Principles of AI Planning

Heuristic
search
Relaxation

Deriving
Heuristic
Estimates
from
Relaxations

Malte Helmert Bernhard Nebel

Albert-Ludwigs-Universität Freiburg
November 15th, 2006

Plan search with heuristic search algorithms

- For forward and backward search (progression, regression) the search space consists of incomplete plans that are respectively prefixes of possible plans and suffixes of possible plans.
- Search starts from the empty plan
- The neighbors/children of an incomplete plan in the search space are those that are obtained by

AI Planning
M. Helmert,
B. Nebel
(1) adding an operator to the incomplete plan, or
(2) removing an operator from the incomplete plan.

- Systematic search algorithms (like A*) keen track of the incomplete plans generated so far, and therefore can go back to them.
Hence removing operators from incomplete plans is only needed for local search algorithms which do not keep track of the history of the search process.

Heuristic
search
Incomplete plans
A*
Local search
Deriving
heuristics
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations

Plan search with heuristic search algorithms

- For forward and backward search (progression, regression) the search space consists of incomplete plans that are respectively prefixes of possible plans and suffixes of possible plans.
- Search starts from the empty plan.
- The neighbors/children of an incomplete plan in the search space are those that are obtained by

Al Planning
M. Helmert,
B. Nebel
(1) adding an operator to the incomplete plan, or
(2) removing an operator from the incomplete plan.

- Systematic search algorithms (like A^{*}) keep track of the incomplete plans generated so far, and therefore can go back to them.
Hence removing operators from incomplete plans is only needed for local search algorithms which do not keep track of the history of the search process.

Heuristic
search
Incomplete plans A*
Local search
Deriving
heuristics
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations

Plan search with heuristic search algorithms

- For forward and backward search (progression, regression) the search space consists of incomplete plans that are respectively prefixes of possible plans and suffixes of possible plans.
- Search starts from the empty plan.
- The neighbors/children of an incomplete plan in the search space are those that are obtained by

Al Planning
M. Helmert,
B. Nebel
(1) adding an operator to the incomplete plan, or
(2) removing an operator from the incomplete plan.

- Systematic search algorithms (like A^{*}) keep track of the incomplete plans generated so far, and therefore can go back to them.
Hence removing operators from incomplete plans is only needed for local search algorithms which do not keep track of the history of the search process.

Plan search: incomplete plans for progression

For progression, the incomplete plans are prefixes $o_{1}, o_{2}, \ldots, o_{n}$ of potential plans.

Heuristic
search
Incomplete plans A*
Local search
Deriving
heuristics
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations

Plan search: incomplete plans for progression

Al Planning
M. Helmert
B. Nebel

For progression, the incomplete plans are prefixes $o_{1}, o_{2}, \ldots, o_{n}$ of potential plans.
An incomplete plan is extended by
(1) adding an operator after the last operator, from o_{1}, \ldots, o_{n} to $o_{1}, o_{2}, \ldots, o_{n}, o$ for some $o \in O$,

Heuristic

search
Incomplete plans
A*
Local search
Deriving
heuristics
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations

Plan search: incomplete plans for progression

AI Planning
M. Helmert
B. Nebel

For progression, the incomplete plans are prefixes $o_{1}, o_{2}, \ldots, o_{n}$ of potential plans.
An incomplete plan is extended by
(1) adding an operator after the last operator, from o_{1}, \ldots, o_{n} to $o_{1}, o_{2}, \ldots, o_{n}, o$ for some $o \in O$, or
(2) removing one or more of the last operators, from o_{1}, \ldots, o_{n} to o_{1}, \ldots, o_{i} for some $i<n$. This is for local search algorithms only.

Heuristic
search
Incomplete plans
A*
Local search
Deriving
heuristics
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations

Plan search: incomplete plans for progression

AI Planning
M. Helmert
B. Nebel

For progression, the incomplete plans are prefixes $o_{1}, o_{2}, \ldots, o_{n}$ of potential plans.
An incomplete plan is extended by
(1) adding an operator after the last operator, from o_{1}, \ldots, o_{n} to $o_{1}, o_{2}, \ldots, o_{n}, o$ for some $o \in O$, or
(2) removing one or more of the last operators, from o_{1}, \ldots, o_{n} to o_{1}, \ldots, o_{i} for some $i<n$.
This is for local search algorithms only.
$o_{1}, o_{2}, \ldots, o_{n}$ is a plan if $\operatorname{app}_{o_{n}}\left(\operatorname{app}_{o_{n-1}}\left(\cdots a p p_{o_{1}}(I) \cdots\right)\right) \models G$.

Heuristic
search
Incomplete plans
A*
Local search
Deriving
heuristics
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations

Plan search: incomplete plans for regression

For regression, the incomplete plans are suffixes o_{n}, \ldots, o_{1} of potential plans.

Al Planning
M. Helmert
B. Nebel

An incomplete plan is extended by
(1) adding an operator in front of the first operator

2 deleting one or more of the first operators from $o_{n} \ldots o_{1}$ to $o_{i} \ldots o_{1}$ for some $i<n$ This is for local search algorithms only.
O_{1} is a plan if I

$\operatorname{reg}_{o_{2}}\left(\operatorname{reg} r_{o_{1}}(G)\right)$

Heuristic
search
Incomplete plans A*
Local search
Deriving
heuristics
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations

Remark

The above is for the simplest case when formulae are not split. With splitting the formalization is slightly trickier.

Plan search: incomplete plans for regression

For regression, the incomplete plans are suffixes o_{n}, \ldots, o_{1} of potential plans.
An incomplete plan is extended by
(1) adding an operator in front of the first operator, from o_{n}, \ldots, o_{1} to o, o_{n}, \ldots, o_{1} for $o \in O$,

Remark

The ahove is for the simplest case when formulae are not split With splitting the formalization is slightly trickier

Plan search: incomplete plans for regression

For regression, the incomplete plans are suffixes o_{n}, \ldots, o_{1} of potential plans.
An incomplete plan is extended by
(1) adding an operator in front of the first operator, from o_{n}, \ldots, o_{1} to o, o_{n}, \ldots, o_{1} for $o \in O$, or
(2) deleting one or more of the first operators, from o_{n}, \ldots, o_{1} to o_{i}, \ldots, o_{1} for some $i<n$. This is for local search algorithms only.

Relaxations

Remark

The above is for the simplest case when formulae are not split. With splitting the formalization is slightly trickier

Plan search: incomplete plans for regression

For regression, the incomplete plans are suffixes o_{n}, \ldots, o_{1} of potential plans.
An incomplete plan is extended by
(1) adding an operator in front of the first operator, from o_{n}, \ldots, o_{1} to o, o_{n}, \ldots, o_{1} for $o \in O$, or
(2) deleting one or more of the first operators,

This is for local search algorithms only.
o_{n}, \ldots, o_{1} is a plan if $I \models \operatorname{regr}_{o_{n}}\left(\cdots \operatorname{regr}_{o_{2}}\left(\operatorname{regr}_{o_{1}}(G)\right) \cdots\right)$.

The above is for the simplest case when formulae are not split. With splitting the formalization is slightly trickier.

Plan search: incomplete plans for regression

For regression, the incomplete plans are suffixes o_{n}, \ldots, o_{1} of potential plans.
An incomplete plan is extended by
(1) adding an operator in front of the first operator, from o_{n}, \ldots, o_{1} to o, o_{n}, \ldots, o_{1} for $o \in O$, or
(2) deleting one or more of the first operators, from o_{n}, \ldots, o_{1} to o_{i}, \ldots, o_{1} for some $i<n$.
This is for local search algorithms only.
o_{n}, \ldots, o_{1} is a plan if $I \models \operatorname{regr}_{o_{n}}\left(\cdots\right.$ regr $\left._{o_{2}}\left(\operatorname{regr}_{o_{1}}(G)\right) \cdots\right)$.

Heuristic
search
Incomplete plans
A*
Local search
Deriving
heuristics
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations

Remark

The above is for the simplest case when formulae are not split. With splitting the formalization is slightly trickier.

Planning by heuristic search

Forward search

Heuristic
 search

Incomplete plans
A*
Local search
Deriving
heuristics
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations

Planning by heuristic search

Backward search

Planning by heuristic search

Selection of operators based on distance estimates

Al Planning
M. Helmert
B. Nebel

Select next operator $o \in O$ based on the estimated distance (number of operators) between
(1) $\operatorname{app}_{o}\left(\operatorname{app} p_{o_{n}}\left(a p p_{o_{n-1}}\left(\cdots a p p_{o_{1}}(I) \cdots\right)\right)\right)$ and G, for forward search.
(2) I and $\operatorname{regr} r_{o}\left(\right.$ regr $_{o_{n}}\left(\cdots\right.$ regr $_{o_{2}}\left(\right.$ regr $\left.\left.\left._{o_{1}}(G)\right) \cdots\right)\right)$, for backward search.

Heuristic
search
Incomplete plans A*
Local search
Deriving
heuristics
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations

Search algorithms: A^{*}

Al Planning
M. Helmert,
B. Nebel

Search control of A^{*}

A* uses the function $f(\sigma)=g(\sigma)+h(\sigma)$ to guide search:

- $g(\sigma)=$ cost so far, i. e. number of operators in σ
- $h(\sigma)=$ estimated remaining cost (distance)
- admissibility: $h(\sigma)$ must be less than or equal to the actual remaining cost $h^{*}(\sigma)$ (distance), otherwise A^{*} is

Heuristic
search
Incomplete plans
A*
Local search
Deriving
heuristics
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations not guaranteed to find an optimal solution.

