Principles of Al Planning
 Planning by satisfiability testing

Malte Helmert Bernhard Nebel

Albert-Ludwigs-Universität Freiburg
November 24th, 2006

Planning in the propositional logic

- Early work on deductive planning viewed plans as proofs that lead to a desired goal (theorem).
(1) A propositional formula represents all length n action sequences from the initial state to a goal state.
(2) If the formula is satisfiable then a plan of length n exists (and can be extracted from the satisfying valuation)
- Heuristic search and satisfiability planning are currently the best approaches for planning
- Satisfiability planning is often more efficient for small, but difficult problems.
- Heuristic search is often more efficient for big, but easy problems
- Bounded model-checking in Computer Aided Verification was introduced in 1998 as an extension of satisfiability planning after the success of the latter had been noticed outside the Al community.

Planning in the propositional logic

- Early work on deductive planning viewed plans as proofs that lead to a desired goal (theorem).
- Planning as satisfiability testing was proposed in 1992.
(1) A propositional formula represents all length n action sequences from the initial state to a goal state.
(2) If the formula is satisfiable then a plan of length n exists (and can be extracted from the satisfying valuation).

SAT planning
Relations in CPC
Actions in CPC
Plans in CPC
DPLL
Example
Parallel plans

- Heuristic search and satisfiability planning are currently the best approaches for planning

Final remarks

- Satisfiability planning is often more efficient for small, but difficult problems.
- Heuristic search is often more efficient for big, but easy problems
- Bounded model-checking in Computer Aided Verification was introduced in 1998 as an extension of satisfiability nlanning after the success of the latter had heen noticed outside the Al community.

Planning in the propositional logic

- Early work on deductive planning viewed plans as proofs that lead to a desired goal (theorem).
- Planning as satisfiability testing was proposed in 1992.
(1) A propositional formula represents all length n action sequences from the initial state to a goal state.
(2) If the formula is satisfiable then a plan of length n exists

SAT planning
Relations in CPC
Actions in CPC
Plans in CPC
DPLL (and can be extracted from the satisfying valuation).

- Heuristic search and satisfiability planning are currently the best approaches for planning.
- Satisfiability planning is often more efficient for small, but difficult problems.
- Heuristic search is often more efficient for big, but easy problems.
- Bounded model-checking in Computer Aided Verification was introduced in 1998 as an extension of satisfiability planning after the success of the latter had been noticed outside the Al community.

Planning in the propositional logic

- Early work on deductive planning viewed plans as proofs that lead to a desired goal (theorem).
- Planning as satisfiability testing was proposed in 1992.
(1) A propositional formula represents all length n action sequences from the initial state to a goal state.
(2) If the formula is satisfiable then a plan of length n exists (and can be extracted from the satisfying valuation).
- Heuristic search and satisfiability planning are currently the best approaches for planning.
- Satisfiability planning is often more efficient for small, but difficult problems.
- Heuristic search is often more efficient for big, but easy problems.
- Bounded model-checking in Computer Aided Verification was introduced in 1998 as an extension of satisfiability planning after the success of the latter had been noticed outside the AI community.

Planning in the propositional logic

Abstractly

Al Planning
M. Helmert,
B. Nebel
(1) Represent actions (= binary relations) as propositional formulae.
(2) Construct a formula saying "execute one of the actions
(3) Construct a formula saying actions, starting from the initial state, ending in a goal state
(4) Test the satisfiability of this formula by a satisfiability algorithm.
(5) If the formula is satisfiable, construct a plan from a satisfying valuation

Planning in the propositional logic

Abstractly
(1) Represent actions (= binary relations) as propositional formulae.
(2) Construct a formula saying "execute one of the actions".
© Construct a formula saying execute a sequence of n actions, starting from the initial state, ending in a goal state"

SAT planning
Relations in CPC
Actions in CPC
Plans in CPC
DPLL
Example
Parallel plans
Final remarks
(-) Test the satisfiability of this formula by a satisfiability algorithm.
(0) If the formula is satisfiable, construct a plan from a satisfying valuation.

Planning in the propositional logic
 Abstractly

(1) Represent actions (= binary relations) as propositional formulae.
(2) Construct a formula saying "execute one of the actions".
(3) Construct a formula saying "execute a sequence of n actions, starting from the initial state, ending in a goal state".
(1) Test the satisfiability of this formula by a satisfiability algorithm.
(0) If the formula is satisfiable, construct a plan from a satisfying valuation.

SAT planning
Relations in CPC
Actions in CPC
Plans in CPC
DPLL
Example
Parallel plans
Final remarks

Planning in the propositional logic
 Abstractly

(1) Represent actions (= binary relations) as propositional formulae.
(2) Construct a formula saying "execute one of the actions".
(3) Construct a formula saying "execute a sequence of n actions, starting from the initial state, ending in a goal state".
(1) Test the satisfiability of this formula by a satisfiability algorithm.
(5) If the formula is satisfiable, construct a plan from a satisfying valuation.

SAT planning
Relations in CPC
Actions in CPC
Plans in CPC
DPLL
Example
Parallel plans
Final remarks

Planning in the propositional logic
 Abstractly

(1) Represent actions (= binary relations) as propositional formulae.
(2) Construct a formula saying "execute one of the actions".
(3) Construct a formula saying "execute a sequence of n actions, starting from the initial state, ending in a goal state".
(1) Test the satisfiability of this formula by a satisfiability algorithm.
(5) If the formula is satisfiable, construct a plan from a satisfying valuation.

SAT planning
Relations in CPC
Actions in CPC
Plans in CPC
DPLL
Example
Parallel plans
Final remarks

Satisfiability testing vs. state-space search

- Like our earlier algorithms (progression and regression planning, possibly with heuristics), planning as satisfiability testing can be interpreted as a search algorithm.
- However, unlike these algorithms, satisfiability testing is

SAT planning
Relations in CPC
Actions in CPC undirected search:

Parallel plans

- As the first decision, the algorithm may decide to include a certain action as the 7th operator of the plan.
- As the second decision, it may require a certain state variable to be true after the 5th operator of the plan.
- ...

Sets (of states) as formulae

Reminder: Formulae on A as sets of states

SAT planning
Relations in CPC
Actions in CPC
Plans in CPC
DPLL
Example
Parallel plans
Final remarks

Example

Formula $a \vee b$ on the state variables a, b, c represents the set $\{010,011,100,101,110,111\}$.

Relations/actions as formulae

Formulae on $A \cup A^{\prime}$ as binary relations

Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ represent state variables in the current state, and $A^{\prime}=\left\{a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right\}$ state variables in the successor state.
Formulae ϕ on $A \cup A^{\prime}$ represent binary relations on states: a valuation of $A \cup A^{\prime} \rightarrow\{0,1\}$ represents a pair of states $s: A \rightarrow\{0,1\}, s^{\prime}: A^{\prime} \rightarrow\{0,1\}$.

Example

Formula $\left(a \rightarrow a^{\prime}\right) \wedge\left(\left(a^{\prime} \vee b\right) \rightarrow b^{\prime}\right)$ on $a, b, a^{\prime}, b^{\prime}$ represents the binary relation $\{(00,00),(00,01),(00,11),(01,01),(01,11),(10,11),(11,11)\}$.

Matrices as formulae

Example (Formulae as relations as matrices)

Al Planning
M. Helmert,
B. Nebel

Binary relation
$\{(00,00),(00,01)$, $(00,11),(01,01)$, $(01,11),(10,11)$, $(11,11)\}$
can be represented as the adjacency matrix:

	$a^{\prime} b^{\prime}$	$a^{\prime} b^{\prime}$	$a^{\prime} b^{\prime}$	$a^{\prime} b^{\prime}$
$a b$	00	01	10	11
00	1	1	0	1
01	0	1	0	1
10	0	0	0	1
11	0	0	0	1

SAT planning
Relations in CPC Actions in CPC
Plans in CPC
DPLL
Example
Parallel plans
Final remarks

Representation of big matrices is possible
For n state variables, a formula (over $2 n$ variables) represents an adjacency matrix of size $2^{n} \times 2^{n}$.
For $n=20$, matrix size is $2^{20} \times 2^{20} \sim 10^{6} \times 10^{6}$.

Actions/relations as propositional formulae

 Example$\phi=\left(a_{1} \leftrightarrow \neg a_{1}^{\prime}\right) \wedge\left(a_{2} \leftrightarrow \neg a_{2}^{\prime}\right)$ as a matrix

	$a_{1}^{\prime} a_{2}^{\prime}$	$a_{1}^{\prime} a_{2}^{\prime}$	$a_{1}^{\prime} a_{2}^{\prime}$	$a_{1}^{\prime} a_{2}^{\prime}$
$a_{1} a_{2}$	00	01	10	11
00	0	0	0	1
01	0	0	1	0
10	0	1	0	0
11	1	0	0	0

a_{1}	a_{2}	a_{1}^{\prime}	a_{2}^{\prime}	ϕ
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Al Planning
M. Helmert,
B. Nebel

SAT planning
Relations in CPC
Actions in CPC
Plans in CPC
DPLL
Example
Parallel plans
Final remarks
and as a conventional truth table:

Actions/relations as propositional formulae

 Example$\phi=\left(a_{1} \leftrightarrow \neg a_{1}^{\prime}\right) \wedge\left(a_{2} \leftrightarrow \neg a_{2}^{\prime}\right)$ as a matrix

	$a_{1}^{\prime} a_{2}^{\prime}$	$a_{1}^{\prime} a_{2}^{\prime}$	$a_{1}^{\prime} a_{2}^{\prime}$	$a_{1}^{\prime} a_{2}^{\prime}$
$a_{1} a_{2}$	00	01	10	11
00	0	0	0	1
01	0	0	1	0
10	0	1	0	0
11	1	0	0	0

and as a conventional truth table:

a_{1}	a_{2}	a_{1}^{\prime}	a_{2}^{\prime}	ϕ
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Al Planning
M. Helmert,
B. Nebel

SAT planning
Relations in CPC
Actions in CPC
Plans in CPC
DPLL
Example
Parallel plans
Final remarks

Actions/relations as propositional formulae

 Example$$
\left(a_{1} \leftrightarrow a_{2}^{\prime}\right) \wedge\left(a_{2} \leftrightarrow a_{3}^{\prime}\right) \wedge\left(a_{3} \leftrightarrow a_{1}^{\prime}\right) \text { represents the matrix: }
$$

M. Helmert,
B. Nebel

	000	001	010	011	100	101	110	111
000	1	0	0	0	0	0	0	0
001	0	0	0	0	1	0	0	0
010	0	1	0	0	0	0	0	0
011	0	0	0	0	0	1	0	0
100	0	0	1	0	0	0	0	0
101	0	0	0	0	0	0	1	0
110	0	0	0	1	0	0	0	0
111	0	0	0	0	0	0	0	1

SAT planning
Relations in CPC
Actions in CPC
Plans in CPC
DPLL
Example
Parallel plans
Final remarks

This action rotates the value of the state variables a_{1}, a_{2}, a_{3} one step forward.

Translating operators into formulae

- Any operator can be translated into a propositional formula.
- Translation takes polynomial time.
- Resulting formula has polynomial size.
- Two main applications in planning algorithms are:
(1) planning as satisfiability and
(2) progression \& regression for state sets as used in symbolic state-space traversal, typically implemented with the help of binary decision diagrams.

