧
∧
a∈A(EPC¬a(e)→ ¬a′)

∧
∧
a∈A((a ∧ ¬EPC¬a(e))→ a′)

∧
∧
a∈A((¬a ∧ ¬EPCa(e))→ ¬a′)

This separates the changes from non-changes.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Parallelism

Interference

Parallel actions

Translation

Optimality

Example

Final remarks

The explanatory frame axioms

The formula states that the only explanation for a changing its
value is the application of one operator:∧

a∈A((a ∧ ¬a′)→ EPC¬a(e))∧
a∈A((¬a ∧ a′)→ EPCa(e))

When several operators could be applied in parallel, we have to
consider all operators as possible explanations:∧

a∈A((a ∧ ¬a′)→
∨n
i=1(oi ∧ EPC¬a(ei)))∧

a∈A((¬a ∧ a′)→
∨n
i=1(oi ∧ EPCa(ei)))

where σ = {o1, . . . , on} and e1, . . . , en are the respective
effects.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Parallelism

Interference

Parallel actions

Translation

Optimality

Example

Final remarks

Parallel actions
Formula in propositional logic

Definition (plan step application in propositional logic)

Let σ be a plan step. Let τA(σ) denote the conjunction of
formulae

(o→ c)
∧
∧
a∈A(o ∧ EPCa(e)→ a′)

∧
∧
a∈A(o ∧ EPC¬a(e)→ ¬a′)

for all o = 〈c, e〉 ∈ σ and∧
a∈A((a ∧ ¬a′)→

∨n
i=1(oi ∧ EPC¬a(ei)))∧

a∈A((¬a ∧ a′)→
∨n
i=1(oi ∧ EPCa(ei)))

where σ = {o1, . . . , on} and e1, . . . , en are the respective
effects.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Parallelism

Interference

Parallel actions

Translation

Optimality

Example

Final remarks

Correctness

The formula τA(σ) exactly matches the definition of appσ(s)
provided that no actions in σ interfere.

Lemma

Let s and s′ be states and σ a set of operators. Let
v : A ∪A′ ∪ σ → {0, 1} be a valuation such that

1 for all o ∈ σ, v(o) = 1,

2 for all a ∈ A, v(a) = s(a), and

3 for all a ∈ A, v(a′) = s′(a).

If σ is applicable in s, then:
v |= τA(σ) if and only if s′ = appσ(s).

AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Parallelism

Interference

Parallel actions

Translation

Optimality

Example

Final remarks

Translation of parallel plans into propositional logic

Definition

Define R2(A,A
′, O) as the conjunction of τA(O) and

¬(o ∧ o′)

for all o ∈ O and o′ ∈ O such that o and o′ interfere and o 6= o′.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Parallelism

Interference

Parallel actions

Translation

Optimality

Example

Final remarks

Planning as satisfiability
Existence of plans

Definition (bounded step number plans in propositional logic)

Existence of parallel plans of length t is represented by the
following formula over propositions A0∪ · · · ∪At∪O1∪ · · · ∪Ot
where Ai = { ai | a ∈ A } for all i ∈ {0, . . . , t}
and Oi = { oi | o ∈ O } for all i ∈ {1, . . . , t}:

Φpar
t = ι0 ∧R2(A

0, A1, O1) ∧ · · · ∧ R2(A
t−1, At, Ot) ∧Gt

where ι0 =
∧
a∈A,I(a)=1 a

0 ∧
∧
a∈A,I(a)=0 ¬a0

and Gt is G with propositions a replaced by at.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Parallelism

Interference

Parallel actions

Translation

Optimality

Example

Final remarks

Planning as satisfiability
Existence of plans

Theorem

Let Φpar
t be the formula for 〈A, I,O,G〉 and plan length t.

The formula Φpar
t is satisfiable if and only if there is a sequence

of states s0, . . . , st and plan steps σ1, . . . , σt, each consisting of
non-interfering operators, such that s0 = I, si = appσi(si−1)
for all i ∈ {1, . . . , t}, and st |= G.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Parallelism

Interference

Parallel actions

Translation

Optimality

Example

Final remarks

Why is optimality lost?

Minimal step count does not imply minimal length

That a plan has the smallest number of steps does not
guarantee that it has the smallest number of actions.