Search algorithms: A^{*}

Example

Heuristic
search
Incomplete plans A*
Local search
Deriving
heuristics
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations

Search algorithms: A^{*}

Example

Heuristic
search
Incomplete plans A*
Local search
Deriving
heuristics
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations

Search algorithms: A^{*}

Example

Heuristic

search
Incomplete plans
Local search
Deriving
heuristics
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations

Search algorithms: A^{*}

Example

Heuristic

search
Incomplete plans
Local search
Deriving
heuristics
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations

Search algorithms: A*

Example

Heuristic

search
Incomplete plans
Local search
Deriving
heuristics
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations

Search algorithms: A*

Example

Search algorithms: A*

Definition

Notation for operator sequences

$a p p_{o_{1} ; o_{2} ; \ldots ; o_{n}}(s)$ denotes $a p p_{o_{n}}\left(\ldots \operatorname{app}_{o_{2}}\left(a p p_{o_{1}}(s)\right) \ldots\right)$ and ϵ denotes the empty sequence for which $a p p_{\epsilon}(s)=s$.

Algorithm A*

Forward search with A^{*} works as follows.
open $:=\{\epsilon\}$, closed $:=\emptyset$
loop:
if open $=\emptyset$:
return unsolvable

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Incomplete plans
A*
Local search
Deriving
heuristics
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations

Choose an element $\sigma \in$ open with the least $f(\sigma)$.
if $\operatorname{app}_{\sigma}(I) \models G$:

return σ

open $:=$ open $\backslash\{\sigma\}$; closed $:=$ closed $\cup\{\sigma\}$ open $:=$ open $\cup(\{\sigma ; o \mid o \in O\} \backslash$ closed $)$

Local search: random walk

Random walk
$\sigma:=\epsilon$
loop:

$$
\text { if } \operatorname{app}_{\sigma}(I) \models G \text { : }
$$

return σ
Randomly choose a neighbor σ^{\prime} of σ. $\sigma:=\sigma^{\prime}$

Remark

The algorithm usually does not find any solutions, unless almost every sequence of actions is a plan.

Local search: steepest descent hill-climbing

Hill-climbing
Al Planning
M. Helmert
B. Nebel
$\sigma:=\epsilon$

Heuristic
search
Incomplete plans
A*
Local search
Deriving
heuristics
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations

Remark

The algorithm gets stuck in local minima if no neighbor σ^{\prime} has a better heuristic value than the current incomplete plan σ.

Local search: simulated annealing

Simulated annealing
Al Planning
$\sigma:=\epsilon$
loop:
if $\operatorname{app}_{\sigma}(I) \models G:$
return σ
Randomly choose a neighbor σ^{\prime} of σ.
if $h\left(\sigma^{\prime}\right)<h(\sigma)$:
$\sigma:=\sigma^{\prime}$
else with probability $\exp \left(-\frac{h\left(\sigma^{\prime}\right)-h(\sigma)}{T}\right)$:

$$
\sigma:=\sigma^{\prime}
$$

Decrease T. (Different possible strategies!)
The temperature T is initially high and then gradually decreased.

Local search: simulated annealing

Illustration

Heuristic
 search

Incomplete plans
A*
Local search
Deriving
heuristics
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations

How to obtain heuristics?

General procedure for obtaining a heuristic
Solve a simplified / less restricted version of the problem.

Example (Route planning for a road network)
The road network is formalized as a weighted graph where the weight of an edge is the road distance between two locations.
A heuristic is obtained from the Euclidean distance
$\sqrt{\left|x_{1}-x_{2}\right|^{2}+\left|y_{1}-y_{2}\right|^{2}}$. It is a lower bound on the road distance between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.

An admissible heuristic for route planning

 Example

An admissible heuristic for route planning

 Example

Al Planning
M. Helmert,
B. Nebel

Heuristic

search
Incomplete plans
A^{*}
Local search
Deriving
heuristics
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations

Freiburg

An admissible heuristic for route planning

 Example

Al Planning
M. Helmert,
B. Nebel

Heuristic

search
Incomplete plans
A^{*}
Local search
Deriving
heuristics
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations

Freiburg

An admissible heuristic for route planning

 Example

Al Planning
M. Helmert,
B. Nebel

Heuristic

search
Incomplete plans
A^{*}
Local search
Deriving
heuristics
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations

Freiburg

An admissible heuristic for route planning

 Example

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Incomplete plans
A*
Local search
Deriving
heuristics
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations

Freiburg

An admissible heuristic for route planning

 Example

Al Planning
M. Helmert,
B. Nebel

Heuristic

search
Incomplete plans
A*
Local search
Deriving
heuristics
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations

Freiburg

An admissible heuristic for route planning

 Example

Al Planning
M. Helmert,
B. Nebel

Heuristic

search
Incomplete plans
A*
Local search
Deriving
heuristics
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations

Freiburg

An admissible heuristic for route planning

 Example

Al Planning
M. Helmert,
B. Nebel

Heuristic

search
Incomplete plans
A*
Local search
Deriving
heuristics
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations

Heuristics for deterministic planning STRIPS

- STRIPS (Fikes \& Nilsson, 1971) used the number of state variables that differ in current state s and a goal state s^{\prime} :

$$
\left|\left\{a \in A \mid s(a) \neq s^{\prime}(a)\right\}\right| .
$$

"The more goal literals an operator makes true, the more useful the operator is."

- The above heuristic is not admissible because one operator may reduce this measure by more than one. Instead,

$$
\frac{\left|\left\{a \in A \mid s(a) \neq s^{\prime}(a)\right\}\right|}{n}
$$

is admissible when no operator has $>n$ atomic effects.

Intuition

- To compute heuristics for planning tasks, we consider a relaxed version of the original problem, where some

Heuristic
search difficult aspects of the original problem are ignored.

- This is a general technique for heuristic design:
- Straight-line heuristic (route planning): Ignore the fact that one must stay on roads.
- Manhattan heuristic (15-puzzle): Ignore the fact that one cannot move through occupied tiles.
- For general planning problems, we will ignore negative interactions. Informally, we ignore "bad side effects" of applying operators.

Intuition

Al Planning
M. Helmert,
B. Nebel

Question: Which operator effects are good, and which are bad?
This is difficult to answer in general, because it depends on context:

- If we want to prevent burglars from breaking into our flat, locking the entrance door is good.
- If we want to pass through it, locking the entrance door is bad.

Heuristic
search
Relaxation
Positive normal
form
Relaxation
Solving
relaxations
Deriving
Heuristic
Estimates
from
Relaxations

We will now consider a reformulation of planning problems that makes the distinction between good and bad effects obvious.

Positive normal form

Definition

An operator $o=\langle c, e\rangle$ is in positive normal form if it is in normal form, no negation symbols appear in c, and no negation symbols appear in any effect condition in e.
A succinct deterministic transition system $\langle A, I, O, G\rangle$ is in positive normal form if all operators in O are in positive normal form and no negation symbols occur in the goal G.

Theorem

For every succinct deterministic transition system, an equivalent succinct deterministic transition system in positive normal form can be computed in polynomial time.

Equivalence here means that the represented (non-succinct) deterministic transition systems are isomorphic.

Positive normal form: algorithm

Transformation of $\langle A, I, O, G\rangle$ to positive normal form

M. Helmert
B. Nebel

Convert all operators $o \in O$ to normal form.
Convert all conditions to negation normal form (NNF). while any condition contains a negative literal $\neg a$:

Let a be a variable which occurs negatively in a condition.
$A:=A \cup\{\hat{a}\}$ for some new state variable \hat{a}
$I(\hat{a}):=1-I(a)$
Replace the effect $\neg a$ by $(\neg a \wedge \hat{a})$ in all operators $o \in O$.
Replace the effect a by ($a \wedge \neg \hat{a}$) in all operators $o \in O$.

Heuristic
search
Relaxation
Positive normal
form
Relaxation
Solving
relaxations
Deriving
Heuristic
Estimates
from
Relaxations

Replace $\neg a$ by \hat{a} in all conditions.
Convert all operators $o \in O$ to normal form (again).
Here, all conditions refers to all operator preconditions, operator effect conditions and the goal.