SAT planning
Relations in CPC
Actions in CPC
Plans in CPC
DPLL
Example
Parallel plans
Final remarks

Translating operators into formulae

Definition (operators in propositional logic)
Let $o=\langle c, e\rangle$ be an operator and A a set of state variables.
Define $\tau_{A}(o)$ as the conjunction of

$$
\begin{align*}
& c \tag{1}\\
& \bigwedge_{a \in A}\left(\left(E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)\right) \leftrightarrow a^{\prime}\right) \tag{2}\\
& \bigwedge_{a \in A} \neg\left(E P C_{a}(e) \wedge E P C_{\neg a}(e)\right)
\end{align*}
$$

M. Helmert,
B. Nebel

SAT planning
Relations in CPC
Actions in CPC
DPLL
Example
Parallel plans
Final remarks
Condition (1) states that the precondition of o is satisfied. Condition (2) states that the new value of a, represented by a^{\prime}, is 1 if the old value was 1 and it did not become 0 , or if it became 1.
Condition (3) states that none of the state variables is assigned both 0 and 1 . Together with (1), this encodes applicability of the operator.

Translating operators into formulae

 Example
Example

Let the state variables be $A=\{a, b, c\}$.
Consider the operator $\langle a \vee b,(b \triangleright a) \wedge(c \triangleright \neg a) \wedge(a \triangleright b)\rangle$.
The corresponding propositional formula is
M. Helmert,
B. Nebel

$$
\begin{aligned}
(a \vee b) & \wedge\left((b \vee(a \wedge \neg c)) \leftrightarrow a^{\prime}\right) \\
& \wedge\left((a \vee(b \wedge \neg \perp)) \leftrightarrow b^{\prime}\right) \\
& \wedge\left((\perp \vee(c \wedge \neg \perp)) \leftrightarrow c^{\prime}\right) \\
& \wedge \neg(b \wedge c) \wedge \neg(a \wedge \perp) \wedge \neg(\perp \wedge \perp) \\
\equiv(a \vee b) & \wedge\left((b \vee(a \wedge \neg c)) \leftrightarrow a^{\prime}\right) \\
& \wedge\left((a \vee b) \leftrightarrow b^{\prime}\right) \\
& \wedge\left(c \leftrightarrow c^{\prime}\right) \\
& \wedge \neg(b \wedge c)
\end{aligned}
$$

SAT planning
Relations in CPC
Actions in CPC
Plans in CPC
DPLL
Example
Parallel plans
Final remarks

Translating operators into formulae

 ExampleAl Planning
M. Helmert,
B. Nebel

SAT planning
Relations in CPC
Actions in CPC
Plans in CPC
DPLL
Example
Parallel plans
Final remarks

$$
(a \wedge b) \wedge\left(a \leftrightarrow a^{\prime}\right) \wedge\left(b \leftrightarrow b^{\prime}\right) \wedge c^{\prime} \wedge\left(d \leftrightarrow d^{\prime}\right) \wedge\left((d \vee e) \leftrightarrow e^{\prime}\right)
$$

Correctness

Lemma

Let s and s^{\prime} be states and o an operator. Let $v: A \cup A^{\prime} \rightarrow\{0,1\}$ be a valuation such that

SAT planning
Relations in CPC
Actions in CPC
Plans in CPC
DPLL
Example
Parallel plans
(1) for all $a \in A, v(a)=s(a)$, and
(2) for all $a \in A, v\left(a^{\prime}\right)=s^{\prime}(a)$.

Then $v \models \tau_{A}(o)$ if and only if $s^{\prime}=\operatorname{app}_{o}(s)$.

Planning as satisfiability

(1) Encode operator sequences of length $0,1,2, \ldots$ as formulae $\Phi_{0}^{\text {seq }}, \Phi_{1}^{\text {seq }}, \Phi_{2}^{\text {seq }}, \ldots$ (see next slide).
(2) Test satisfiability of $\Phi_{0}^{s e q}, \Phi_{1}^{s e q}, \Phi_{2}^{s e q}, \ldots$.
(3) If a satisfying valuation v is found, a plan can be constructed from v.

Planning as satisfiability

Definition (transition relation in propositional logic)

For $\langle A, I, O, G\rangle$ define $\mathcal{R}_{1}\left(A, A^{\prime}\right)=\bigvee_{o \in O} \tau_{A}(o)$.

Definition (bounded-length plans in propositional logic)

Existence of plans of length t is represented by the following formula over propositions $A^{0} \cup \cdots \cup A^{t}$, where
$\Phi_{t}^{s e q}=\iota^{0} \wedge \mathcal{R}_{1}\left(A^{0}, A^{1}\right) \wedge \mathcal{R}_{1}\left(A^{1}, A^{2}\right) \wedge \cdots \wedge \mathcal{R}_{1}\left(A^{t-1}, A^{t}\right) \wedge G^{t}$
where $\iota^{0}=\bigwedge_{a \in A, I(a)=1} a^{0} \wedge \bigwedge_{a \in A, I(a)=0} \neg a^{0}$ and G^{t} is G with propositions a replaced by a^{t}.

Planning as satisfiability

Example

Example

Al Planning
M. Helmert,
B. Nebel

Consider
$I \models b \wedge c$
$G=(b \wedge \neg c) \vee(\neg b \wedge c)$
$o_{1}=\langle\top,(c \triangleright \neg c) \wedge(\neg c \triangleright c)\rangle$
$o_{2}=\langle\top,(b \triangleright \neg b) \wedge(\neg b \triangleright b)\rangle$
SAT planning
Relations in CPC
Actions in CPC
Plans in CPC
DPLL
Example
Parallel plans
Final remarks

The formula $\Phi_{3}^{\text {seq }}$ for plans of length 3 is:
$\left(b^{0} \wedge c^{0}\right)$
$\wedge\left(\left(\left(b^{0} \leftrightarrow b^{1}\right) \wedge\left(c^{0} \leftrightarrow \neg c^{1}\right)\right) \vee\left(\left(b^{0} \leftrightarrow \neg b^{1}\right) \wedge\left(c^{0} \leftrightarrow c^{1}\right)\right)\right)$
$\wedge\left(\left(\left(b^{1} \leftrightarrow b^{2}\right) \wedge\left(c^{1} \leftrightarrow \neg c^{2}\right)\right) \vee\left(\left(b^{1} \leftrightarrow \neg b^{2}\right) \wedge\left(c^{1} \leftrightarrow c^{2}\right)\right)\right)$
$\wedge\left(\left(\left(b^{2} \leftrightarrow b^{3}\right) \wedge\left(c^{2} \leftrightarrow \neg c^{3}\right)\right) \vee\left(\left(b^{2} \leftrightarrow \neg b^{3}\right) \wedge\left(c^{2} \leftrightarrow c^{3}\right)\right)\right)$
$\wedge\left(\left(b^{3} \wedge \neg c^{3}\right) \vee\left(\neg b^{3} \wedge c^{3}\right)\right)$.

Planning as satisfiability

Existence of (optimal) plans

Theorem

Let $\Phi_{t}^{\text {seq }}$ be the formula for $\langle A, I, O, G\rangle$ and plan length t. The formula $\Phi_{t}^{\text {seq }}$ is satisfiable if and only if there is a sequence of states s_{0}, \ldots, s_{t} and operators o_{1}, \ldots, o_{t} such that $s_{0}=I$, $s_{i}=\operatorname{app}_{o_{i}}\left(s_{i-1}\right)$ for all $i \in\{1, \ldots, t\}$, and $s_{t} \models G$.

Consequence

If $\Phi_{0}^{s e q}, \Phi_{1}^{s e q}, \ldots, \Phi_{i-1}^{s e q}$ are unsatisfiable and $\Phi_{i}^{s e q}$ is satisfiable, then the length of shortest plans is i.
Satisfiability planning with $\Phi_{i}^{s e q}$ yields optimal plans, like heuristic search with admissible heuristics and optimal algorithms like A^{*} or IDA*.

Planning as satisfiability

Plan extraction

Al Planning
M. Helmert,
B. Nebel

All satisfiability algorithms give a valuation v that satisfies $\Phi_{i}^{s e q}$ upon finding out that $\Phi_{i}^{s e q}$ is satisfiable.
This makes it possible to construct a plan.

Constructing a plan from a satisfying valuation
Let v be a valuation so that $v \models \Phi_{t}^{s e q}$. Then define $s_{i}(a)=v\left(a^{i}\right)$ for all $a \in A$ and $i \in\{0, \ldots, t\}$.
The i-th operator in the plan is $o \in O$ if $\operatorname{app}\left(s_{i-1}\right)=s_{i}$. Note: There may be more than one such operator, in which case any of them may be chosen.

Planning as satisfiability

Example, continued

Example

AI Planning
M. Helmert
B. Nebel

One valuation that satisfies $\Phi_{3}^{s e q}$:

	time i			
	0	1	2	3
b^{i}	1	1	0	0
c^{i}	1	0	0	1

SAT planning
Relations in CPC
Actions in CPC
Plans in CPC
DPLL
Example
Parallel plans
Final remarks

Note:
(1) There also exists a plan of length 1 .
(2) No plan of length 2 exists.

Conjunctive normal form

Many satisfiability algorithms require formulas in the conjunctive normal form: transformation by repeated applications of the following equivalences.

$$
\begin{aligned}
\neg(\phi \vee \psi) & \equiv \neg \phi \wedge \neg \psi \\
\neg(\phi \wedge \psi) & \equiv \neg \phi \vee \neg \psi \\
\neg \neg \phi & \equiv \phi \\
\phi \vee\left(\psi_{1} \wedge \psi_{2}\right) & \equiv\left(\phi \vee \psi_{1}\right) \wedge\left(\phi \vee \psi_{2}\right)
\end{aligned}
$$

The formula is a conjunction of clauses (disjunctions of literals).

Example

$(A \vee \neg B \vee C) \wedge(\neg C \vee \neg B) \wedge A$
Note: Transformation to conjunctive normal form can increase formula size exponentially. There are also polynomial translations which introduce additional variables.

The unit resolution rule

Unit resolution

From $l_{1} \vee l_{2} \vee \cdots \vee l_{n}$ (here $n \geq 1$) and $\overline{l_{1}}$, infer $l_{2} \vee \cdots \vee l_{n}$.

Example

From $a \vee b \vee c$ and $\neg a$ infer $b \vee c$.

Unit resolution: a special case

From A and $\neg A$ we get the empty clause \perp
("disjunction consisting of zero disjuncts").

Unit subsumption

The clause $l_{1} \vee l_{2} \vee \cdots \vee l_{n}$ can be eliminated if we have the unit clause l_{1}.

The Davis-Putnam-Logemann-Loveland procedure

- The first efficient decision procedure for any logic (Davis, Putnam, Logemann \& Loveland, 1960/62).
- Based on binary search through the valuations of a formula.
- Unit resolution and unit subsumption help pruning the search tree.

SAT planning
Relations in CPC
Actions in CPC
Plans in CPC
DPLL
Example
Parallel plans
Final remarks

- The currently most efficient satisfiability algorithms are variants of the DPLL procedure. (Although there is currently a shift toward viewing these procedures as performing more general reasoning: clause learning.)