Satisfiability algorithms return any satisfying valuation of
Φpar
i , and this does not have to be the one with the

smallest number of operators.

There could be better solutions with more time points.

Moreover, even optimality in the number of time steps is
not guaranteed because the non-interference requirement
is only sufficient, but not necessary, for parallel
applicability.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Parallelism

Interference

Parallel actions

Translation

Optimality

Example

Final remarks

Why is optimality lost?
Example

Example

Let I be a state such that s |= ¬c ∧ ¬d ∧ ¬e ∧ ¬f .
Let G = c ∧ d ∧ e, and let:

o1= 〈>, c〉
o2= 〈>, d〉
o3= 〈>, e〉
o4= 〈>, f〉
o5= 〈f, c ∧ d ∧ e〉

Now π1 = {o1, o2, o3} is a plan with one step, and
π2 = {o4}; {o5} is a plan with two steps.

Plan π1 is optimal with respect to the number of steps, but not
with respect to the number of actions, where π2 is optimal.
There is no plan which minimizes both measures.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Parallelism

Interference

Parallel actions

Translation

Optimality

Example

Final remarks

Planning as satisfiability
Example

A
B
C

D
E

A
B
C
D
E

initial state goal state

The DPLL procedure solves the problem quickly:

Formulae for lengths 0 to 4 shown unsatisfiable without
any search.
Formula for plan length 5 is satisfiable: 3 nodes in the
search tree.
Plans have 5 to 7 operators, optimal plan has 5.

AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Parallelism

Interference

Parallel actions

Translation

Optimality

Example

Final remarks

Planning as satisfiability
Example

v0.9 13/08/1997 19:32:47

30 propositions 100 operators

Length 0

Length 1

Length 2

Length 3

Length 4

Length 5

branch on -clear(b)[1] depth 0

branch on clear(a)[3] depth 1

Found a plan.

0 totable(e,d)

1 totable(c,b) fromtable(d,e)

2 totable(b,a) fromtable(c,d)

3 fromtable(b,c)

4 fromtable(a,b)

Branches 2 last 2 failed 0; time 0.0

AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Parallelism

Interference

Parallel actions

Translation

Optimality

Example

Final remarks

Planning as satisfiability
Example

0 1 2 3 4 5
clear(a) 0 0
clear(b) 0 0
clear(c) 1 1 0 0
clear(d) 0 1 1 0 0 0
clear(e) 1 1 0 0 0 0
on(a,b) 0 0 0 1
on(a,c) 0 0 0 0 0 0
on(a,d) 0 0 0 0 0 0
on(a,e) 0 0 0 0 0 0
on(b,a) 1 1 0 0
on(b,c) 0 0 1 1
on(b,d) 0 0 0 0 0 0
on(b,e) 0 0 0 0 0 0
on(c,a) 0 0 0 0 0 0
on(c,b) 1 0 0 0
on(c,d) 0 0 0 1 1 1
on(c,e) 0 0 0 0 0 0
on(d,a) 0 0 0 0 0 0
on(d,b) 0 0 0 0 0 0
on(d,c) 0 0 0 0 0 0
on(d,e) 0 0 1 1 1 1
on(e,a) 0 0 0 0 0 0
on(e,b) 0 0 0 0 0 0
on(e,c) 0 0 0 0 0 0
on(e,d) 1 0 0 0 0 0

ontable(a) 1 1 1 0
ontable(b) 0 0 0 0
ontable(c) 0 0 0 0
ontable(d) 1 1 0 0 0 0
ontable(e) 0 1 1 1 1 1

0 1 2 3 4 5
0 0 0 1 1
0 0 1 1 0
1 1 1 1 0 0
0 1 1 0 0 0
1 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0
0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1 1 1 1 1 0
0 0 0 0 0
0 0 0 0 0
1 1 0 0 0 0
0 1 1 1 1 1

0 1 2 3 4 5
0 0 0 1 1 1
0 0 1 1 1 0
1 1 1 1 0 0
0 1 1 0 0 0
1 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 0 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 0
0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1 1 1 1 1 0
0 0 0 1 0 0
0 0 1 0 0 0
1 1 0 0 0 0
0 1 1 1 1 1

1 Infer state variable values
from initial values and
goals.

2 Branch: ¬ clear(b)[1].

3 Branch: clear(a)[3].

4 Plan found:
01234

fromtable(a,b) 1
fromtable(b,c) . . . 1 .
fromtable(c,d) . . 1 . .
fromtable(d,e) . 1 . . .