Positive normal form: Example

Example

Al Planning
M. Helmert,
B. Nebel
$A=\{$ home, uni, lecture, bike, bike-locked $\}$
$I=\{$ home $\mapsto 1$, bike $\mapsto 1$, bike-locked $\mapsto 1$,
uni $\mapsto 0$, lecture $\mapsto 0\}$
$O=\{\langle$ home \wedge bike $\wedge \neg$ bike-locked,\neg home \wedge uni \rangle,
\langle bike \wedge bike-locked, \neg bike-locked \rangle,
\langle bike $\wedge \neg$ bike-locked, bike-locked〉,
\langle uni, lecture $\wedge(($ bike $\wedge \neg$ bike-locked $) \triangleright \neg$ bike $)\rangle\}$
$G=$ lecture \wedge bike

Positive normal form: Example

Example

Al Planning
M. Helmert,
B. Nebel
$A=\{$ home, uni, lecture, bike, bike-locked $\}$
$I=\{$ home $\mapsto 1$, bike $\mapsto 1$, bike-locked $\mapsto 1$,
uni $\mapsto 0$, lecture $\mapsto 0\}$
$O=\{\langle$ home \wedge bike $\wedge \neg$ bike-locked,\neg home \wedge uni \rangle,
\langle bike \wedge bike-locked, \neg bike-locked \rangle,
\langle bike $\wedge \neg$ bike-locked, bike-locked〉,
$\langle u n i$, lecture $\wedge(($ bike $\wedge \neg$ bike-locked $) \triangleright \neg$ bike $)\rangle\}$
$G=$ lecture \wedge bike

Positive normal form: Example

Example

Al Planning
M. Helmert,
B. Nebel
$A=\{$ home, uni, lecture, bike, bike-locked, bike-unlocked $\}$
$I=\{$ home $\mapsto 1$, bike $\mapsto 1$, bike-locked $\mapsto 1$,
uni $\mapsto 0$, lecture $\mapsto 0$, bike-unlocked $\mapsto 0\}$
$O=\{\langle$ home \wedge bike $\wedge \neg$ bike-locked,\neg home \wedge uni \rangle,
\langle bike \wedge bike-locked, \neg bike-locked \rangle,
\langle bike $\wedge \neg$ bike-locked, bike-locked〉,
\langle uni, lecture $\wedge(($ bike $\wedge \neg$ bike-locked $) \triangleright \neg$ bike $)\rangle\}$
$G=$ lecture \wedge bike

Heuristic
search
Relaxation
Positive normal
form
Relaxation
Solving
relaxations
Deriving
Heuristic
Estimates
from
Relaxations

Positive normal form: Example

Example

Al Planning
M. Helmert,
B. Nebel
$A=\{$ home, uni, lecture, bike, bike-locked, bike-unlocked $\}$
$I=\{$ home $\mapsto 1$, bike $\mapsto 1$, bike-locked $\mapsto 1$,
uni $\mapsto 0$, lecture $\mapsto 0$, bike-unlocked $\mapsto 0\}$
$O=\{\langle$ home \wedge bike $\wedge \neg$ bike-locked,\neg home \wedge uni \rangle,
\langle bike \wedge bike-locked, \neg bike-locked〉,
\langle bike $\wedge \neg$ bike-locked, bike-locked〉,
\langle uni, lecture $\wedge(($ bike $\wedge \neg$ bike-locked $) \triangleright \neg$ bike $)\rangle\}$
$G=$ lecture \wedge bike

Heuristic
search
Relaxation
Positive normal
form
Relaxation
Solving
relaxations
Deriving
Heuristic
Estimates
from
Relaxations

Positive normal form: Example

Example

Al Planning
M. Helmert,
B. Nebel
$A=\{$ home, uni, lecture, bike, bike-locked, bike-unlocked $\}$
$I=\{$ home $\mapsto 1$, bike $\mapsto 1$, bike-locked $\mapsto 1$,
uni $\mapsto 0$, lecture $\mapsto 0$, bike-unlocked $\mapsto 0\}$
$O=\{\langle$ home \wedge bike $\wedge \neg$ bike-locked, \neg home \wedge uni \rangle,
\langle bike \wedge bike-locked, \neg bike-locked \wedge bike-unlocked〉,
\langle bike $\wedge \neg$ bike-locked, bike-locked $\wedge \neg$ bike-unlocked〉,
\langle uni, lecture $\wedge(($ bike $\wedge \neg$ bike-locked $) \triangleright \neg$ bike $)\rangle$ \}
$G=$ lecture \wedge bike

Positive normal form: Example

Example

Al Planning
M. Helmert,
B. Nebel
$A=\{$ home, uni, lecture, bike, bike-locked, bike-unlocked $\}$
$I=\{$ home $\mapsto 1$, bike $\mapsto 1$, bike-locked $\mapsto 1$,
uni $\mapsto 0$, lecture $\mapsto 0$, bike-unlocked $\mapsto 0\}$
$O=\{\langle$ home \wedge bike $\wedge \neg$ bike-locked, \neg home \wedge uni \rangle,
\langle bike \wedge bike-locked, \neg bike-locked \wedge bike-unlocked \rangle,
\langle bike $\wedge \neg$ bike-locked, bike-locked $\wedge \neg$ bike-unlocked〉,
\langle uni, lecture $\wedge(($ bike $\wedge \neg$ bike-locked) $\triangleright \neg$ bike $)\rangle$ \}
$G=$ lecture \wedge bike

Positive normal form: Example

Example

Al Planning
M. Helmert,
B. Nebel
$A=\{$ home, uni, lecture, bike, bike-locked, bike-unlocked $\}$
$I=\{$ home $\mapsto 1$, bike $\mapsto 1$, bike-locked $\mapsto 1$, uni $\mapsto 0$, lecture $\mapsto 0$, bike-unlocked $\mapsto 0\}$
$O=\{\langle$ home \wedge bike \wedge bike-unlocked, \neg home \wedge uni \rangle,
\langle bike \wedge bike-locked, \neg bike-locked \wedge bike-unlocked \rangle,
\langle bike \wedge bike-unlocked, bike-locked $\wedge \neg$ bike-unlocked〉,
\langle uni, lecture $\wedge(($ bike \wedge bike-unlocked $) \triangleright \neg$ bike $)\rangle\}$
$G=$ lecture \wedge bike

Positive normal form: Example

Example

Al Planning
M. Helmert,
B. Nebel
$A=\{$ home, uni, lecture, bike, bike-locked, bike-unlocked $\}$
$I=\{$ home $\mapsto 1$, bike $\mapsto 1$, bike-locked $\mapsto 1$, uni $\mapsto 0$, lecture $\mapsto 0$, bike-unlocked $\mapsto 0\}$
$O=\{\langle$ home \wedge bike \wedge bike-unlocked, \neg home \wedge uni \rangle,
\langle bike \wedge bike-locked, \neg bike-locked \wedge bike-unlocked \rangle,
\langle bike \wedge bike-unlocked, bike-locked $\wedge \neg$ bike-unlocked〉,
\langle uni, lecture $\wedge(($ bike \wedge bike-unlocked $) \triangleright \neg$ bike $)\rangle\}$
$G=$ lecture \wedge bike

Intuition

In positive normal form, good and bad effects are easy to distinguish:

- Effects that make state variables true are good

Heuristic
search
Relaxation
Positive normal
form
Relaxation
Solving
relaxations
Deriving
Heuristic
Estimates
from
Relaxations

Idea for the heuristic: Ignore all delete effects.

Relaxation

Al Planning
M. Helmert
B. Nebel

Definition

The relaxation o^{+}of an operator $o=\langle c, e\rangle$ in positive normal form is the operator which is obtained by replacing all negative effects $\neg a$ within e by the do-nothing effect T.
The relaxation \mathcal{P}^{+}of a succinct deterministic transition system $\mathcal{P}=\langle A, I, O, G\rangle$ in positive normal form is the succinct deterministic transition system $\mathcal{P}^{+}:=\left\langle A, I,\left\{o^{+} \mid o \in O\right\}, G\right\rangle$.

Heuristic
search
Relaxation
Positive normal
form
Relaxation
Solving
relaxations
Deriving
Heuristic
Estimates
from
Relaxations

The relaxation of an operator sequence $\pi=o_{1}, \ldots, o_{n}$ is the operator sequence $\pi^{+}:=o_{1}{ }^{+}, \ldots, o_{n}{ }^{+}$.

Relaxation: properties

Al Planning
M. Helmert
B. Nebel

The on-set on (s) of a state s is the set of true state variables in s, i.e. on $(s)=s^{-1}(\{1\})$.
A state s^{\prime} dominates another state s iff on $(s) \subseteq o n\left(s^{\prime}\right)$.

Lemma (domination)

Let s and s^{\prime} be valuations of a set of propositional variables and let χ be a propositional formula which does not contain negation symbols.
If $s \models \chi$ and s^{\prime} dominates s, then $s^{\prime} \models \chi$.
Proof by induction over the structure of χ (exercise).

Relaxation: properties

Al Planning
M. Helmert,
B. Nebel

Lemma (relaxation leads to dominated states)

Let s be a state, and let π be an operator sequence which is
Relaxation applicable in s.
Then π^{+}is applicable in s and app $\pi_{\pi^{+}}(s)$ dominates $\operatorname{app}_{\pi}(s)$.

Proof.

Induction on the length of π.

Base case: $\pi=\epsilon$ Trivial

Relaxation: properties

Al Planning
M. Helmert,
B. Nebel

Lemma (relaxation leads to dominated states)

Let s be a state, and let π be an operator sequence which is
Relaxation applicable in s.
Then π^{+}is applicable in s and app $\pi_{\pi^{+}}(s)$ dominates $\operatorname{app} p_{\pi}(s)$.

Proof.

Positive normal
form
Relaxation
Solving
relaxations
Deriving
Heuristic
Estimates
from
Relaxations
Induction on the length of π.
Base case: $\pi=\epsilon$
Trivial.

Relaxation: properties

Proof continues.

Inductive case: $\pi=o_{1}{ }^{+} \ldots o_{n+1}{ }^{+}$
By the induction hypothesis, $o_{1}{ }^{+} \ldots o_{n}{ }^{+}$is applicable in s, and $t^{+}=a p p_{o_{1}+\ldots o_{n}}+(s)$ dominates $t=a p p_{o_{1} \ldots o_{n}}(s)$.

Let $o:=o_{n+1}=\langle c, e\rangle$ and $o^{+}=\left\langle c, e^{+}\right\rangle$. By assumption, o is
applicable in t, and thus $t \mid=c$. By the domination lemma, we get $t^{+} \models c$ and hence o^{+}is applicable in t^{+}. Therefore, π^{+}is applicable in s

Because o is in positive normal form, all effect conditions

Relaxation: properties

Proof continues.