Satisfiability test by the DPLL procedure

Davis-Putnam-Logemann-Loveland Procedure

def $\operatorname{DPLL}(C$: clauses):
while there are clauses $\left(l_{1} \vee \cdots \vee l_{n}\right) \in C$ and $\overline{l_{1}} \in C$:

$$
C:=\left(C \backslash\left\{l_{1} \vee \cdots \vee l_{n}\right\}\right) \cup\left\{l_{2} \vee \cdots \vee l_{n}\right\}
$$

while there are clauses $\left(l_{1} \vee \cdots \vee l_{n}\right) \in C(n \geq 2)$ and $l_{1} \in C$:

$$
C:=C \backslash\left\{l_{1} \vee \cdots \vee l_{n}\right\}
$$

if $\perp \in C$:
return false
if C contains only unit clauses: return true
Pick some variable a such that $a \notin C$ and $\neg a \notin C$. return $\operatorname{DPLL}(C \cup\{a\})$ or $\operatorname{DPLL}(C \cup\{\neg a\})$

Planning as satisfiability

Example: plan search with DPLL

Al Planning
M. Helmert,
B. Nebel

Consider the problem from a previous slide, with two operators each inverting the value of one state variable, for plan length 3.

$$
\begin{aligned}
& \left(b^{0} \wedge c^{0}\right) \\
\wedge & \left(\left(\left(b^{0} \leftrightarrow b^{1}\right) \wedge\left(c^{0} \leftrightarrow \neg c^{1}\right)\right) \vee\left(\left(b^{0} \leftrightarrow \neg b^{1}\right) \wedge\left(c^{0} \leftrightarrow c^{1}\right)\right)\right) \\
\wedge & \left(\left(\left(b^{1} \leftrightarrow b^{2}\right) \wedge\left(c^{1} \leftrightarrow \neg c^{2}\right)\right) \vee\left(\left(b^{1} \leftrightarrow \neg b^{2}\right) \wedge\left(c^{1} \leftrightarrow c^{2}\right)\right)\right) \\
\wedge & \left(\left(\left(b^{2} \leftrightarrow b^{3}\right) \wedge\left(c^{2} \leftrightarrow \neg c^{3}\right)\right) \vee\left(\left(b^{2} \leftrightarrow \neg b^{3}\right) \wedge\left(c^{2} \leftrightarrow c^{3}\right)\right)\right) \\
\wedge & \left(\left(b^{3} \wedge \neg c^{3}\right) \vee\left(\neg b^{3} \wedge c^{3}\right)\right) .
\end{aligned}
$$

Planning as satisfiability

Example: plan search with DPLL

To obtain a short CNF formula, we introduce auxiliary variables o_{1}^{i} and o_{2}^{i} for $i \in\{1,2,3\}$ denoting operator applications.

$$
\begin{aligned}
& o_{1}^{1} \rightarrow\left(\left(b^{0} \leftrightarrow b^{1}\right) \wedge\left(c^{0} \leftrightarrow \neg c^{1}\right)\right) \\
& o_{2}^{1} \rightarrow\left(\left(b^{0} \leftrightarrow \neg b^{1}\right) \wedge\left(c^{0} \leftrightarrow c^{1}\right)\right) \\
& o_{1}^{2} \rightarrow\left(\left(b^{1} \leftrightarrow b^{2}\right) \wedge\left(c^{1} \leftrightarrow \neg c^{2}\right)\right) \\
& o_{2}^{2} \rightarrow\left(\left(b^{1} \leftrightarrow \neg b^{2}\right) \wedge\left(c^{1} \leftrightarrow c^{2}\right)\right) \\
& o_{1}^{3} \rightarrow\left(\left(b^{2} \leftrightarrow b^{3}\right) \wedge\left(c^{2} \leftrightarrow \neg c^{3}\right)\right) \\
& o_{2}^{3} \rightarrow\left(\left(b^{2} \leftrightarrow \neg b^{3}\right) \wedge\left(c^{2} \leftrightarrow c^{3}\right)\right)
\end{aligned}
$$

SAT planning

$$
o_{1}^{2} \vee o_{2}^{2}
$$

$$
o_{1}^{1} \vee o_{2}^{1}
$$

Planning as satisfiability

Example: plan search with DPLL

Al Planning
M. Helmert,
B. Nebel

We rewrite the formulae for operator applications by using the equivalence $\phi \rightarrow\left(l \leftrightarrow l^{\prime}\right) \equiv\left(\left(\phi \wedge l \rightarrow l^{\prime}\right) \wedge\left(\phi \wedge \bar{l} \rightarrow \bar{l}^{\prime}\right)\right)$.
b^{0}
c^{0}
$o_{1}^{1} \vee o_{2}^{1}$
$o_{1}^{2} \vee o_{2}^{2}$
$o_{1}^{3} \vee o_{2}^{3}$
$b^{3} \vee c^{3}$
$\neg c^{3} \vee \neg b^{3}$

$$
\begin{array}{lll}
o_{1}^{1} \wedge b^{0} \rightarrow b^{1} & o_{1}^{2} \wedge b^{1} \rightarrow b^{2} & o_{1}^{3} \wedge b^{2} \rightarrow b^{3} \\
o_{1}^{1} \wedge \neg b^{0} \rightarrow \neg b^{1} & o_{1}^{2} \wedge \neg b^{1} \rightarrow \neg b^{2} & o_{1}^{3} \wedge \neg b^{2} \rightarrow \neg b^{3} \\
o_{1}^{1} \wedge c^{0} \rightarrow \neg c^{1} & o_{1}^{2} \wedge c^{1} \rightarrow \neg c^{2} & o_{1}^{3} \wedge c^{2} \rightarrow \neg c^{3} \\
o_{1}^{1} \wedge \neg c^{0} \rightarrow c^{1} & o_{1}^{2} \wedge \neg c^{1} \rightarrow c^{2} & o_{1}^{3} \wedge \neg c^{2} \rightarrow c^{3} \\
o_{2}^{1} \wedge b^{0} \rightarrow \neg b^{1} & o_{2}^{2} \wedge b^{1} \rightarrow \neg b^{2} & o_{2}^{3} \wedge b^{2} \rightarrow \neg b^{3} \\
o_{2}^{1} \wedge \neg b^{0} \rightarrow b^{1} & o_{2}^{2} \wedge \neg b^{1} \rightarrow b^{2} & o_{2}^{3} \wedge \neg b^{2} \rightarrow b^{3} \\
o_{2}^{1} \wedge c^{0} \rightarrow c^{1} & o_{2}^{2} \wedge c^{1} \rightarrow c^{2} & o_{2}^{3} \wedge c^{2} \rightarrow c^{3} \\
o_{2}^{1} \wedge \neg c^{0} \rightarrow c^{1} & o_{2}^{2} \wedge \neg c^{1} \rightarrow c^{2} & o_{2}^{3} \wedge \neg c^{2} \rightarrow c^{3}
\end{array}
$$

SAT planning
Relations in CPC
Actions in CPC
Plans in CPC
DPLL
Example
Parallel plans
Final remarks

Planning as satisfiability

Example: plan search with DPLL

Eliminate implications with $\left(\left(l_{1} \wedge l_{2}\right) \rightarrow l_{3}\right) \equiv\left(\overline{l_{1}} \vee \overline{l_{2}} \vee l_{3}\right)$.
Al Planning
M. Helmert,
B. Nebel

b^{0}	$\neg o_{1}^{1} \vee \neg b^{0} \vee b^{1}$	$\neg o_{1}^{2} \vee \neg b^{1} \vee b^{2}$	$\neg o_{1}^{3} \vee \neg b^{2} \vee b^{3}$
c^{0}	$\neg o_{1}^{1} \vee b^{0} \vee \neg b^{1}$	$\neg o_{1}^{2} \vee b^{1} \vee \neg b^{2}$	$\neg o_{1}^{3} \vee b^{2} \vee \neg b^{3}$
$o_{1}^{1} \vee o_{2}^{1}$	$\neg o_{1}^{1} \vee \neg c^{0} \vee \neg c^{1}$	$\neg o_{1}^{2} \vee \neg c^{1} \vee \neg c^{2}$	$\neg o_{1}^{3} \vee \neg c^{2} \vee \neg c^{3}$
$o_{1}^{2} \vee o_{2}^{2}$	$\neg o_{1}^{1} \vee c^{0} \vee c^{1}$	$\neg o_{1}^{2} \vee c^{1} \vee c^{2}$	$\neg o_{1}^{3} \vee c^{2} \vee c^{3}$
$o_{1}^{3} \vee o_{2}^{3}$	$\neg o_{2}^{1} \vee \neg b^{0} \vee \neg b^{1}$	$\neg o_{2}^{2} \vee \neg b^{1} \vee \neg b^{2}$	$\neg o_{2}^{3} \vee \neg b^{2} \vee \neg b^{3}$
$b^{3} \vee c^{3}$	$\neg o_{2}^{1} \vee b^{0} \vee b^{1}$	$\neg o_{2}^{2} \vee b^{1} \vee b^{2}$	$\neg o_{2}^{3} \vee b^{2} \vee b^{3}$
$\neg c^{3} \vee \neg b^{3}$	$\neg o_{2}^{1} \vee \neg c^{0} \vee c^{1}$	$\neg o_{2}^{2} \vee \neg c^{1} \vee c^{2}$	$\neg o_{2}^{3} \vee \neg c^{2} \vee c^{3}$
	$\neg o_{2}^{1} \vee c^{0} \vee \neg c^{1}$	$\neg o_{2}^{2} \vee c^{1} \vee \neg c^{2}$	$\neg o_{2}^{3} \vee c^{2} \vee \neg c^{3}$

SAT planning

Valuation constructed by the DPLL procedure

	0	1	2	3
b^{i}				
c^{i}				

	1	2	3
o_{1}^{i}			
o_{2}^{i}			

Planning as satisfiability

Example: plan search with DPLL

Identify unit clauses.

Al Planning
M. Helmert,
B. Nebel
b^{0}

$$
\neg o_{1}^{2} \vee \neg b^{1} \vee b^{2}
$$

$$
\neg o_{1}^{3} \vee \neg b^{2} \vee b^{3}
$$

c^{0}

$$
\neg o_{1}^{\frac{1}{2}} \vee b^{1} \vee \neg b^{2}
$$

$$
\neg o_{1}^{\frac{1}{3}} \vee b^{2} \vee \neg b^{3}
$$

$o_{1}^{1} \vee o_{2}^{1}$

$$
\neg o_{1}^{2} \vee \neg c^{1} \vee \neg c^{2}
$$

$$
\neg o_{1}^{3} \vee \neg c^{2} \vee \neg c^{3}
$$

$o_{1}^{2} \vee o_{2}^{2}$

$$
\neg o_{1}^{2} \vee c^{1} \vee c^{2}
$$

$$
\neg o_{1}^{3} \vee c^{2} \vee c^{3}
$$

$o_{1}^{3} \vee o_{2}^{3}$

$$
\neg o_{2}^{2} \vee \neg b^{1} \vee \neg b^{2}
$$

$$
\neg o_{2}^{3} \vee \neg b^{2} \vee \neg b^{3}
$$

$b^{3} \vee c^{3}$

$$
\neg o_{2}^{2} \vee b^{1} \vee b^{2}
$$

$$
\neg o_{2}^{3} \vee b^{2} \vee b^{3}
$$

$\neg c^{3} \vee \neg b^{3}$

$$
\begin{aligned}
& \neg o_{1}^{1} \vee \neg b^{0} \vee b^{1} \\
& \neg o_{1}^{1} \vee b^{0} \vee \neg b^{1} \\
& \neg O_{1}^{1} \vee \neg c^{0} \vee \neg c \\
& \neg o_{1}^{1} \vee c^{0} \vee c^{1} \\
& \neg o_{2}^{1} \vee \neg b^{0} \vee \neg b \\
& \neg o_{2}^{1} \vee b^{0} \vee b^{1} \\
& \neg o_{2}^{1} \vee \neg c^{0} \vee c^{1} \\
& \neg o_{2}^{1} \vee c^{0} \vee \neg c^{1}
\end{aligned}
$$