totable(b,a) . . 1 . .
totable(c,b) . 1 . . .
totable(e,d)1

AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Parallelism

Interference

Parallel actions

Translation

Optimality

Example

Final remarks

Planning as satisfiability
Example

0 1 2 3 4 5
clear(a) 0 0
clear(b) 0 0
clear(c) 1 1 0 0
clear(d) 0 1 1 0 0 0
clear(e) 1 1 0 0 0 0
on(a,b) 0 0 0 1
on(a,c) 0 0 0 0 0 0
on(a,d) 0 0 0 0 0 0
on(a,e) 0 0 0 0 0 0
on(b,a) 1 1 0 0
on(b,c) 0 0 1 1
on(b,d) 0 0 0 0 0 0
on(b,e) 0 0 0 0 0 0
on(c,a) 0 0 0 0 0 0
on(c,b) 1 0 0 0
on(c,d) 0 0 0 1 1 1
on(c,e) 0 0 0 0 0 0
on(d,a) 0 0 0 0 0 0
on(d,b) 0 0 0 0 0 0
on(d,c) 0 0 0 0 0 0
on(d,e) 0 0 1 1 1 1
on(e,a) 0 0 0 0 0 0
on(e,b) 0 0 0 0 0 0
on(e,c) 0 0 0 0 0 0
on(e,d) 1 0 0 0 0 0

ontable(a) 1 1 1 0
ontable(b) 0 0 0 0
ontable(c) 0 0 0 0
ontable(d) 1 1 0 0 0 0
ontable(e) 0 1 1 1 1 1

0 1 2 3 4 5
0 0 0 1 1
0 0 1 1 0
1 1 1 1 0 0
0 1 1 0 0 0
1 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0
0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1 1 1 1 1 0
0 0 0 0 0
0 0 0 0 0
1 1 0 0 0 0
0 1 1 1 1 1

0 1 2 3 4 5
0 0 0 1 1 1
0 0 1 1 1 0
1 1 1 1 0 0
0 1 1 0 0 0
1 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 0 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 0
0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1 1 1 1 1 0
0 0 0 1 0 0
0 0 1 0 0 0
1 1 0 0 0 0
0 1 1 1 1 1

1 Infer state variable values
from initial values and
goals.

2 Branch: ¬ clear(b)[1].

3 Branch: clear(a)[3].

4 Plan found:
01234

fromtable(a,b) 1
fromtable(b,c) . . . 1 .
fromtable(c,d) . . 1 . .
fromtable(d,e) . 1 . . .

totable(b,a) . . 1 . .
totable(c,b) . 1 . . .
totable(e,d)1

AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Parallelism

Interference

Parallel actions

Translation

Optimality

Example

Final remarks

Planning as satisfiability
Example

0 1 2 3 4 5
clear(a) 0 0
clear(b) 0 0
clear(c) 1 1 0 0
clear(d) 0 1 1 0 0 0
clear(e) 1 1 0 0 0 0
on(a,b) 0 0 0 1
on(a,c) 0 0 0 0 0 0
on(a,d) 0 0 0 0 0 0
on(a,e) 0 0 0 0 0 0
on(b,a) 1 1 0 0
on(b,c) 0 0 1 1
on(b,d) 0 0 0 0 0 0
on(b,e) 0 0 0 0 0 0
on(c,a) 0 0 0 0 0 0
on(c,b) 1 0 0 0
on(c,d) 0 0 0 1 1 1
on(c,e) 0 0 0 0 0 0
on(d,a) 0 0 0 0 0 0
on(d,b) 0 0 0 0 0 0
on(d,c) 0 0 0 0 0 0
on(d,e) 0 0 1 1 1 1
on(e,a) 0 0 0 0 0 0
on(e,b) 0 0 0 0 0 0
on(e,c) 0 0 0 0 0 0
on(e,d) 1 0 0 0 0 0

ontable(a) 1 1 1 0
ontable(b) 0 0 0 0
ontable(c) 0 0 0 0
ontable(d) 1 1 0 0 0 0
ontable(e) 0 1 1 1 1 1