Inductive case: $\pi=o_{1}{ }^{+} \ldots o_{n+1}{ }^{+}$
By the induction hypothesis, $o_{1}{ }^{+} \ldots o_{n}{ }^{+}$is applicable in s, and
Heuristic
search $t^{+}=a p p_{o_{1}+\ldots o_{n}+}(s)$ dominates $t=a p p_{o_{1} \ldots o_{n}}(s)$.
Let $o:=o_{n+1}=\langle c, e\rangle$ and $o^{+}=\left\langle c, e^{+}\right\rangle$. By assumption, o is applicable in t, and thus $t \equiv c$. By the domination lemma, we get $t^{+} \models c$ and hence o^{+}is applicable in t^{+}. Therefore, π^{+}is applicable in s.
Because o is in positive normal form, all effect conditions
satisfied by t are also satisfied by t^{+}(by the domination
lemma). Therefore, $\left([e]_{+} \cap A\right) \subset\left[e^{+}\right]_{t_{+}}$(where A is the set of state variables, or positive literals)

We get on $\left(a p p_{\pi}(s)\right) \subseteq o n(t) \cup\left([e]_{t} \cap A\right) \subseteq o n\left(t^{+}\right) \cup\left[e^{+}\right]_{t^{+}}=$ on $\left(a p p_{\pi}+(s)\right)$, and thus $a p p_{\pi^{+}}(s)$ dominates $a p p_{\pi}(s)$.

Relaxation: properties

Proof continues.

Inductive case: $\pi=o_{1}{ }^{+} \ldots o_{n+1}{ }^{+}$
By the induction hypothesis, $o_{1}{ }^{+} \ldots o_{n}{ }^{+}$is applicable in s, and $t^{+}=a p p_{o_{1}+\ldots o_{n}}+(s)$ dominates $t=a p p_{o_{1} \ldots o_{n}}(s)$.
Let $o:=o_{n+1}=\langle c, e\rangle$ and $o^{+}=\left\langle c, e^{+}\right\rangle$. By assumption, o is applicable in t, and thus $t \models c$. By the domination lemma, we get $t^{+} \models c$ and hence o^{+}is applicable in t^{+}. Therefore, π^{+}is applicable in s.
Because o is in positive normal form, all effect conditions

Heuristic
search
Relaxation
Positive normal
form
Relaxation
Solving
relaxations
Deriving
Heuristic
Estimates
from
Relaxations satisfied by t are also satisfied by t^{+}(by the domination lemma). Therefore, $\left([e]_{t} \cap A\right) \subseteq\left[e^{+}\right]_{t^{+}}$(where A is the set of state variables, or positive literals).

Relaxation: properties

Proof continues.

Inductive case: $\pi=o_{1}{ }^{+} \ldots o_{n+1}{ }^{+}$
By the induction hypothesis, $o_{1}{ }^{+} \ldots o_{n}{ }^{+}$is applicable in s, and $t^{+}=a p p_{o_{1}+\ldots o_{n}}+(s)$ dominates $t=a p p_{o_{1} \ldots o_{n}}(s)$.
Let $o:=o_{n+1}=\langle c, e\rangle$ and $o^{+}=\left\langle c, e^{+}\right\rangle$. By assumption, o is applicable in t, and thus $t \models c$. By the domination lemma, we get $t^{+} \models c$ and hence o^{+}is applicable in t^{+}. Therefore, π^{+}is applicable in s.
Because o is in positive normal form, all effect conditions

Al Planning
M. Helmert,
B. Nebel
satisfied by t are also satisfied by t^{+}(by the domination lemma). Therefore, $\left([e]_{t} \cap A\right) \subseteq\left[e^{+}\right]_{t^{+}}$(where A is the set of state variables, or positive literals).
We get on $\left(a p p_{\pi}(s)\right) \subseteq o n(t) \cup\left([e]_{t} \cap A\right) \subseteq o n\left(t^{+}\right) \cup\left[e^{+}\right]_{t^{+}}=$ on $\left(a p p_{\pi^{+}}(s)\right)$, and thus app $\pi_{\pi^{+}}(s)$ dominates app $p_{\pi}(s)$.

Relaxation: properties

Theorem (solution preservation)

Let π be a plan for a succinct deterministic transition system \mathcal{T} in positive normal form.

Al Planning
M. Helmert,
B. Nebel

Then π^{+}is a plan for \mathcal{T}^{+}.

Proof.

Let $\mathcal{T}=\langle A, I, O, G\rangle$ and thus $\mathcal{T}^{+}=\left\langle A, I, O^{+}, G\right\rangle$.
Since π is applicable in I, π^{+}is also applicable in I (by the previous lemma)

Heuristic
search
Relaxation
Positive normal
form
Relaxation
Solving
relaxations
Deriving
Heuristic
Estimates
from
Relaxations

Also by the previous lemma, the resulting state $s^{+}:=a p p_{\pi}+(I)$ dominates the state $s:=\operatorname{app}_{\pi}(I)$. Because $s=G$ and G is negation-free, we get $s^{+} \models G$ by the domination lemma. Thus π^{+}is indeed a nlan for $\mathcal{T}+$

Relaxation: properties

Theorem (solution preservation)

Al Planning
M. Helmert,

Let π be a plan for a succinct deterministic transition system \mathcal{T} in positive normal form.
B. Nebel

Then π^{+}is a plan for \mathcal{T}^{+}.

Proof.

Let $\mathcal{T}=\langle A, I, O, G\rangle$ and thus $\mathcal{T}^{+}=\left\langle A, I, O^{+}, G\right\rangle$.
Since π is applicable in I, π^{+}is also applicable in I (by the previous lemma).

Heuristic
search
Relaxation
Positive normal
form
Relaxation
Solving
relaxations
Deriving
Heuristic
Estimates
from
Relaxations

Also by the previous lemma, the resulting state $s^{+}:=a p p_{\pi^{+}}(I)$ dominates the state $s:=\operatorname{app}_{\pi}(I)$. Because $s \neq G$ and G is negation-free, we get $s^{+} \models G$ by the domination lemma. Thus π^{+}is indeed a plan for \mathcal{T}^{+}

Relaxation: properties

Theorem (solution preservation)

Al Planning
M. Helmert
B. Nebel

Let π be a plan for a succinct deterministic transition system \mathcal{T} in positive normal form.

Heuristic
search
Relaxation
Positive normal
form
Relaxation
Solving
relaxations
Deriving
Heuristic
Estimates
from
Relaxations previous lemma).

Also by the previous lemma, the resulting state $s^{+}:=a p p_{\pi^{+}}(I)$ dominates the state $s:=\operatorname{app}_{\pi}(I)$. Because $s \models G$ and G is negation-free, we get $s^{+} \models G$ by the domination lemma.

Relaxation: properties

Theorem (solution preservation)

Al Planning

Let π be a plan for a succinct deterministic transition system \mathcal{T} in positive normal form.
M. Helmert,
B. Nebel

Then π^{+}is a plan for \mathcal{T}^{+}.

Proof.

Let $\mathcal{T}=\langle A, I, O, G\rangle$ and thus $\mathcal{T}^{+}=\left\langle A, I, O^{+}, G\right\rangle$.
Since π is applicable in I, π^{+}is also applicable in I (by the previous lemma).

Heuristic
search
Relaxation
Positive normal
form
Relaxation
Solving
relaxations
Deriving
Heuristic
Estimates
from
Relaxations

Also by the previous lemma, the resulting state $s^{+}:=a p p_{\pi^{+}}(I)$ dominates the state $s:=\operatorname{app}_{\pi}(I)$. Because $s \models G$ and G is negation-free, we get $s^{+} \models G$ by the domination lemma.
Thus π^{+}is indeed a plan for \mathcal{T}^{+}.

Relaxation: properties

Al Planning
M. Helmert
B. Nebel

Consequences of the solution preservation theorem:

- Relaxations are never harder to solve than the original problem.
- Optimal solutions to relaxations are never longer than optimal solutions to the original problem.
In fact, relaxations are much easier to solve than the original problems, which makes them suitable as the basis for heuristic functions.

We will now consider the problem of solving relaxations.

Solving relaxations: properties

Lemma (dominating states are better)

Al Planning
M. Helmert,
B. Nebel

Let s be a state, let s^{\prime} be a state that dominates s, and let π^{+}
Heuristic
search be a relaxed operator sequence which is applicable in s. Then π^{+}is applicable in s^{\prime} and app $\pi_{\pi^{+}}\left(s^{\prime}\right)$ dominates app $\pi_{\pi^{+}}(s)$.

Relaxation
Positive normal
form
Relaxation
Solving
relaxations
Deriving
Heuristic
Estimates
from
Relaxations

Solving relaxations: properties

Lemma (dominating states are better)

Al Planning
M. Helmert,
B. Nebel

Let s be a state, let s^{\prime} be a state that dominates s, and let π^{+}
Heuristic
search be a relaxed operator sequence which is applicable in s. Then π^{+}is applicable in s^{\prime} and $a p p_{\pi^{+}}\left(s^{\prime}\right)$ dominates app $\pi_{\pi^{+}}(s)$.

Proof.

Induction on the length of π^{+}.
Relaxation
Positive normal
form
Relaxation
Solving
relaxations
Deriving
Heuristic
Estimates
from
Relaxations

Solving relaxations: properties

Lemma (dominating states are better)

Let s be a state, let s^{\prime} be a state that dominates s, and let π^{+}
Heuristic
search
Relaxation
Positive normal
form
Relaxation
Solving
relaxations

Proof.

Induction on the length of π^{+}.
Base case: $\pi^{+}=\epsilon$

The empty plan ϵ is applicable in s^{\prime}.
Moreover, $\operatorname{app}_{\pi^{+}}\left(s^{\prime}\right)=a p p_{\epsilon}\left(s^{\prime}\right)=s^{\prime}$ and $a p p_{\pi^{+}}(s)=a p p_{\epsilon}(s)=s$, and s^{\prime} dominates s.