$$
\neg o_{2}^{2} \vee \neg c^{1} \vee c^{2}
$$

$$
\neg o_{2}^{3} \vee \neg c^{2} \vee c^{3}
$$

$$
\neg O_{2}^{2} \vee c^{1} \vee \neg c^{2}
$$

$$
\neg o_{2}^{3} \vee c^{2} \vee \neg c^{3}
$$

Valuation constructed by the DPLL procedure

	0	1	2	3
b^{i}	1			
c^{i}	1			

	1	2	3
o_{1}^{i}			
o_{2}^{i}			

Planning as satisfiability

Example: plan search with DPLL

Perform unit resolution with b^{0} and c^{0}.
Al Planning
M. Helmert,
B. Nebel
b^{0}

$$
\neg o_{1}^{2} \vee \neg b^{1} \vee b^{2}
$$

$$
\neg o_{1}^{3} \vee \neg b^{2} \vee b^{3}
$$

c^{0}

$$
\neg o_{1}^{\frac{1}{2}} \vee b^{1} \vee \neg b^{2}
$$

$$
\neg o_{1}^{3} \vee b^{2} \vee \neg b^{3}
$$

$o_{1}^{1} \vee o_{2}^{1}$

$$
\neg o_{1}^{2} \vee \neg c^{1} \vee \neg c^{2}
$$

$$
\neg o_{1}^{3} \vee \neg c^{2} \vee \neg c^{3}
$$

$o_{1}^{2} \vee o_{2}^{2}$

$$
\neg o_{1}^{2} \vee c^{1} \vee c^{2}
$$

$$
\neg o_{1}^{3} \vee c^{2} \vee c^{3}
$$

$o_{1}^{3} \vee o_{2}^{3}$
$b^{3} \vee c^{3}$
$\neg c^{3} \vee \neg b^{3}$

$$
\begin{aligned}
& \neg o_{1}^{1} \vee \neg b^{0} \vee b^{1} \\
& \neg o_{1}^{1} \vee b^{0} \vee \neg b^{1}
\end{aligned}
$$

SAT planning

$$
\neg o_{2}^{2} \vee \neg b^{1} \vee \neg b^{2}
$$

$$
\neg o_{2}^{3} \vee \neg b^{2} \vee \neg b^{3}
$$

$$
\neg o_{2}^{2} \vee b^{1} \vee b^{2}
$$

$$
\neg o_{2}^{3} \vee b^{2} \vee b^{3}
$$

$$
\neg o_{2}^{2} \vee \neg c^{1} \vee c^{2}
$$

$$
\neg o_{2}^{3} \vee \neg c^{2} \vee c^{3}
$$

$$
\neg O_{2}^{2} \vee c^{1} \vee \neg c^{2}
$$

$$
\neg o_{2}^{3} \vee c^{2} \vee \neg c^{3}
$$

Valuation constructed by the DPLL procedure

	0	1	2	3
b^{i}	1			
c^{i}	1			

	1	2	3
o_{1}^{i}			
o_{2}^{i}			

Planning as satisfiability

Example: plan search with DPLL

Perform unit subsumption with b^{0} and c^{0}.
Al Planning
M. Helmert,
B. Nebel
b^{0}
c^{0}
$o_{1}^{1} \vee o_{2}^{1}$
$o_{1}^{2} \vee o_{2}^{2}$
$o_{1}^{3} \vee o_{2}^{3}$
$b^{3} \vee c^{3}$
$\neg c^{3} \vee \neg b^{3}$

$$
\begin{array}{lll}
\neg o_{1}^{1} \vee \neg b^{0} \vee b^{1} & \neg o_{1}^{2} \vee \neg b^{1} \vee b^{2} & \neg o_{1}^{3} \vee \neg b^{2} \vee b^{3} \\
\neg o_{1}^{1} \vee b^{0} \vee \neg b^{1} & \neg o_{1}^{2} \vee b^{1} \vee \neg b^{2} & \neg o_{1}^{3} \vee b^{2} \vee \neg b^{3} \\
\neg o_{1}^{1} \vee \neg c^{0} \vee \neg c^{1} & \neg o_{1}^{2} \vee \neg c^{1} \vee \neg c^{2} & \neg o_{1}^{3} \vee \neg c^{2} \vee \neg c^{3} \\
\neg o_{1}^{1} \vee c^{0} \vee c^{1} & \neg o_{1}^{2} \vee c^{1} \vee c^{2} & \neg o_{1}^{3} \vee c^{2} \vee c^{3} \\
\neg o_{2}^{1} \vee \neg b^{0} \vee \neg b^{1} & \neg o_{2}^{2} \vee \neg b^{1} \vee \neg b^{2} & \neg o_{2}^{3} \vee \neg b^{2} \vee \neg b^{3} \\
\neg o_{2}^{1} \vee b^{0} \vee b^{1} & \neg o_{2}^{2} \vee b^{1} \vee b^{2} & \neg o_{2}^{3} \vee b^{2} \vee b^{3} \\
\neg O_{2}^{1} \vee \neg c^{0} \vee c^{1} & \neg o_{2}^{2} \vee \neg c^{1} \vee c^{2} & \neg o_{2}^{3} \vee \neg c^{2} \vee c^{3} \\
\neg o_{2}^{1} \vee c^{0} \vee \neg c^{1} & \neg o_{2}^{2} \vee c^{1} \vee \neg c^{2} & \neg o_{2}^{3} \vee c^{2} \vee \neg c^{3}
\end{array}
$$

SAT planning

Valuation constructed by the DPLL procedure

	0	1	2	3
b^{i}	1			
c^{i}	1			

	1	2	3
o_{1}^{i}			
o_{2}^{i}			

Planning as satisfiability

Example: plan search with DPLL

No unhandled unit clauses exist. Must branch.
Al Planning
M. Helmert,
B. Nebel

	$\neg o_{1}^{1} \vee \neg b^{0} \vee b^{1}$	$\neg o_{1}^{2} \vee \neg b^{1} \vee b^{2}$	$\neg o_{1}^{3} \vee \neg b^{2} \vee b^{3}$
	$\neg 0_{1}^{1} \vee b^{0} \vee \neg b^{1}$	$\neg o_{1}^{2} \vee b^{1} \vee \neg b^{2}$	$\neg o_{1}^{3} \vee b^{2} \vee \neg b^{3}$
$o_{1}^{1} \vee o_{2}^{1}$	$\neg o_{1}^{1} \vee \neg c^{0} \vee \neg c^{1}$	$\neg o_{1}^{2} \vee \neg c^{1} \vee \neg c^{2}$	$\neg o_{1}^{3} \vee \neg c^{2} \vee \neg c^{3}$
$o_{1}^{2} \vee o_{2}^{2}$	$\neg 0_{1}^{1} \vee c^{0} \vee c^{1}$	$\neg o_{1}^{2} \vee c^{1} \vee c^{2}$	$\neg o_{1}^{3} \vee c^{2} \vee c^{3}$
$o_{1}^{3} \vee o_{2}^{3}$	$\neg o_{2}^{1} \vee \neg b^{0} \vee \neg b^{1}$	$\neg o_{2}^{2} \vee \neg b^{1} \vee \neg b^{2}$	$\neg o_{2}^{3} \vee \neg b^{2} \vee \neg b^{3}$
$b^{3} \vee c^{3}$	$\neg 0_{2}^{1} \vee b^{0} \vee b^{1}$	$\neg o_{2}^{2} \vee b^{1} \vee b^{2}$	$\neg o_{2}^{3} \vee b^{2} \vee b^{3}$
$\neg c^{3} \vee \neg b^{3}$	$\neg o_{2}^{1} \vee \neg c^{1}$	$\neg o_{2}^{2} \vee \neg c^{1} \vee c^{2}$	$\neg o_{2}^{3} \vee \neg c^{2} \vee c^{3}$
	$\neg 0_{2}^{1} \vee c^{0} \vee \neg c^{1}$	$\neg o_{2}^{2} \vee c^{1} \vee \neg c^{2}$	$\neg o_{2}^{3} \vee c^{2} \vee \neg c^{3}$

SAT planning

Valuation constructed by the DPLL procedure

	0	1	2	3
b^{i}	1			
c^{i}	1			

	1	2	3
o_{1}^{i}			
o_{2}^{i}			

Planning as satisfiability

Example: plan search with DPLL

We branch on b^{1}, first trying out $b^{1}=1$.
Al Planning
M. Helmert,
B. Nebel

$\neg o_{1}^{1} \vee \neg b^{0} \vee b^{1}$	$\neg o_{1}^{2} \vee \neg b^{1} \vee b^{2}$	$\neg o_{1}^{3} \vee \neg b^{2} \vee b^{3}$
$\neg 0_{1}^{1} \vee b^{0} \vee \neg b^{1}$	$\neg o_{1}^{2} \vee b^{1} \vee \neg b^{2}$	$\neg o_{1}^{3} \vee b^{2} \vee \neg b^{3}$
$\neg o_{1}^{1} \vee \neg c^{0} \vee \neg c^{1}$	$\neg o_{1}^{2} \vee \neg c^{1} \vee \neg c^{2}$	$\neg o_{1}^{3} \vee \neg c^{2} \vee \neg c^{3}$
$\neg 0_{1}^{1} \vee c^{0} \vee c^{1}$	$\neg o_{1}^{2} \vee c^{1} \vee c^{2}$	$\neg o_{1}^{3} \vee c^{2} \vee c^{3}$
$\neg o_{2}^{1} \vee \neg b^{0} \vee \neg b^{1}$	$\neg o_{2}^{2} \vee \neg b^{1} \vee \neg b^{2}$	$\neg o_{2}^{3} \vee \neg b^{2} \vee \neg b^{3}$
$\neg o_{2}^{1} \vee b^{0} \vee b^{1}$	$\neg o_{2}^{2} \vee b^{1} \vee b^{2}$	$\neg o_{2}^{3} \vee b^{2} \vee b^{3}$
$\neg o_{2}^{1} \vee \neg c^{0} \vee c^{1}$	$\neg o_{2}^{2} \vee \neg c^{1} \vee c^{2}$	$\neg o_{2}^{3} \vee \neg c^{2} \vee c^{3}$
$\neg 0_{2}^{1} \vee c^{0} \vee \neg c^{1}$	$\neg o_{2}^{2} \vee c^{1} \vee \neg c^{2}$	$\neg o_{2}^{3} \vee c^{2} \vee \neg c^{3}$

SAT planning

Valuation constructed by the DPLL procedure

	0	1	2	3
b^{i}	1	1		
c^{i}	1			

	1	2	3
o_{1}^{i}			
o_{2}^{i}			

Planning as satisfiability

Example: plan search with DPLL

Perform unit resolution and unit subsumption with b^{1}.
Al Planning
M. Helmert,
B. Nebel

b^{0}	$\neg O_{1}^{1} \vee \neg b^{0} \vee b^{1}$	$\neg o_{1}^{2} \vee \neg b^{1} \vee b^{2}$	$\neg O_{1}^{3} \vee \neg b^{2} \vee b^{3}$
0	- $1 \vee 0{ }^{0}$	$\neg O_{1}^{2} \vee b^{1} \vee \neg b^{2}$	$\neg O_{1}^{3} \vee b^{2} \vee \neg b^{3}$
	$\neg O_{1}^{1} \vee \neg c^{0} \vee \neg c^{1}$	$\neg o_{1}^{2} \vee \neg c^{1} \vee \neg c^{2}$	$\neg o_{1}^{3} \vee \neg c^{2} \vee \neg c^{3}$
$o_{1}^{1} \vee o_{2}^{1}$	$\rightarrow 0_{1}^{1} \mathrm{~V} c^{0} \mathrm{~V} c^{1}$	$\neg o_{1}^{2} \vee c^{1} \vee c^{2}$	$\neg o_{1}^{3} \vee c^{2} \vee c^{3}$
$o_{1}^{2} \vee o_{2}^{2}$	$\neg o_{2}^{1} \vee \neg b^{0} \vee \neg b^{1}$	$\neg O_{2}^{2} \vee \neg b^{1} \vee \neg b^{2}$	$\neg O_{2}^{3} \vee \neg b^{2} \vee \neg b^{3}$
$O_{1}^{3} \vee o_{2}^{3}$	$\rightarrow 0^{1} \vee b^{0} \mathrm{~V}^{1}$	$\neg O_{2}^{2} \vee b^{1} \vee b^{2}$	$\neg O_{2}^{3} \vee b^{2} \vee b^{3}$
	$\neg O_{2}^{1} \vee \neg c^{0} \vee c^{1}$	$\neg O_{2}^{2} \vee \neg c^{1} \vee c^{2}$	$\neg O_{2}^{3} \vee \neg c^{2} \vee c^{3}$
$\neg c^{3} \vee \neg b^{3}$	$O_{2}^{2} \mathrm{~V} c^{0} \mathrm{~V}$	$\neg O_{2}^{2} \vee c^{1} \vee \neg c^{2}$	$\neg o_{2}^{3} \vee c^{2} \vee \neg c^{3}$