0 1 2 3 4 5
0 0 0 1 1
0 0 1 1 0
1 1 1 1 0 0
0 1 1 0 0 0
1 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0
0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1 1 1 1 1 0
0 0 0 0 0
0 0 0 0 0
1 1 0 0 0 0
0 1 1 1 1 1

0 1 2 3 4 5
0 0 0 1 1 1
0 0 1 1 1 0
1 1 1 1 0 0
0 1 1 0 0 0
1 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 0 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 0
0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1 1 1 1 1 0
0 0 0 1 0 0
0 0 1 0 0 0
1 1 0 0 0 0
0 1 1 1 1 1

1 Infer state variable values
from initial values and
goals.

2 Branch: ¬ clear(b)[1].

3 Branch: clear(a)[3].

4 Plan found:
01234

fromtable(a,b) 1
fromtable(b,c) . . . 1 .
fromtable(c,d) . . 1 . .
fromtable(d,e) . 1 . . .

totable(b,a) . . 1 . .
totable(c,b) . 1 . . .
totable(e,d)1

AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Parallelism

Interference

Parallel actions

Translation

Optimality

Example

Final remarks

Planning as satisfiability
Example

0 1 2 3 4 5
clear(a) 0 0
clear(b) 0 0
clear(c) 1 1 0 0
clear(d) 0 1 1 0 0 0
clear(e) 1 1 0 0 0 0
on(a,b) 0 0 0 1
on(a,c) 0 0 0 0 0 0
on(a,d) 0 0 0 0 0 0
on(a,e) 0 0 0 0 0 0
on(b,a) 1 1 0 0
on(b,c) 0 0 1 1
on(b,d) 0 0 0 0 0 0
on(b,e) 0 0 0 0 0 0
on(c,a) 0 0 0 0 0 0
on(c,b) 1 0 0 0
on(c,d) 0 0 0 1 1 1
on(c,e) 0 0 0 0 0 0
on(d,a) 0 0 0 0 0 0
on(d,b) 0 0 0 0 0 0
on(d,c) 0 0 0 0 0 0
on(d,e) 0 0 1 1 1 1
on(e,a) 0 0 0 0 0 0
on(e,b) 0 0 0 0 0 0
on(e,c) 0 0 0 0 0 0
on(e,d) 1 0 0 0 0 0

ontable(a) 1 1 1 0
ontable(b) 0 0 0 0
ontable(c) 0 0 0 0
ontable(d) 1 1 0 0 0 0
ontable(e) 0 1 1 1 1 1

0 1 2 3 4 5
0 0 0 1 1
0 0 1 1 0
1 1 1 1 0 0
0 1 1 0 0 0
1 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0
0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1 1 1 1 1 0
0 0 0 0 0
0 0 0 0 0
1 1 0 0 0 0
0 1 1 1 1 1

0 1 2 3 4 5
0 0 0 1 1 1
0 0 1 1 1 0
1 1 1 1 0 0
0 1 1 0 0 0
1 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 0 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 0
0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1 1 1 1 1 0
0 0 0 1 0 0
0 0 1 0 0 0
1 1 0 0 0 0
0 1 1 1 1 1

1 Infer state variable values
from initial values and
goals.

2 Branch: ¬ clear(b)[1].

3 Branch: clear(a)[3].

4 Plan found:
01234

fromtable(a,b) 1
fromtable(b,c) . . . 1 .
fromtable(c,d) . . 1 . .
fromtable(d,e) . 1 . . .

totable(b,a) . . 1 . .
totable(c,b) . 1 . . .
totable(e,d)1

AI Planning

M. Helmert,
B. Nebel

SAT planning

Parallel plans

Final remarks

Final remarks

All successful satisfiability-based planners use some kind of
parallel encoding.

Sequential encodings are not regarded as competitive with
(admissible) heuristic search planners.

In practice, the presented encoding is further refined to be
able to rule out bad variable assignments early in the SAT
solving procedure.

The state-of-the-art SATPLAN06 (formerly SATPLAN04,
formerly Blackbox) planner supports a number of different
encodings.

The ones that typically perform best are based on
(non-relaxed) planning graphs.

	SAT planning
	Relations in propositional logic
	Actions in propositional logic
	Plans in propositional logic
	DPLL
	Example

	Parallel plans
	Parallelism
	Interference
	Parallel actions
	Translation
	Optimality
	Example

	Final remarks