Solving relaxations: properties

Proof continues.

Inductive case: $\pi^{+}=o_{1}{ }^{+} \ldots o_{n+1}{ }^{+}$
M. Helmert
B. Nebel

By the induction hypothesis, $o_{1}{ }^{+} \ldots o_{n}{ }^{+}$is applicable in s^{\prime}, and $t^{\prime}=a p p_{o_{1}+\ldots o_{n}}+\left(s^{\prime}\right)$ dominates $t=a p p_{o_{1}+\ldots o_{n}}+(s)$.
Let $O^{+}:=o_{n+1}^{+}=\langle c, e\rangle$. By assumption, o^{+}is applicable in t,
and thus $t \equiv c$. By the domination lemma, we get $t^{\prime} \vDash c$ and hence o^{+}is applicable in t^{\prime}. Therefore, π^{+}is applicable in s^{\prime}.

Because o^{+}is in positive normal form, all effect conditions

Heuristic
search
Relaxation
Positive normal
form
Relaxation
Solving
relaxations
Deriving
Heuristic
Estimates
from
Relaxations

Solving relaxations: properties

Proof continues.

Inductive case: $\pi^{+}=o_{1}{ }^{+} \ldots o_{n+1}{ }^{+}$
Al Planning
M. Helmert,

By the induction hypothesis, $o_{1}{ }^{+} \ldots o_{n}{ }^{+}$is applicable in s^{\prime}, and
B. Nebel $t^{\prime}=a p p_{o_{1}+\ldots o_{n}}+\left(s^{\prime}\right)$ dominates $t=a p p_{o_{1}+\ldots o_{n}}+(s)$.
Let $o^{+}:=o_{n+1}^{+}=\langle c, e\rangle$. By assumption, o^{+}is applicable in t, and thus $t \models c$. By the domination lemma, we get $t^{\prime} \models c$ and hence o^{+}is applicable in t^{\prime}. Therefore, π^{+}is applicable in s^{\prime}.

Because O^{+}is in positive normal form, all effect conditions which are satisfied in t are also satisfied in t^{\prime} (by the

Heuristic
search
Relaxation
Positive normal
form
Relaxation
Solving
relaxations
Deriving
Heuristic
Estimates
from
Relaxations

Because all atomic effects in O^{+}are positive, $[e]_{t}$ and $[e]_{t^{\prime}}$ are sets of positive literals. We thus get
 and thus $\operatorname{app}_{\pi^{+}}\left(s^{\prime}\right)$ dominates app $\pi^{+}(s)$

Solving relaxations: properties

Proof continues.

Inductive case: $\pi^{+}=o_{1}{ }^{+} \ldots o_{n+1}{ }^{+}$
By the induction hypothesis, $o_{1}{ }^{+} \ldots o_{n}{ }^{+}$is applicable in s^{\prime}, and $t^{\prime}=a p p_{o_{1}+\ldots o_{n}}+\left(s^{\prime}\right)$ dominates $t=a p p_{o_{1}+\ldots o_{n}}+(s)$.
Let $o^{+}:=o_{n+1}^{+}=\langle c, e\rangle$. By assumption, o^{+}is applicable in t, and thus $t \models c$. By the domination lemma, we get $t^{\prime} \models c$ and hence o^{+}is applicable in t^{\prime}. Therefore, π^{+}is applicable in s^{\prime}. Because o^{+}is in positive normal form, all effect conditions which are satisfied in t are also satisfied in t^{\prime} (by the domination lemma). Therefore, $[e]_{t} \subseteq[e]_{t^{\prime}}$.
Because all atomic effects in o^{+}are positive, $[e]_{t}$ and $[e]_{t^{\prime}}$ are sets of positive literals. We thus get
 and thus $\operatorname{app}_{\pi^{+}}\left(s^{\prime}\right)$ dominates app $\pi^{+}(s)$

Solving relaxations: properties

Proof continues.

Inductive case: $\pi^{+}=o_{1}{ }^{+} \ldots o_{n+1}{ }^{+}$
Al Planning
M. Helmert,

By the induction hypothesis, $o_{1}{ }^{+} \ldots o_{n}{ }^{+}$is applicable in s^{\prime}, and $t^{\prime}=a p p_{o_{1}+\ldots o_{n}+}\left(s^{\prime}\right)$ dominates $t=a p p_{o_{1}+\ldots o_{n}+}(s)$.
Let $o^{+}:=o_{n+1}^{+}=\langle c, e\rangle$. By assumption, o^{+}is applicable in t, and thus $t \models c$. By the domination lemma, we get $t^{\prime} \models c$ and hence o^{+}is applicable in t^{\prime}. Therefore, π^{+}is applicable in s^{\prime}.
Because o^{+}is in positive normal form, all effect conditions which are satisfied in t are also satisfied in t^{\prime} (by the domination lemma). Therefore, $[e]_{t} \subseteq[e]_{t^{\prime}}$.
Because all atomic effects in o^{+}are positive, $[e]_{t}$ and $[e]_{t^{\prime}}$ are sets of positive literals. We thus get on $\left(a p p_{\pi^{+}}(s)\right)=o n(t) \cup[e]_{t} \subseteq o n\left(t^{\prime}\right) \cup[e]_{t^{\prime}}=o n\left(a p p_{\pi^{+}}\left(s^{\prime}\right)\right)$, and thus $a p p_{\pi^{+}}\left(s^{\prime}\right)$ dominates $a p p_{\pi^{+}}(s)$.

Solving relaxations: properties

Consequences of the lemma:
AI Planning

- If we can find a solution starting from a state s, the same
M. Helmert solution can be used when starting from a dominating state s^{\prime}.
- Thus, making a transition to a dominating state never hurts.

Proof.

Since relaxed operators only have positive effects, we have $o n(s) \subseteq o n(s) \cup\left[e_{o^{+}}=o n\left(a p_{o^{+}}(s)\right)\right.$

Solving relaxations: properties

Consequences of the lemma:

- If we can find a solution starting from a state s, the same

Al Planning
M. Helmert
B. Nebel solution can be used when starting from a dominating state s^{\prime}.

- Thus, making a transition to a dominating state never hurts.

Lemma (monotonicity)

Let o^{+}be a relaxed operator and let s be a state in which o^{+}is
Heuristic
Heuristic
Estimates
from
Relaxations

Then $a p p_{o^{+}}(s)$ dominates s.

Since relaxed operators only have positive effects, we have $o n(s) \subset o n(s) \cup|e|_{o+}=o n\left(a p p_{o}+(s)\right)$

Solving relaxations: properties

Consequences of the lemma:

Al Planning
M. Helmert
B. Nebel solution can be used when starting from a dominating state s^{\prime}.

- Thus, making a transition to a dominating state never hurts.

Lemma (monotonicity)

Let o^{+}be a relaxed operator and let s be a state in which o^{+}is
Deriving
Heuristic
Estimates
from
Relaxations applicable.

Heuristic
search
Relaxation
Positive normal
form
Relaxation
Solving
relaxations

Then $a p p_{o^{+}}(s)$ dominates s.

Proof.

Since relaxed operators only have positive effects, we have $o n(s) \subseteq o n(s) \cup[e]_{o^{+}}=o n\left(a p p_{o^{+}}(s)\right)$.

Solving relaxations: algorithm

- Together, the two lemmas imply that making a transition never hurts.
- This suggests the following algorithm.

Solving relaxations: algorithm

- Together, the two lemmas imply that making a transition never hurts.

Al Planning
M. Helmert,
B. Nebel

- This suggests the following algorithm.

Heuristic
search
Relaxation
Positive normal
form
Relaxation
Solving
relaxations
Deriving
Heuristic
Estimates
from
Relaxations
else if there is an operator $o^{+} \in O^{+}$with $\operatorname{app}_{o^{+}}(s) \neq s$:
Append such an operator o^{+}to π^{+}.
$s:=\operatorname{app}_{o^{+}}(s)$
else:
return unsolvable

Solving relaxations: algorithm

The algorithm is sound:

- If it returns a plan, this is indeed a correct solution.
- If it returns "unsolvable", the task is indeed unsolvable (by the two lemmas).

What about completeness (termination) and runtime?

- Each iteration of the loop adds at least one atom to on(s)

Heuristic
search
Relaxation
Positive normal
form
Relaxation
Solving
relaxations
Deriving
Heuristic
Estimates
from
Relaxations

- This guarantees termination after at most $|A|$ iterations.
- Thus, the algorithm can clearly run in nolynomial time

Solving relaxations: algorithm

The algorithm is sound:

- If it returns a plan, this is indeed a correct solution.
- If it returns "unsolvable", the task is indeed unsolvable (by the two lemmas).

What about completeness (termination) and runtime?

- Each iteration of the loop adds at least one atom to on (s).

Heuristic
search
Relaxation
Positive normal
form
Relaxation
Solving
relaxations
Deriving
Heuristic
Estimates
from
Relaxations

- This guarantees termination after at most $|A|$ iterations.
- Thus, the algorithm can clearly run in polynomial time.

Solving relaxations: optimality

One could use the solution algorithm as a heuristic estimator in a progression search for general planning tasks as follows:

- In a search node that corresponds to state s, solve the relaxation of the planning task with s as the initial state.
- Use the length of the relaxed plan as a heuristic estimate. Is this an admissible heuristic?
- Yes if the relaxed plans are optimal (because of the solution preservation theorem).
B. Nebel

Heuristic
search
Relaxation
Positive normal
form
Relaxation
Solving
relaxations

- However, usually they are not, because our greedy planning algorithm is very poor.