SAT planning

Valuation constructed by the DPLL procedure

	0	1	2	3
b^{i}	1	1		
c^{i}	1			

	1	2	3
o_{1}^{i}			
o_{2}^{i}			

Planning as satisfiability

Example: plan search with DPLL

Perform unit resolution and unit subsumption with $\neg o_{2}^{1}$.
Al Planning
M. Helmert,
B. Nebel

b	$\neg O_{1}^{1} \vee \sim b^{1}$	$\neg o_{1}^{2} \vee \neg b^{1} \vee b^{2}$	$\neg o_{1}^{3} \vee \neg b^{2} \vee b^{3}$
b	$\neg o_{1}^{1} \vee b^{0} \vee \neg b^{1}$	$\rightarrow 0^{2} \vee b^{1} \vee \neg b^{2}$	$\neg o_{1}^{3} \vee b^{2} \vee \neg b^{3}$
	$\neg O_{1}^{1} \vee \neg c^{0} \vee \neg c^{1}$	$\neg O_{1}^{2} \vee \neg c^{1} \vee \neg c^{2}$	$\neg o_{1}^{3} \vee \neg c^{2} \vee \neg c^{3}$
$o_{1}^{1} \vee o_{2}^{1}$	$0_{1}^{1} \mathrm{~V} c^{0} \mathrm{~V} c^{1}$	$\neg o_{1}^{2} \vee c^{1} \vee c^{2}$	$\neg o_{1}^{3} \vee c^{2} \vee c^{3}$
$\begin{aligned} & o_{1}^{2} \vee o_{2}^{2} \\ & o_{1}^{3} \vee o_{3}^{3} \end{aligned}$	$\neg O_{2}^{1} \vee \neg b^{0} \vee \neg b^{1}$	$\neg O_{2}^{2} \vee \neg b^{1} \vee \neg b^{2}$	$\neg o_{2}^{3} \vee \neg b^{2} \vee \neg b^{3}$
$\begin{aligned} & o_{1}^{3} \vee o_{2}^{3} \\ & b^{3} \vee c^{3} \end{aligned}$	$0_{2}^{1} \vee b^{0} \vee b^{1}$	$\square 0_{2}^{2} \vee b^{1} \vee b^{2}$	$\neg o_{2}^{3} \vee b^{2} \vee b^{3}$
$\neg c^{3} \vee \neg b^{3}$	$\neg o_{2}^{1} \vee \neg c^{0} \vee c^{1}$	$\neg o_{2}^{2} \vee \neg c^{1} \vee c^{2}$	$\neg o_{2}^{3} \vee \neg c^{2} \vee c^{3}$

SAT planning

Valuation constructed by the DPLL procedure

	0	1	2	3
b^{i}	1	1		
c^{i}	1			

	1	2	3
o_{1}^{i}			
o_{2}^{i}	0		

Planning as satisfiability

Example: plan search with DPLL

Perform unit resolution and unit subsumption with o_{1}^{1}.
Al Planning
M. Helmert,
B. Nebel

	$\neg o_{1}^{2} \vee \neg b^{1} \vee b^{2}$	$\neg o_{1}^{3} \vee \neg b^{2} \vee b^{3}$
$o_{1}^{1} \vee b^{0} \vee \neg b^{1}$	$\neg b_{1}^{2} \vee b^{1} \vee \neg b^{2}$	$\neg o_{1}^{3} \vee b^{2} \vee \neg b^{3}$
$\neg o_{1}^{1} \vee \neg c^{0} \vee \neg c^{1}$	$\neg o_{1}^{2} \vee \neg c^{1} \vee \neg c^{2}$	$\neg o_{1}^{3} \vee \neg c^{2} \vee \neg c^{3}$
$o_{1}^{1} \vee c^{0} \mathrm{~V} c^{1}$	$\neg o_{1}^{2} \vee c^{1} \vee c^{2}$	$\neg o_{1}^{3} \vee c^{2} \vee c^{3}$
$\neg \mathrm{O}_{2}^{1}$	$\neg O_{2}^{2} \vee \neg b^{1} \vee \neg b^{2}$	$\neg o_{2}^{3} \vee \neg b^{2} \vee \neg b^{3}$
${ }_{2}^{1} \vee b^{0} \vee b^{1}$	$\neg 0_{2}^{2} \vee b^{1} \vee b^{2}$	$\neg o_{2}^{3} \vee b^{2} \vee b^{3}$
1	$\neg o_{2}^{2} \vee \neg c^{1} \vee c^{2}$	$\neg O_{2}^{3} \vee \neg c^{2} \vee c^{3}$
${ }_{2}^{1} \vee c^{0} \vee \neg c^{1}$	$\neg O_{2}^{2} \vee c^{1} \vee \neg c^{2}$	$\neg o_{2}^{3} \vee c^{2} \vee \neg c^{3}$

SAT planning
Relations in CPC
Actions in CPC
Plans in CPC
DPLL
Example
Parallel plans
Final remarks

Valuation constructed by the DPLL procedure

	0	1	2	3
b^{i}	1	1		
c^{i}	1			

	1	2	3
o_{1}^{i}	1		
o_{2}^{i}	0		

Planning as satisfiability

Example: plan search with DPLL

Perform unit resolution and unit subsumption with $\neg c^{1}$.
Al Planning
M. Helmert,
B. Nebel

	$\neg 0_{1}^{1} \vee b^{1}$	$\neg o_{1}^{2} \vee \neg b^{1} \vee b^{2}$	$\neg o_{1}^{3} \vee \neg b^{2} \vee b^{3}$
	$\neg 0_{1}^{1} \vee b^{0} \vee \neg b^{1}$	$\neg o_{1}^{2} \vee b^{1} \vee \neg b^{2}$	$\neg o_{1}^{3} \vee b^{2} \vee \neg b^{3}$
$b_{1}^{2} \vee o_{2}^{2}$	$\neg 0_{1}^{1} \vee \neg c^{0} \vee \neg c^{1}$	$\neg o_{1}^{2} \vee \neg c^{1} \vee \neg c^{2}$	$\neg o_{1}^{3} \vee \neg c^{2} \vee \neg c^{3}$
$o_{1}^{3} \vee o_{2}^{3}$	$\neg 0_{1}^{1} \vee c^{2} \vee c^{1}$	$\neg o_{1}^{2} \vee c^{1} \vee c^{2}$	$\neg o_{1}^{3} \vee c^{2} \vee c^{3}$
$b^{3} \vee c^{3}$	$\neg O_{2}^{1} \vee b^{0} \vee b^{1}$	$\neg o_{2}^{2} \vee \neg b^{1} \vee \neg b^{2}$	$\neg o_{2}^{3} \vee \neg b^{2} \vee \neg b^{3}$
$\neg c^{3} \vee \neg b^{3}$	$\neg O_{2}^{1} \vee$	$\neg 0_{2}^{2} \vee b^{1} \vee b^{2}$	$\neg o_{2}^{3} \vee b^{2} \vee b^{3}$
	$\neg O_{2}^{1} \vee c^{0} \vee \neg c^{1}$	$\neg o_{2}^{2} \vee \neg c^{1} \vee c^{2}$	$\neg o_{2}^{3} \vee \neg c^{2} \vee c^{3}$
	$\neg o_{2}^{2} \vee c^{1} \vee \neg c^{2}$	$\neg o_{2}^{3} \vee c^{2} \vee \neg c^{3}$	

SAT planning

Valuation constructed by the DPLL procedure

	0	1	2	3
b^{i}	1	1		
c^{i}	1	0		

	1	2	3
o_{1}^{i}	1		
o_{2}^{i}	0		

Planning as satisfiability

Example: plan search with DPLL

No unhandled unit clauses exist. Must branch a second time.
Al Planning
M. Helmert,
B. Nebel

$$
\begin{array}{ll}
\neg o_{1}^{2} \vee \neg b^{1} \vee b^{2} & \neg o_{1}^{3} \vee \neg b^{2} \vee b^{3} \\
\neg 0_{1}^{2} \vee b^{1} \vee \neg b^{2} & \\
\neg o_{1}^{3} \vee b^{2} \vee \neg b^{3} \\
\neg 0_{1}^{2} \vee \neg c^{1} \vee \neg c^{2} & \neg o_{1}^{3} \vee \neg c^{2} \vee \neg c^{3} \\
\neg o_{1}^{2} \vee c^{2} & \neg c_{1}^{3} \vee c^{2} \vee c^{3} \\
\neg 0_{2}^{2} \vee \neg b^{1} \vee \neg b^{2} & \neg o_{2}^{3} \vee \neg b^{2} \vee \neg b^{3} \\
\neg 0_{2}^{2} \vee b^{1} \vee b^{2} & \neg o_{2}^{3} \vee b^{2} \vee b^{3} \\
\neg 0_{2}^{2} \vee \neg c^{1} \vee c^{2} & \neg o_{2}^{3} \vee \neg c^{2} \vee c^{3} \\
\neg 0_{2}^{2} \vee c^{1} \vee \neg c^{2} & \neg o_{2}^{3} \vee c^{2} \vee \neg c^{3}
\end{array}
$$

SAT planning

Relations in CPC
Actions in CPC
Plans in CPC
DPLL
Example
Parallel plans
Final remarks

Valuation constructed by the DPLL procedure

	0	1	2	3
b^{i}	1	1		
c^{i}	1	0		

	1	2	3
o_{1}^{i}	1		
o_{2}^{i}	0		

Planning as satisfiability

Example: plan search with DPLL

We branch on c^{3}, first trying out $c^{3}=1$.
AI Planning
M. Helmert,
B. Nebel

$$
\begin{array}{ll}
\neg o_{1}^{2} \vee \neg b^{1} \vee b^{2} & \neg o_{1}^{3} \vee \neg b^{2} \vee b^{3} \\
\neg o_{1}^{2} \vee b^{1} \vee \neg b^{2} & \neg o_{1}^{3} \vee b^{2} \vee \neg b^{3} \\
\neg o_{1}^{2} \vee \neg c^{1} \vee \neg c^{2} & \neg o_{1}^{3} \vee \neg c^{2} \vee \neg c^{3} \\
\neg o_{1}^{2} \vee c^{1} \vee c^{2} & \neg o_{1}^{3} \vee c^{2} \vee c^{3} \\
\neg o_{2}^{2} \vee \neg b^{1} \vee \neg b^{2} & \neg o_{2}^{3} \vee \neg b^{2} \vee \neg b^{3} \\
\neg O_{2}^{2} \vee b^{1} \vee b^{2} & \neg o_{2}^{3} \vee b^{2} \vee b^{3} \\
\neg o_{2}^{2} \vee \neg c^{1} \vee c^{2} & \neg o_{2}^{3} \vee \neg c^{2} \vee c^{3} \\
\neg o_{2}^{2} \vee c^{1} \vee \neg c^{2} & \neg o_{2}^{3} \vee c^{2} \vee \neg c^{3}
\end{array}
$$

SAT planning
Relations in CPC
Actions in CPC
Plans in CPC
DPLL
Example
Parallel plans
Final remarks

Valuation constructed by the DPLL procedure

	0	1	2	3
b^{i}	1	1		
c^{i}	1	0		1

	1	2	3
o_{1}^{i}	1		
o_{2}^{i}	0		

Planning as satisfiability

Example: plan search with DPLL

Perform unit resolution and unit subsumption with c^{3}.
AI Planning
M. Helmert,
B. Nebel

$$
\begin{array}{ll}
\neg o_{1}^{2} \vee \neg b^{1} \vee b^{2} & \neg o_{1}^{3} \vee \neg b^{2} \vee b^{3} \\
\neg 0_{1}^{2} \vee b^{1} \vee \neg b^{2} & \neg o_{1}^{3} \vee b^{2} \vee \neg b^{3} \\
\neg o_{1}^{2} \vee \neg c^{1} \vee \neg c^{2} & \neg o_{1}^{3} \vee \neg c^{2} \vee \neg c^{3} \\
\neg o_{1}^{2} \vee c^{1} \vee c^{2} & \neg o_{1}^{3} \vee c^{2} \vee c^{3} \\
\neg o_{2}^{2} \vee \neg b^{1} \vee \neg b^{2} & \neg o_{2}^{3} \vee \neg b^{2} \vee \neg b^{3} \\
\neg O_{2}^{2} \vee b^{1} \vee b^{2} & \neg o_{2}^{3} \vee b^{2} \vee b^{3} \\
\neg O_{2}^{2} \vee \neg c^{1} \vee c^{2} & \neg o_{2}^{3} \vee \neg c^{2} \vee c^{3} \\
\neg O_{2}^{2} \vee c^{1} \vee \neg c^{2} & \neg o_{2}^{3} \vee c^{2} \vee \neg c^{3}
\end{array}
$$

SAT planning

Valuation constructed by the DPLL procedure

	0	1	2	3
b^{i}	1	1		
c^{i}	1	0		1

	1	2	3
o_{1}^{i}	1		
o_{2}^{i}	0		

Planning as satisfiability

Example: plan search with DPLL

Perform unit resolution and unit subsumption with $\neg b^{3}$.
Al Planning
M. Helmert,
B. Nebel

SAT planning
Relations in CPC
Actions in CPC
Plans in CPC
DPLL
Example
Parallel plans
Final remarks

Valuation constructed by the DPLL procedure

	0	1	2	3
b^{i}	1	1		0
c^{i}	1	0		1

	1	2	3
o_{1}^{i}	1		
o_{2}^{i}	0		

Planning as satisfiability

Example: plan search with DPLL

No unhandled unit clauses exist. Must branch a third time.
Al Planning
M. Helmert,
B. Nebel

$$
\begin{array}{ll}
\neg O_{1}^{2} \vee \neg b^{1} \vee b^{2} & \neg o_{1}^{3} \vee \neg b^{2} \\
\neg 0_{1}^{2} \vee b^{1} \vee \neg b^{2} & \neg o_{1}^{3} \vee b^{2} \vee \\
\neg o_{1}^{2} \vee \neg c^{1} \vee \neg c^{2} & \neg o_{1}^{3} \vee \neg c^{2} \\
\neg o_{1}^{2} \vee c^{1} \vee c^{2} & \neg o_{1}^{3} \vee c^{2} \vee \\
\neg o_{2}^{2} \vee \neg b^{1} \vee \neg b^{2} & \neg o_{2}^{3} \vee \neg b^{2} \\
\neg o_{2}^{2} \vee b^{1} \vee b^{2} & \neg o_{2}^{3} \vee b^{2} \\
\neg o_{2}^{2} \vee \neg c^{1} \vee c^{2} & \neg o_{2}^{3} \vee \neg c^{2} \\
\neg O_{2}^{2} \vee c^{1} \vee \neg c^{2} & \neg o_{2}^{3} \vee c^{2} V
\end{array}
$$

$o_{1}^{2} \vee o_{2}^{2}$
$o_{1}^{3} \vee o_{2}^{3}$

SAT planning
Relations in CPC
Actions in CPC
Plans in CPC
DPLL
Example
Parallel plans
Final remarks

Valuation constructed by the DPLL procedure

	0	1	2	3					
b^{i}	1	1		0					
c^{i}	1	0		1	\quad		1	2	3
:---	:---	:---	:---						
o_{1}^{i}	1								
o_{2}^{i}	0								

Planning as satisfiability

Example: plan search with DPLL

We branch on o_{2}^{2}, first trying out $o_{2}^{2}=1$.
Al Planning
M. Helmert,
B. Nebel

$$
\begin{array}{ll}
\neg O_{1}^{2} \vee \neg b^{1} \vee b^{2} & \neg o_{1}^{3} \vee \neg b^{2} \\
\neg 0_{1}^{2} \vee b^{1} \vee \neg b^{2} & \neg 0_{1}^{3} \vee b^{2} \vee \\
\neg 0_{1}^{2} \vee \neg c^{1} \vee \neg c^{2} & \neg o_{1}^{3} \vee \neg c^{2} \\
\neg o_{1}^{2} \vee c^{1} \vee c^{2} & \neg 0_{1}^{3} \vee c^{2} \vee \\
\neg o_{2}^{2} \vee \neg b^{1} \vee \neg b^{2} & \neg 0_{2}^{3} \vee \neg b^{2} \\
\neg O_{2}^{2} \vee b^{1} \vee b^{2} & \neg o_{2}^{3} \vee b^{2} \vee \\
\neg O_{2}^{2} \vee \neg c^{1} \vee c^{2} & \neg 0_{2}^{2} \vee \neg c^{2} \\
\neg O_{2}^{2} \vee c^{1} \vee \neg c^{2} & \neg o_{2}^{3} \vee c^{2} \vee
\end{array}
$$

$o_{1}^{2} \vee o_{2}^{2}$
$o_{1}^{3} \vee o_{2}^{3}$

SAT planning
Relations in CPC
Actions in CPC
Plans in CPC
DPLL
Example
Parallel plans
Final remarks

Valuation constructed by the DPLL procedure

	0	1	2	3					
b^{i}	1	1		0					
c^{i}	1	0		1	\quad		1	2	3
:---	:---	:---	:---						
o_{1}^{i}	1								
o_{2}^{i}	0	1							

Planning as satisfiability

Example: plan search with DPLL

Perform unit resolution and unit subsumption with o_{2}^{2}.
Al Planning
M. Helmert,
B. Nebel

$$
\begin{array}{ll}
\neg o_{1}^{2} \vee \neg b^{1} \vee b^{2} & \neg o_{1}^{3} \vee \neg b^{2} \\
\neg 0_{1}^{2} \vee b^{1} \vee \neg b^{2} & \neg 0_{1}^{3} \vee b^{2} \vee \\
\neg 0_{1}^{2} \vee \neg c^{1} \vee \neg c^{2} & \neg o_{1}^{3} \vee \neg c^{2}
\end{array}
$$

SAT planning
Relations in CPC
Actions in CPC
Plans in CPC
DPLL
Example
$o_{1}^{2} \vee o_{2}^{2}$
$o_{1}^{3} \vee o_{2}^{3}$

$$
\begin{aligned}
& \neg o_{1}^{2} \bigvee \\
& \neg O_{2}^{2} \bigvee
\end{aligned}
$$

Valuation constructed by the DPLL procedure

	0	1	2	3					
b^{i}	1	1		0					
c^{i}	1	0		1	\quad		1	2	3
:---	:---	:---	:---						
o_{1}^{i}	1								
o_{2}^{i}	0	1							

Planning as satisfiability

Example: plan search with DPLL

Perform unit resolution and unit subsumption with with $\neg b^{2}$ and $\neg c^{2}$.
M. Helmert,
B. Nebel

SAT planning
Relations in CPC
Actions in CPC
Plans in CPC
DPLL
Example
Parallel plans
Final remarks

Valuation constructed by the DPLL procedure

	0	1	2	3
b^{i}	1	1	0	0
c^{i}	1	0	0	1

	1	2	3
o_{1}^{i}	1		
o_{2}^{i}	0	1	

Planning as satisfiability

Example: plan search with DPLL

Perform unit resolution and unit subsumption with with $\neg O_{1}^{2}$ and $\neg O_{2}^{3}$.

SAT planning

Valuation constructed by the DPLL procedure

	0	1	2	3
b^{i}	1	1	0	0
c^{i}	1	0	0	1

	1	2	3
o_{1}^{i}	1	0	
o_{2}^{i}	0	1	0

Planning as satisfiability

Example: plan search with DPLL

Perform unit resolution and unit subsumption with o_{1}^{3}.
M. Helmert,
B. Nebel

SAT planning
Relations in CPC
Actions in CPC
Plans in CPC
DPLL
Example
Parallel plans
Final remarks

Valuation constructed by the DPLL procedure

	0	1	2	3
b^{i}	1	1	0	0
c^{i}	1	0	0	1

	1	2	3
o_{1}^{i}	1	0	1
o_{2}^{i}	0	1	0

Planning as satisfiability

Example: plan search with DPLL

The formula is satisfiable.
B. Nebel

SAT planning
Relations in CPC
Actions in CPC
Plans in CPC
DPLL
Example
Parallel plans
Final remarks

Valuation constructed by the DPLL procedure

	0	1	2	3
b^{i}	1	1	0	0
c^{i}	1	0	0	1

	1	2	3
o_{1}^{i}	1	0	1
o_{2}^{i}	0	1	0

Planning as satisfiability with parallel plans

- Efficiency of satisfiability planning is strongly dependent on the plan length because satisfiability algorithms have runtime $O\left(2^{n}\right)$ where n is the formula size, and formula sizes are linearly proportional to plan length.
- Formula sizes can be reduced by allowing several operators

SAT planning
Parallel plans
Parallelism
Interference
Parallel actions
Translation
Optimality
Example in parallel.

- On many problems this leads to big speed-ups.
- However there are no guarantees of optimality.

Parallel operator application

Definition attempt

Al Planning
M. Helmert,
B. Nebel

Similar to relaxed planning graphs, we consider the possibility of executing several operators simultaneously.

Definition (?)

Let σ be a set of operators (a plan step) and s a state.
Define $a p p_{\sigma}(s)$ as the state that is obtained from s by making
SAT planning
Parallel plans
Parallelism
Interference
Parallel actions
Translation
Optimality
Example the literals in $\bigcup_{\langle c, e\rangle \in \sigma}[e]_{s}$ true.

Final remarks
For $\operatorname{app}_{\sigma}(s)$ to be defined, we require that $s \models c$ for all $o=\langle c, e\rangle \in \sigma$ and $\bigcup_{\langle c, e\rangle \in \sigma}[e]_{s}$ is consistent.

Unfortunately, the definition is flawed. Why?

Parallel operator application

Definition attempt

Al Planning
M. Helmert,
B. Nebel

Similar to relaxed planning graphs, we consider the possibility of executing several operators simultaneously.

Definition (?)