Solving relaxations: optimality

One could use the solution algorithm as a heuristic estimator in a progression search for general planning tasks as follows:

- In a search node that corresponds to state s, solve the relaxation of the planning task with s as the initial state.
- Use the length of the relaxed plan as a heuristic estimate.

Is this an admissible heuristic?

- Yes if the relaxed plans are optimal (because of the solution preservation theorem).
B. Nebel

Heuristic
search
Relaxation
Positive normal
form
Relaxation
Solving
relaxations
Deriving
Heuristic
Estimates
from
Relaxations

- However, usually they are not, because our greedy planning algorithm is very poor.

Solving relaxations: optimality

One could use the solution algorithm as a heuristic estimator in a progression search for general planning tasks as follows:

- In a search node that corresponds to state s, solve the relaxation of the planning task with s as the initial state.
- Use the length of the relaxed plan as a heuristic estimate.

Is this an admissible heuristic?

- Yes if the relaxed plans are optimal (because of the solution preservation theorem).
- However, usually they are not, because our greedy planning algorithm is very poor.

Solving relaxations: optimality

So how do we use relaxations for heuristic planning?
Different possibilities:
Al Planning
M. Helmert,
B. Nebel

- Implement an optimal planner for relaxed planning tasks and use its solution lengths as an estimate (h^{+}heuristic). However, optimal planning for relaxed tasks is NP-hard
- Do not actually solve the relaxed planning task, but compute an estimate of its difficulty in a different way ($h_{\text {max }}$ heuristic, $h_{\text {add }}$ heuristic)

Heuristic
search
Relaxation
Positive normal
form
Relaxation
Solving
relaxations
Deriving
Heuristic
Estimates
from
Relaxations

- Compute a solution for relaxed planning tasks which is not necessarily optimal, but "reasonable" (h_{FF} heuristic)

Solving relaxations: optimality

So how do we use relaxations for heuristic planning?
Different possibilities:

- Implement an optimal planner for relaxed planning tasks and use its solution lengths as an estimate (h^{+}heuristic). However, optimal planning for relaxed tasks is NP-hard.
- Do not actually solve the relaxed planning task, but compute an estimate of its difficulty in a different way ($h_{\text {max }}$ heuristic, $h_{\text {add }}$ heuristic)
- Compute a solution for relaxed planning tasks which is not necessarily optimal, but "reasonable" (h_{FF} heuristic)

Solving relaxations: optimality

Al Planning
M. Helmert,

So how do we use relaxations for heuristic planning?
Different possibilities:

Heuristic
search
Relaxation
Positive normal
form
Relaxation
Solving
relaxations
Deriving
Heuristic
Estimates
from
Relaxations

Solving relaxations: optimality

So how do we use relaxations for heuristic planning?
Different possibilities:
Heuristic
search

- Implement an optimal planner for relaxed planning tasks and use its solution lengths as an estimate (h^{+}heuristic). However, optimal planning for relaxed tasks is NP-hard.
- Do not actually solve the relaxed planning task, but compute an estimate of its difficulty in a different way ($h_{\text {max }}$ heuristic, $h_{\text {add }}$ heuristic).
- Compute a solution for relaxed planning tasks which is not necessarily optimal, but "reasonable" (h_{FF} heuristic).

Intutition

Al Planning
M. Helmert,
B. Nebel

Why does the greedy algorithm compute low-quality plans?

- It may apply many operators which are not goal-directed.

How can this problem be fixed?

- Reaching the goal of a relaxed planning task is most easily achieved with forward search
- Analyzing relevance of an operator for achieving a goal (or subgoal) is most easily achieved with backward search.

Idea: Use a forward-backward algorithm that first finds a nath
to the goal greedily, then prunes it to a relevant subplan.

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Intutition

Al Planning
M. Helmert
B. Nebel

Why does the greedy algorithm compute low-quality plans?

- It may apply many operators which are not goal-directed.

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
${ }^{h_{\mathrm{FF}}}$
Shortest plans
FF

Intutition

Al Planning
M. Helmert
B. Nebel

Why does the greedy algorithm compute low-quality plans?

- It may apply many operators which are not goal-directed.

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$.
$h_{\text {FF }}$
Shortest plans
FF

Parallel plans

How do we decide which operators to apply in the forward direction?

- We avoid such a decision by applying all applicable operators simultaneously.
M. Helmert
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
h_{FF}
Shortest plans
FF

Parallel plans

How do we decide which operators to apply in the forward
M. Helmert, direction?

- We avoid such a decision by applying all applicable operators simultaneously.

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
${ }^{h} \mathrm{FF}$
Shortest plans
FF

The result of applying σ to s, in symbols $\operatorname{app}_{\sigma}(s)$, is defined as the state s^{\prime} with on $\left(s^{\prime}\right)=o n(s) \cup \bigcup_{i=1}^{n}\left[e_{i}\right]_{s}$.

Applying plan steps: Examples

In all cases, $s=\{a \mapsto 0, b \mapsto 0, c \mapsto 1, d \mapsto 0\}$.

- $\sigma=\{\langle c, a\rangle,\langle\top, b\rangle\}$

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Applying plan steps: Examples

In all cases, $s=\{a \mapsto 0, b \mapsto 0, c \mapsto 1, d \mapsto 0\}$.

- $\sigma=\{\langle c, a\rangle,\langle\top, b\rangle\}$
- $\sigma=\{\langle c, a\rangle,\langle c, a \triangleright b\rangle\}$

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Applying plan steps: Examples

In all cases, $s=\{a \mapsto 0, b \mapsto 0, c \mapsto 1, d \mapsto 0\}$.

- $\sigma=\{\langle c, a\rangle,\langle\top, b\rangle\}$
- $\sigma=\{\langle c, a\rangle,\langle c, a \triangleright b\rangle\}$
- $\sigma=\{\langle c, a \wedge b\rangle,\langle a, b \triangleright d\rangle\}$

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
${ }^{h}$ FF
Shortest plans
FF

Applying plan steps: Examples

In all cases, $s=\{a \mapsto 0, b \mapsto 0, c \mapsto 1, d \mapsto 0\}$.

- $\sigma=\{\langle c, a\rangle,\langle\top, b\rangle\}$
- $\sigma=\{\langle c, a\rangle,\langle c, a \triangleright b\rangle\}$
- $\sigma=\{\langle c, a \wedge b\rangle,\langle a, b \triangleright d\rangle\}$
- $\sigma=\{\langle c, a \wedge(b \triangleright d)\rangle,\langle c, b \wedge(a \triangleright d)\rangle\}$

Al Planning
M. Helmert
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
${ }^{h}$ FF
Shortest plans
FF

Serializations

Applying a plan step to a state is related to applying the actions in the step to a state in sequence.

Al Planning
M. Helmert
B. Nebel

Definition

A serialization of plan step $\sigma=\left\{o_{1}, \ldots, o_{n}\right\}$ is a sequence $o_{\pi(1)}, \ldots, o_{\pi(n)}$ where π is a permutation of $\{1, \ldots, n\}$.

Lemma

If σ is a plan step applicable in a state s of a relaxed planning task, then each serialization o_{1}^{\prime} and appo dominates app $\sigma(s)$

- Does equality hold for all serializations?
- Does equality hold for some serialization?
- What if there are no conditional effects?
- What if the planning task is not relaxed?

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
h_{FF}
Shortest plans
FF

Serializations

Applying a plan step to a state is related to applying the
Al Planning
M. Helmert
B. Nebel

Definition

A serialization of plan step $\sigma=\left\{o_{1}, \ldots, o_{n}\right\}$ is a sequence $o_{\pi(1)}, \ldots, o_{\pi(n)}$ where π is a permutation of $\{1, \ldots, n\}$.

Lemma

If σ is a plan step applicable in a state s of a relaxed planning task, then each serialization $o_{1}^{\prime}, \ldots, o_{n}^{\prime}$ of σ is applicable in s and $a p p_{o_{1}^{\prime}, \ldots, o_{n}^{\prime}}^{\prime}(s)$ dominates $\operatorname{app}_{\sigma}(s)$.

- Does equality hold for all serializations?
- Does equality hold for some serialization?
- What if there are no conditional effects?
- What if the planning task is not relaxed?

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Serializations

Applying a plan step to a state is related to applying the
Al Planning
M. Helmert
B. Nebel

Definition

A serialization of plan step $\sigma=\left\{o_{1}, \ldots, o_{n}\right\}$ is a sequence $o_{\pi(1)}, \ldots, o_{\pi(n)}$ where π is a permutation of $\{1, \ldots, n\}$.

Lemma

If σ is a plan step applicable in a state s of a relaxed planning task, then each serialization $o_{1}^{\prime}, \ldots, o_{n}^{\prime}$ of σ is applicable in s and $a p p_{o_{1}^{\prime}, \ldots, o_{n}^{\prime}}^{\prime}(s)$ dominates $\operatorname{app}_{\sigma}(s)$.

- Does equality hold for all serializations?
- Does equality hold for some serialization?
- What if there are no conditional effects?
- Mhat if the planning task is not relaved?

Serializations

Applying a plan step to a state is related to applying the actions in the step to a state in sequence.

Definition

A serialization of plan step $\sigma=\left\{o_{1}, \ldots, o_{n}\right\}$ is a sequence $o_{\pi(1)}, \ldots, o_{\pi(n)}$ where π is a permutation of $\{1, \ldots, n\}$.