Let σ be a set of operators (a plan step) and s a state.
Define $\operatorname{app}_{\sigma}(s)$ as the state that is obtained from s by making
SAT planning
Parallel plans
Parallelism
Interference
Parallel actions
Translation
Optimality
Example the literals in $\bigcup_{\langle c, e\rangle \in \sigma}[e]_{s}$ true.

Final remarks
For $\operatorname{app}_{\sigma}(s)$ to be defined, we require that $s \models c$ for all $o=\langle c, e\rangle \in \sigma$ and $\bigcup_{\langle c, e\rangle \in \sigma}[e]_{s}$ is consistent.

Unfortunately, the definition is flawed. Why?

Parallel actions

Non-interleavable actions

Al Planning
M. Helmert
B. Nebel

Example

According to the definition attempt, the operators $\langle a, \neg b\rangle$ and

But this state is not reachable by the two operators sequentially, because executing any one operator makes the precondition of the other false.

Parallel actions

Comparison to relaxed planning tasks

- When discussing relaxed planning tasks, we gave a conservative definition of parallel operator application:
- It is not guaranteed that each serialization of a plan step σ (or even one of them) leads to the state $a p p_{\sigma}(s)$.
- However, the resulting state of the serialized plan is guaranteed to be at least as good as $a p p_{\sigma}(s)$.
- Our general definition attempt was not conservative - not even if we require positive normal form (as the example shows).
- A conservative definition extending the earlier one for relaxed planning tasks is possible, but complicated.
- Instead, we use a semantic definition based on serializations.

Parallel actions

Serializations and semantics

Definition (serialization)

Al Planning
M. Helmert,

A serialization of plan step $\sigma=\left\{o_{1}, \ldots, o_{n}\right\}$ is a sequence $o_{\pi(1)}, \ldots, o_{\pi(n)}$ where π is a permutation of $\{1, \ldots, n\}$.

Definition (semantics of plan steps)

A plan step $\sigma=\left\{o_{1}, \ldots, o_{n}\right\}$ is applicable in a state s iff each serialization of σ is applicable in s and results in the same state s^{\prime}.
The result of applying σ in s is then defined as $\operatorname{app}_{\sigma}(s)=s^{\prime}$.
Note: This definition does not extend the earlier definition for relaxed planning tasks.

Parallel plans

Al Planning
M. Helmert,
B. Nebel

Definition (parallel plan)

A parallel plan for a general planning task $\langle A, I, O, G\rangle$ is a sequence of plan steps $\sigma_{1}, \ldots, \sigma_{n}$ of operators in O with:

- $s_{0}:=I$
- For $i=1, \ldots, n$, step σ_{i} is applicable in s_{i-1} and $s_{i}:=\operatorname{app}_{\sigma_{i}}\left(s_{i-1}\right)$.
- $s_{n} \models G$

Remark: By ordering the operators within each single step arbitrarily, we obtain a (regular, non-parallel) plan.

SAT planning
Parallel plans
Parallelism
Interference
Parallel actions
Translation
Optimality
Example
Final remarks

Parallel plans

Sufficient conditions

- Testing the condition for parallel applicability is difficult: even testing whether a set σ of operators is applicable in all serializations is co-NP-hard.
- Representing the executability test exactly as a propositional formula seems complicated: doing this test exactly would seem to cancel the benefits of parallel plans.

SAT planning
Parallel plans
Parallelism
Interference
Parallel actions
Translation
Optimality
Example
Final remarks

- Instead, all work on parallel plans so far has used sufficient but not necessary conditions that can be tested in polynomial-time.
- We use a simple syntactic test (which may be overly strict).

Interference

Example

Actions do not interfere

Al Planning
M. Helmert,
B. Nebel

Actions can be taken simultaneously.
Actions interfere

If A is moved first, B will not be clear and cannot be moved.

Interference

Auxiliary definition: affects

Definition (affect)

Al Planning
M. Helmert,
B. Nebel

Let A be a set of state variables and $o=\langle c, e\rangle$ and $o^{\prime}=\left\langle c^{\prime}, e^{\prime}\right\rangle$ operators over A. Then o affects o^{\prime} if there is $a \in A$ such that
(1) a is an atomic effect in e and a occurs in a formula in e^{\prime} or it occurs negatively in c^{\prime}, or
(2) $\neg a$ is an atomic effect in e and a occurs in a formula in e^{\prime} or it occurs positively in c^{\prime}.

Example

$\langle c, d\rangle$ affects $\langle\neg d, e\rangle$ and $\langle e, d \triangleright f\rangle$.
$\langle c, d\rangle$ does not affect $\langle d, e\rangle$ nor $\langle e, \neg c\rangle$.

Interference

Definition (interference)

Operators o and o^{\prime} interfere if o affects o^{\prime} or o^{\prime} affects o.

Example

$\langle c, d\rangle$ and $\langle\neg d, e\rangle$ interfere.
$\langle c, d\rangle$ and $\langle e, f\rangle$ do not interfere.

Al Planning
M. Helmert,
B. Nebel

SAT planning
Parallel plans
Parallelism
Interference
Parallel actions
Translation
Optimality
Example
Final remarks

Interference

Sufficient condition for applying a plan step

Al Planning
M. Helmert,
B. Nebel

Lemma

Let s be a state and σ a set of operators so that each operator in σ is applicable in s, no two operators in σ interfere, and $\bigcup_{\langle c, e\rangle \in \sigma}[e]_{s}$ is consistent.
Then σ is applicable in s and results in the state that is obtained from s by making the literals in $\bigcup_{\langle c, e\rangle \in \sigma}[e]_{s}$ true.

Parallel operator application

We cannot simply use our current definition of $\tau_{A}(o)$ within a satisfiability encoding for parallel planning:

- The formula $\tau_{A}(o)$ completely defines the relationship between current state and successor state when o is applied.
- It leaves no room for applying another operator in sequence.
Basic idea for parallel plan encodings:
- Decouple the parts of the formula that describe what changes from parts that describe what does not change.

Parallel operator application

Representation in propositional logic

Al Planning
M. Helmert,

Consider the formula $\tau_{A}(o)$ representing operator $o=\langle c, e\rangle$: c
$\wedge \bigwedge_{a \in A}\left(\left(E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)\right) \leftrightarrow a^{\prime}\right)$ $\wedge \bigwedge_{a \in A} \neg\left(E P C_{a}(e) \wedge E P C_{\neg a}(e)\right)$.
This can be logically equivalently written as follows: c

$$
\begin{aligned}
& \wedge \bigwedge_{a \in A}\left(E P C_{a}(e) \rightarrow a^{\prime}\right) \\
& \wedge \bigwedge_{a \in A}\left(E P C_{\neg a}(e) \rightarrow \neg a^{\prime}\right) \\
& \wedge \bigwedge_{a \in A}\left(\left(a \wedge \neg E P C_{\neg a}(e)\right) \rightarrow a^{\prime}\right) \\
& \wedge \bigwedge_{a \in A}\left(\left(\neg a \wedge \neg E P C_{a}(e)\right) \rightarrow \neg a^{\prime}\right)
\end{aligned}
$$

This separates the changes from non-changes.

The explanatory frame axioms

The formula states that the only explanation for a changing its value is the application of one operator:

$$
\begin{aligned}
& \bigwedge_{a \in A}\left(\left(a \wedge \neg a^{\prime}\right) \rightarrow E P C_{\neg a}(e)\right) \\
& \bigwedge_{a \in A}\left(\left(\neg a \wedge a^{\prime}\right) \rightarrow E P C_{a}(e)\right)
\end{aligned}
$$

When several operators could be applied in parallel, we have to consider all operators as possible explanations:

$$
\begin{aligned}
& \bigwedge_{a \in A}\left(\left(a \wedge \neg a^{\prime}\right) \rightarrow \bigvee_{i=1}^{n}\left(o_{i} \wedge E P C_{\neg a}\left(e_{i}\right)\right)\right) \\
& \bigwedge_{a \in A}\left(\left(\neg a \wedge a^{\prime}\right) \rightarrow \bigvee_{i=1}^{n}\left(o_{i} \wedge E P C_{a}\left(e_{i}\right)\right)\right)
\end{aligned}
$$

where $\sigma=\left\{o_{1}, \ldots, o_{n}\right\}$ and e_{1}, \ldots, e_{n} are the respective effects.

Parallel actions

Formula in propositional logic

Definition (plan step application in propositional logic)

Al Planning
M. Helmert,

Let σ be a plan step. Let $\tau_{A}(\sigma)$ denote the conjunction of formulae

$$
\begin{aligned}
&(o \rightarrow c) \\
& \wedge \bigwedge_{a \in A}\left(o \wedge E P C_{a}(e) \rightarrow a^{\prime}\right) \\
& \wedge \bigwedge_{a \in A}\left(o \wedge E P C_{\neg a}(e) \rightarrow \neg a^{\prime}\right)
\end{aligned}
$$

B. Nebel

SAT planning
Parallel plans
Parallelism
Interference
Parallel actions
Translation
Optimality
Example
Final remarks
for all $o=\langle c, e\rangle \in \sigma$ and
$\bigwedge_{a \in A}\left(\left(a \wedge \neg a^{\prime}\right) \rightarrow \bigvee_{i=1}^{n}\left(o_{i} \wedge E P C_{\neg a}\left(e_{i}\right)\right)\right)$
$\bigwedge_{a \in A}\left(\left(\neg a \wedge a^{\prime}\right) \rightarrow \bigvee_{i=1}^{n}\left(o_{i} \wedge E P C_{a}\left(e_{i}\right)\right)\right)$
where $\sigma=\left\{o_{1}, \ldots, o_{n}\right\}$ and e_{1}, \ldots, e_{n} are the respective effects.

Correctness

The formula $\tau_{A}(\sigma)$ exactly matches the definition of $a p p_{\sigma}(s)$
Al Planning
M. Helmert
B. Nebel provided that no actions in σ interfere.

Lemma

Let s and s^{\prime} be states and σ a set of operators. Let $v: A \cup A^{\prime} \cup \sigma \rightarrow\{0,1\}$ be a valuation such that

SAT planning
Parallel plans
Parallelism
Interference
Parallel actions
Translation
Optimality
Example
(1) for all $o \in \sigma, v(o)=1$,

Final remarks
(2) for all $a \in A, v(a)=s(a)$, and
(3) for all $a \in A, v\left(a^{\prime}\right)=s^{\prime}(a)$.

If σ is applicable in s, then:
$v \models \tau_{A}(\sigma)$ if and only if $s^{\prime}=\operatorname{app}_{\sigma}(s)$.

Translation of parallel plans into propositional logic

Definition

Define $\mathcal{R}_{2}\left(A, A^{\prime}, O\right)$ as the conjunction of $\tau_{A}(O)$ and

$$
\neg\left(o \wedge o^{\prime}\right)
$$

AI Planning
M. Helmert,
B. Nebel

SAT planning
Parallel plans
Parallelism
Interference
Parallel actions
Translation
Optimality
Example
Final remarks for all $o \in O$ and $o^{\prime} \in O$ such that o and o^{\prime} interfere and $o \neq o^{\prime}$.

Planning as satisfiability

Existence of plans

Al Planning
M. Helmert,
B. Nebel

Definition (bounded step number plans in propositional logic)
Existence of parallel plans of length t is represented by the following formula over propositions $A^{0} \cup \cdots \cup A^{t} \cup O^{1} \cup \cdots \cup O^{t}$ where $A^{i}=\left\{a^{i} \mid a \in A\right\}$ for all $i \in\{0, \ldots, t\}$

$$
\Phi_{t}^{p a r}=\iota^{0} \wedge \mathcal{R}_{2}\left(A^{0}, A^{1}, O^{1}\right) \wedge \cdots \wedge \mathcal{R}_{2}\left(A^{t-1}, A^{t}, O^{t}\right) \wedge G^{t}
$$

where $\iota^{0}=\bigwedge_{a \in A, I(a)=1} a^{0} \wedge \bigwedge_{a \in A, I(a)=0} \neg a^{0}$ and G^{t} is G with propositions a replaced by a^{t}.

Planning as satisfiability

Existence of plans

Al Planning
M. Helmert,
B. Nebel

Theorem

Let $\Phi_{t}^{p a r}$ be the formula for $\langle A, I, O, G\rangle$ and plan length t. The formula $\Phi_{t}^{\text {par }}$ is satisfiable if and only if there is a sequence of states s_{0}, \ldots, s_{t} and plan steps $\sigma_{1}, \ldots, \sigma_{t}$, each consisting of non-interfering operators, such that $s_{0}=I, s_{i}=\operatorname{app}_{\sigma_{i}}\left(s_{i-1}\right)$ for all $i \in\{1, \ldots, t\}$, and $s_{t}=G$.

Why is optimality lost?

Minimal step count does not imply minimal length

That a plan has the smallest number of steps does not guarantee that it has the smallest number of actions.

- Satisfiability algorithms return any satisfying valuation of $\Phi_{i}^{p a r}$, and this does not have to be the one with the

Translation
Optimality
Example
Final remarks

- There could be better solutions with more time points.
- Moreover, even optimality in the number of time steps is not guaranteed because the non-interference requirement is only sufficient, but not necessary, for parallel applicability.

Why is optimality lost?

Example

Example

Al Planning

Let I be a state such that $s \models \neg c \wedge \neg d \wedge \neg e \wedge \neg f$.
Let $G=c \wedge d \wedge e$, and let:
$o_{1}=\langle T, c\rangle$
$o_{2}=\langle\top, d\rangle$
$o_{3}=\langle T, e\rangle$
$o_{4}=\langle T, f\rangle$
$o_{5}=\langle f, c \wedge d \wedge e\rangle$
Now $\pi_{1}=\left\{o_{1}, o_{2}, o_{3}\right\}$ is a plan with one step, and $\pi_{2}=\left\{o_{4}\right\} ;\left\{o_{5}\right\}$ is a plan with two steps.
Plan π_{1} is optimal with respect to the number of steps, but not with respect to the number of actions, where π_{2} is optimal.
There is no plan which minimizes both measures.

Planning as satisfiability

Example

initial state

goal state

Al Planning
M. Helmert,
B. Nebel

SAT planning
Parallel plans
Parallelism
Interference
Parallel actions
Translation
Optimality
Example
Final remarks

The DPLL procedure solves the problem quickly:

- Formulae for lengths 0 to 4 shown unsatisfiable without any search.
- Formula for plan length 5 is satisfiable: 3 nodes in the search tree.
- Plans have 5 to 7 operators, optimal plan has 5 .

Planning as satisfiability

Example

```
v0.9 13/08/1997 19:32:47
30 propositions 100 operators
    Length 0
    Length 1
    Length 2
    Length 3
    Length 4
    Length 5
    branch on -clear(b)[1] depth 0
branch on clear(a) [3] depth 1
Found a plan.
    O totable(e,d)
    1 totable(c,b) fromtable(d,e)
    2 totable(b,a) fromtable(c,d)
    3 fromtable(b,c)
    fromtable(a,b)
    Branches 2 last 2 failed 0; time 0.0
```

 M. Helmert
 B. Nebel
 Final remarks

Planning as satisfiability

Example

012345	
clear(a) 00	
clear(b) 0	0
clear(c) 11	00
clear(d) 011000	
clear(e) 110000	
on(a,b) 000	1
on(a,c) 000000	
on(a,d) 000000	
on(a,e) 000000	
on(b,a) 11	00
on(b,c) 00	11
on(b,d) 000000	
on(b,e) 000000	
on(c,a) 000000	
on(c,b) 1	000
on(c,d) 000111	
on(c,e) 000000	
on(d,a) 000000	
on(d,b) 000000	
on(d,c) 000000	
on(d,e) 001111	
on(e,a) 000000	
on(e,b) 000000	
on(e,c) 000000	
on(e,d) 100000	
ontable(a) 111	0
ontable(b) 00	00
ontable(c) 0	000
ontable(d) 110000	
ontable(e) 011111	

012345	012345
000	11
00	110
111100	001110
011000	111100
110000	110000
000001	000001
000000	000000
000000	000000
000000	000000
11100	111000
000011	000011
000000	000000
000000	000000
000000	000000
11000	110000
000111	000111
000000	000000
000000	000000
000000	000000
000000	000000
001111	001111
000000	000000
000000	000000
000000	000000
100000	100000
111110	111110
00000	000100
00000	001000
110000	110000
011111	011111

Al Planning
M. Helmert
(1) Infer state variable values from initial values and goals.

- Plan found

SAT planning
Parallel plans
Parallelism
Interference
Parallel actions
Translation
Optimality
Example
Final remarks

Planning as satisfiability

Example

012345	012345	012345	
clear(a) 00	00011	000111	
clear(b) 00	00110	001110	
clear(c) 11000	111100	111100	
clear(d) 011000	011000	011000	(1) Infer state variable values
clear(e) 110000	110000	110000	
on(a,b) 0001	000001	000001	from initial values and
on(a,c) 000000	000000 000000	000000	goals.
on(a,e) 000000	000000	000000	
on(b,a) $11 \quad 00$	11100	111000	(2) Branch: \neg clear(b)[1].
on(b,c) 0011	000011	000011	(2) Branch.
on(b,d) 000000	000000	000000	Branch: clear(a)[3]
on(b,e) 000000	000000	000000	Branch. clear(a)[3]
on(c,a) 000000	000000	000000	
on(c,b) 1000	11000	110000	(3)Plan found:
on(c,d) 000111	000111	000111	01234
on(c,e) 000000	000000	000000	
on(d,a) 000000	000000	000000	fromtable(a,b)
$\text { on(d,b) } 000000$	000000 00000	000000	fromtable(b,c)
$\begin{aligned} & \text { on(d,c) } 000000 \\ & \text { on(d,e) } 001111 \end{aligned}$	000000 001111	000000	fromtable(c,d)
on(e,a)000000	000000	000000	
on(e,b) 000000	000000	000000	fromtable(d,e)
on(e,c) 000000	000000	000000	totable(b,a)
on(e,d) 100000	100000	100000	
ontable(a) 1110	111110	111110	totable($\mathrm{c}, \mathrm{b})$
ontable(b) 0000	00000	000100	totable(e,d)1
ontable(c) 0000	00000	001000	totable(e,d)1.
ontable(d) 110000	110000	110000	
ontable(e) 011111	011111	011111	

Al Planning
M. Helmert,
B. Nebel

SAT planning
Parallel plans
Parallelism
Interference
Parallel actions
Translation
Optimality
Example
Final remarks

Planning as satisfiability

Example

012345	012345	012345		Al Planning
clear(a) 00	00011	000111		Al Planning
clear(b) $0 \quad 0$	00110	001110		M. Helmert,
clear(c) 111000 clear(d) 011000	111100 011000	1111100 011000	(1) Infer state variable values	B. Nebel
clear(e) 110000	110000	110000		
on(a,b)000 1	000001	000001	from initial values and	SAT planning
on($\mathrm{a}, \mathrm{c}) 000000$	000000	000000	foals.	
on (a,d) 000000	000000	000000	goals.	Parallel plans
on(a,e) 000000	000000	000000		Parallelism
$\begin{array}{ll}\text { on(b,c) } 00 & 11\end{array}$	000011	000011	(2) Branch: ᄀ clear b$)[1]$.	Interference Parallel actions
on(b,d) 000000	000000	000000	(3) Branch: clear(a) [3].	Translation
on(b,e) 000000	000000	000000	(3) Branch. clear(a)[3].	Optimality
on(c,,) 0000000 on(c,b) 1 0000	000000 11000	000000 110000	(Plan found:	Example
on($(\mathrm{c}, \mathrm{d}) 000111$	000111	000111	- 01234	Final remarks
on(c,e) 000000	000000	000000		
on(d,a) 000000	000000	000000	fromtable(a,b)	
on(d,b) 000000	000000	000000	fromtable(b,c)	
on(d,c) 000000	000000	000000	fromtable(c, d)	
on(e, a) 000000	000000	000000		
on(e,b)000000	000000	000000	fromtable(d,e). 1	
on(e,c) 000000	000000	000000	totable(b,a)	
on(e,d) 100000	100000	100000		
ontable(a) 1110	111110	111110	totable(c, b) . 1	
ontable(b) 0000	00000	000100	totable(e,d) 1	
ontable(c) 0000	00000	001000	totable(e,d) 1	
ontable(d) 110000	110000	110000		
ontable(e) 011111	011111	011111		

Planning as satisfiability

Example

012345	012345	012345		
clear(a) 00	00011	000111		Al Planning
clear(b) 00	00110	001110		
clear(c) 11000	111100	111100		M. Helmert,
clear(d) 011000	011000	011000	(1) Infer state variable values	B. Nebel
clear(e) 110000	110000	110000	from initial values and	
$\begin{aligned} & \text { on }(a, b) 00001 \\ & \text { on }(a, c) 0000000 \end{aligned}$	000001 000000	000001 000000	from initial values and	SAT planning
on(a,d) 000000	000000	000000	goals.	Parallel plans
on(a,e) 000000	000000	000000		Parallelif
$\begin{array}{ll}\text { on(b,a) } 11 \\ \text { on }(\mathrm{b}, \mathrm{c}) & 000 \\ 000 \\ 11\end{array}$	111000 000011	111000 000011	(2) Branch: \neg clear $(\mathrm{b})[1]$.	Inteferen Parallel
on(b,c) 000 on(b,d) 0000000	000011 000000	000011 000000		Parallel actil Translation
on(b,e) 000000	000000	000000	(3) Branch: clear(a)[3].	Transiation Optimality
on(c,a) 000000	000000	000000		Example
on(c, b) 10000	11000	110000	(4) Plan found:	Final remarks
on(c,d) 000111	000111	000111	01234	Final remarks
on(c,e, $) 000000$ on(d,a) 0000000	000000 000000	000000 000000	fromtable(a,b) . . . 1	
on(d,b) 000000	000000	000000	fromtable(b,c)	
$\begin{aligned} & \text { on (d,c) } 0000000 \\ & \text { on(d,e) } 001111 \end{aligned}$	000000 001111	000000 001111	fromtable(c,d)	
on(e,a) 000000	000000	000000		
on(e, b) 000000	000000	000000	fromtable(d,e). 1	
on(e, ec) 0000000 on(e,d) 100000	000000	000000	totable(b,a) . . 1	
ontable(a) 1110	111110	111110	totable(c, b) . 1	
ontable(b) 0000	00000	000100	totable(e,d)1	
ontable(c) 0000	00000	001000	totable(e,d) 1	
ontable(d) 110000	110000	110000		
ontable(e) 011111	011111	011111		

Final remarks

- All successful satisfiability-based planners use some kind of parallel encoding.
- Sequential encodings are not regarded as competitive with (admissible) heuristic search planners.
- In practice, the presented encoding is further refined to be able to rule out bad variable assignments early in the SAT solving procedure.
- The state-of-the-art SATPLAN06 (formerly SATPLAN04, formerly Blackbox) planner supports a number of different encodings.
- The ones that typically perform best are based on (non-relaxed) planning graphs.