Lemma

If σ is a plan step applicable in a state s of a relaxed planning task, then each serialization $o_{1}^{\prime}, \ldots, o_{n}^{\prime}$ of σ is applicable in s and $a p p_{o_{1}^{\prime}, \ldots, o_{n}^{\prime}}^{\prime}(s)$ dominates $\operatorname{app}_{\sigma}(s)$.

- Does equality hold for all serializations?
- Does equality hold for some serialization?
- What if there are no conditional effects?
- What if the planning task is not relaxed?

Serializations

Applying a plan step to a state is related to applying the actions in the step to a state in sequence.

Definition

A serialization of plan step $\sigma=\left\{o_{1}, \ldots, o_{n}\right\}$ is a sequence $o_{\pi(1)}, \ldots, o_{\pi(n)}$ where π is a permutation of $\{1, \ldots, n\}$.

Lemma

If σ is a plan step applicable in a state s of a relaxed planning task, then each serialization $o_{1}^{\prime}, \ldots, o_{n}^{\prime}$ of σ is applicable in s and $a p p_{o_{1}^{\prime}, \ldots, o_{n}^{\prime}}^{\prime}(s)$ dominates $\operatorname{app}_{\sigma}(s)$.

- Does equality hold for all serializations?
- Does equality hold for some serialization?
- What if there are no conditional effects?

Serializations

Applying a plan step to a state is related to applying the actions in the step to a state in sequence.

Definition

A serialization of plan step $\sigma=\left\{o_{1}, \ldots, o_{n}\right\}$ is a sequence $o_{\pi(1)}, \ldots, o_{\pi(n)}$ where π is a permutation of $\{1, \ldots, n\}$.

Lemma

If σ is a plan step applicable in a state s of a relaxed planning task, then each serialization $o_{1}^{\prime}, \ldots, o_{n}^{\prime}$ of σ is applicable in s and $a p p_{o_{1}^{\prime}, \ldots, o_{n}^{\prime}}^{\prime}(s)$ dominates $\operatorname{app}_{\sigma}(s)$.

- Does equality hold for all serializations?
- Does equality hold for some serialization?
- What if there are no conditional effects?
- What if the planning task is not relaxed?

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
${ }^{h} \mathrm{FF}$
Shortest plans FF

Parallel plans

Definition

A parallel plan for a relaxed planning task $\left\langle A, I, O^{+}, G\right\rangle$ is a sequence of plan steps $\sigma_{1}, \ldots, \sigma_{n}$ of operators in O^{+}with:

- $s_{0}:=I$
- For $i=1, \ldots, n$, step σ_{i} is applicable in s_{i-1} and $s_{i}:=\operatorname{app}_{\sigma_{i}}\left(s_{i-1}\right)$.
- $s_{n} \models G$

Remark: By ordering the operators within each single step

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
h_{FF}
Shortest plans
FF

Parallel plans

Al Planning
M. Helmert,
B. Nebel

Definition

A parallel plan for a relaxed planning task $\left\langle A, I, O^{+}, G\right\rangle$ is a sequence of plan steps $\sigma_{1}, \ldots, \sigma_{n}$ of operators in O^{+}with:

- $s_{0}:=I$
- For $i=1, \ldots, n$, step σ_{i} is applicable in s_{i-1} and $s_{i}:=a p p_{\sigma_{i}}\left(s_{i-1}\right)$.
- $s_{n} \models G$

Remark: By ordering the operators within each single step

Heuristic
search
Relaxation

Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
$h_{\text {FF }}$
Shortest plans
FF arbitrarily, we obtain a (regular, non-parallel) plan.

Forward states and operator sets

Idea: In the forward phase of the heuristic computation, we
M. Helmert
B. Nebel
first apply the plan step consisting of all initially applicable operators, then the plan step consisting of all operators applicable in the resulting state, etc.
search
Relaxation

Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$.
$h_{\text {FF }}$
Shortest plans
FF

Forward states and operator sets

Idea: In the forward phase of the heuristic computation, we
first apply the plan step consisting of all initially applicable operators, then the plan step consisting of all operators

Definition

The 0-th parallel forward state, in symbols s_{0}^{F}, of a relaxed planning task $\left\langle A, I, O^{+}, G\right\rangle$ is defined as $s_{0}^{\mathrm{F}}:=s$. For $n \in \mathbb{N}_{1}$, the n-th forward plan step, in symbols σ_{n}^{F}, is the set of operators applicable in s_{n-1}^{F}, and the n-th parallel forward state, in symbols s_{n}^{F}, is defined as $s_{n}^{\mathrm{F}}:=\operatorname{app}_{\sigma_{n}^{\mathrm{F}}}\left(s_{n-1}^{\mathrm{F}}\right)$. defined as $S_{n}^{\mathrm{F}}:=o n\left(s_{n}^{\mathrm{F}}\right)$.

Parallel forward distances

Definition

The parallel forward distance of a relaxed planning task $\left\langle A, I, O^{+}, G\right\rangle$ is the lowest number $n \in \mathbb{N}_{0}$ such that $s_{n}^{\mathrm{F}} \models G$, or ∞ if no parallel forward state satisfies G.

Remark: The parallel forward distance can be computed in polynomial time. (How?)

Definition
Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Parallel forward distances

Definition

Al Planning
M. Helmert,
B. Nebel

The parallel forward distance of a relaxed planning task $\left\langle A, I, O^{+}, G\right\rangle$ is the lowest number $n \in \mathbb{N}_{0}$ such that $s_{n}^{\mathrm{F}} \models G$, or ∞ if no parallel forward state satisfies G.

Remark: The parallel forward distance can be computed in polynomial time. (How?)

Parallel forward distances

Definition

The parallel forward distance of a relaxed planning task $\left\langle A, I, O^{+}, G\right\rangle$ is the lowest number $n \in \mathbb{N}_{0}$ such that $s_{n}^{\mathrm{F}} \models G$, or ∞ if no parallel forward state satisfies G.

Remark: The parallel forward distance can be computed in
Remark: The parallel forw
polynomial time. (How?)

Definition

The $h_{\text {max }}$ estimate of a state s in a planning task $\mathcal{P}=\langle A, I, O, G\rangle$ in positive normal form is the parallel forward

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
${ }^{h^{2}} \mathrm{FF}$
Shortest plans
FF distance of the relaxed planning task $\left\langle A, s, O^{+}, G\right\rangle$.

Remark: The $h_{\max }$ estimate is admissible. (Why?)

Parallel forward distances

Definition

The parallel forward distance of a relaxed planning task $\left\langle A, I, O^{+}, G\right\rangle$ is the lowest number $n \in \mathbb{N}_{0}$ such that $s_{n}^{\mathrm{F}} \models G$, or ∞ if no parallel forward state satisfies G.

Remark: The parallel forward distance can be computed in
Remark: The parallel forw
polynomial time. (How?)

Definition

The $h_{\text {max }}$ estimate of a state s in a planning task $\mathcal{P}=\langle A, I, O, G\rangle$ in positive normal form is the parallel forward distance of the relaxed planning task $\left\langle A, s, O^{+}, G\right\rangle$.

Remark: The $h_{\text {max }}$ estimate is admissible. (Why?)

So far, so good. . .

- We have seen how systematic computation of forward

Heuristic
search states leads to an admissible estimate for heuristic planning.

- However, this estimate is very coarse.
- To improve it, we need to include backward propagation of information.

For this purpose, we use a data structure called a relaxed planning graph.

Relaxation

Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
${ }^{h} \mathrm{FF}$
Shortest plans
FF

Relaxed planning graphs: running example

As a running example, consider the relaxed planning task $\left\langle A, I,\left\{o_{1}, o_{2}, o_{3}, o_{4}\right\}, G\right\rangle$ with

$$
\begin{aligned}
A= & \{a, b, c, d, e, f, g, h\} \\
I= & \{a \mapsto 1, b \mapsto 0, c \mapsto 1, d \mapsto 1, \\
& e \mapsto 0, f \mapsto 0, g \mapsto 0, h \mapsto 0\} \\
o_{1}= & \langle b \vee(c \wedge d), b \wedge((a \wedge b) \triangleright e)\rangle \\
o_{2}= & \langle\top, f\rangle \\
o_{3}= & \langle f, g\rangle \\
o_{4}= & \langle f, h\rangle \\
G= & e \wedge(g \wedge h)
\end{aligned}
$$

B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
h_{FF}
Shortest plans
FF

Relaxed planning graphs

Relaxed planning graphs encode

- which propositions can be made true in a given number of plan steps,
- and how they can be made true.

They consist of four kinds of components:

- Proposition nodes represent the truth value of propositions after applying a certain number of plan steps.
- Idle arcs represent state variables that do not change their value when applying a plan step.
- Action subgraphs represent the application of a given action in a given plan step.
- Goal subgraphs represent the truth value of the goal condition after applying a certain number of plan steps.

Relaxed planning graph: proposition layers

Let $\mathcal{P}=\left\langle A, I, O^{+}, G\right\rangle$ be a relaxed planning task, let $N \in \mathbb{N}_{0}$.
For each $i \in\{0, \ldots, N\}$, the relaxed planning graph of depth N contains one proposition layer which consists of:

- a proposition node a^{i} for each state variable $a \in A$.

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Relaxed planning graph: proposition layers

a^{0}	a^{1}	a^{2}	a^{3}	a^{4}	a^{5}	a^{6}	a^{7}
b^{0}	b^{1}	b^{2}	b^{3}	b^{4}	b^{5}	b^{6}	b^{7}
c^{0}	c^{1}	c^{2}	3	c^{4}	c^{5}	c^{6}	c^{7}
d^{0}	d^{1}	d^{2}	d^{3}	d^{4}	d^{5}	d^{6}	d^{7}
e^{0}	e^{1}	e^{2}	e^{3}	e^{4}	e^{5}	e^{6}	e^{7}
f^{0}	f^{1}	f^{2}		f^{4}	f^{5}	f^{6}	f^{7}
g^{0}	g^{1}	g^{2}	g^{3}	g^{4}	g^{5}	g^{6}	g^{7}
h^{0}	h^{1}	h^{2}	h^{3}	h^{4}	h^{5}	h^{6}	h^{7}

AI Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$.
${ }^{h} \mathrm{FF}$
Shortest plans
FF

Relaxed planning graph: proposition layers

a^{0}	a^{1}	a^{2}	a^{3}	a^{4}	a^{5}	a^{6}	a^{7}
b^{0}	b^{1}	b^{2}	b^{3}	b^{4}	b^{5}	b^{6}	b^{7}
c^{0}	c^{1}	\square	\square	\square			\square
d^{0}	d^{1}	d^{2}	d^{3}	d^{4}	d^{5}	d^{6}	d^{7}
e^{0}	e^{1}	$\overline{e^{2}}$	e^{3}	$\overline{e^{4}}$	$\overline{e^{5}}$	$\overline{e^{6}}$	$\overline{e^{7}}$
f^{0}	f^{1}	f^{2}	f^{3}	f^{4}	f^{5}	f^{6}	f^{7}
g^{0}	g^{1}	\square	9 ${ }^{3}$	$\boxed{9}$	$\boxed{9}$	\square	$\sqrt{97}$
h^{0}	h^{1}		h^{3}	h^{4}	h^{5}	h^{6}	h^{7}

Relaxed planning graph: proposition layers

a^{0}	a^{1}	a^{2}	a^{3}	a^{4}	a^{5}	a^{6}	a^{7}	a^{8}
b^{0}	b^{1}	b^{2}	b^{3}	b^{4}	b^{5}	b^{6}	b^{7}	b^{8}
c^{0}	c^{1}	c^{2}	c^{3}	c^{4}	c^{5}	c^{6}	c^{7}	c^{8}
d^{0}	d^{1}	d^{2}	d^{3}	d^{4}	d^{5}	d^{6}	d^{7}	d^{8}
e^{0}	e^{1}	e^{2}	e^{3}	e^{4}	e^{5}	e^{6}	e^{7}	e^{8}
f^{0}	f^{1}	f^{2}	f^{3}	f^{4}	f^{5}	f^{6}	f^{7}	f^{8}
g^{0}	g^{1}	g^{2}	g^{3}	g^{4}	g^{5}	g^{6}	g^{7}	g^{8}
h^{0}	h^{1}	h^{2}	h^{3}	h^{4}	h^{5}	h^{6}	h^{7}	h^{8}

Relaxed planning graph: idle arcs

Al Planning
M. Helmert
B. Nebel

For each proposition node a^{i} with $i \in\{1, \ldots, N\}$, the relaxed planning graph of depth N contains an arc from a^{i} to a^{i-1} (idle arcs).

Intuition: If a state variable is true in step i, one of the possible reasons is that it was already previously true.

Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
${ }^{h}$ FF
Shortest plans
FF

Relaxed planning graph: idle arcs

Relaxed planning graph: idle arcs

Relaxed planning graph: action subgraphs

For each $i \in\{1, \ldots, N\}$ and each operator $o=\langle c, e\rangle \in O$, the relaxed planning graph of depth N contains a subgraph called

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates

- If $\chi=a$ for some atom a, n_{χ}^{i} is the proposition node a^{i-1}.
- If $\chi=T, n_{\chi}^{i}$ is a new node labeled (T).
- If $\chi=\perp, n_{\chi}^{i}$ is a new node labeled (\perp).
- If $\chi=(\phi \wedge \psi), n_{\chi}^{i}$ is a new node labeled (\wedge) with outgoing arcs to n_{ϕ}^{i} and n_{ψ}^{i}.
- If $\chi=(\phi \vee \psi), n_{\chi}^{i}$ is a new node labeled (\vee) with outgoing arcs to n_{ϕ}^{i} and n_{ψ}^{i}.

Relaxed planning graph: action subgraphs

For each $i \in\{1, \ldots, N\}$ and each operator $o=\langle c, e\rangle \in O$, the relaxed planning graph of depth N contains a subgraph called an action subgraph with the following parts:

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
${ }^{h_{\mathrm{FF}}}$
Shortest plans
FF

Relaxed planning graph: action subgraphs

Action subgraph for $o_{1}=\langle b \vee(c \wedge d), b \wedge((a \wedge b) \triangleright e)\rangle$
Al Planning
for layer $i=0$.

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{h_{\text {max }}}, h_{\text {add }}$.
${ }^{h} \mathrm{FF}$
Shortest plans
FF

Relaxed planning graph: goal subgraphs

For each $i \in\{0, \ldots, N\}$, the relaxed planning graph of depth N contains a subgraph called a goal subgraph with the following parts:

- one formula node n_{χ}^{i} for each formula χ which is a subformula of G :
- If $\chi=a$ for some atom a, n_{χ}^{i} is the proposition node a^{i}.
- If $\chi=T, n_{\chi}^{i}$ is a new node labeled (T).
- If $\chi=\perp, n_{\chi}^{i}$ is a new node labeled (\perp).
- If $\chi=(\phi \wedge \psi), n_{\chi}^{i}$ is a new node labeled (\wedge) with outgoing arcs to n_{ϕ}^{i} and n_{ψ}^{i}.
- If $\chi=(\phi \vee \psi), n_{\chi}^{i}$ is a new node labeled (\vee) with outgoing arcs to n_{ϕ}^{i} and n_{ψ}^{i}.
The node n_{G}^{i} is called a goal node.

Relaxed planning graph: goal subgraphs

Goal subgraph for $G=e \wedge(g \wedge h)$ and layer $i=2$:

Al Planning
M. Helmert,
B. Nebel

Heuristic

search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$.
$h_{\text {FF }}$
Shortest plans
FF

Relaxed planning graph: complete example

 (depth 2)

Al Planning
M. Helmert
B. Nebel

Heuristic
search
Relaxation

Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Relaxed planning graph: complete example

 (depth 2)

Al Planning
M. Helmert
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }} h_{\text {add }}$
${ }^{h} \mathrm{FF}$
Shortest plans
FF

Relaxed planning graph: complete example

 (depth 2)$$
o_{1}=\langle b \vee(c \wedge d), b \wedge((a \wedge b) \triangleright e)\rangle
$$

AI Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$\underset{h_{\text {max }}}{h_{\text {max }}, h_{\text {add }} \text {, }}$
$h_{\text {FF }}$
Shortest plans
FF

Relaxed planning graph: complete example

 (depth 2)$$
o_{1}=\langle b \vee(c \wedge d), b \wedge((a \wedge b) \triangleright e)\rangle
$$

AI Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }} h_{\text {mad }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Relaxed planning graph: complete example

 (depth 2)$$
o_{2}=\langle T, f\rangle
$$

AI Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$\underset{h_{\text {max }}}{h_{\text {max }}} h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Relaxed planning graph: complete example

 (depth 2)$$
o_{2}=\langle\top, f\rangle
$$

AI Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$\underset{h_{\text {FF }}}{h_{\text {max }}}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Relaxed planning graph: complete example

 (depth 2)$$
o_{3}=\langle f, g\rangle
$$

AI Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
h_{FF}
${ }^{h_{\text {FF }}}$
Shortest plans
FF

Relaxed planning graph: complete example

 (depth 2)$$
o_{3}=\langle f, g\rangle
$$

AI Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
h_{FF}
$h_{\text {FF }}$
Shortest plans
FF

Relaxed planning graph: complete example

 (depth 2)$$
o_{4}=\langle f, h\rangle
$$

AI Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$\underset{h_{\text {max }}}{h_{\text {max }}} h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Relaxed planning graph: complete example

 (depth 2)$$
o_{4}=\langle f, h\rangle
$$

AI Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
Relaxed planning
graphs
Circuits
$\underset{h_{\text {max }}}{h_{\text {max }}} h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Relaxed planning graph: complete example

 (depth 2)$$
G=e \wedge(g \wedge h)
$$

AI Planning
M. Helmert
B. Nebel

Heuristic

search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$\underset{h_{\text {max }}}{h_{\text {max }}} h_{\text {add }}$,
${ }^{h_{\text {FF }}}$
Shortest plans
FF

Relaxed planning graph: complete example

 (depth 2)$$
G=e \wedge(g \wedge h)
$$

AI Planning
M. Helmert
B. Nebel

Heuristic

search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$\underset{h_{\text {max }}}{h_{\text {max }}} h_{\text {add }}$,
${ }^{h_{\text {FF }}}$
Shortest plans
FF

Relaxed planning graph: complete example

 (depth 2)$$
G=e \wedge(g \wedge h)
$$

Al Planning
M. Helmert
B. Nebel

Heuristic

search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$\underset{h_{\text {max }}}{h_{\text {max }}} h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Relaxed planning graph: complete example

 (depth 2)AI Planning
M. Helmert,
B. Nebel

Heuristic

search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$\underset{h_{\text {FF }}}{h_{\text {max }},} h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Boolean circuits

Definition

A Boolean circuit is a directed acyclic graph $G=(V, E)$, where
Al Planning
M. Helmert
B. Nebel the nodes V are called gates. Each gate $v \in V$ has a type type $(v) \in\{\neg, \wedge, \vee, \top, \perp,\} \cup\{a, b, c, \ldots\}$. The gates with type $(v) \in\{\top, \perp, a, b, c, \ldots\}$ have in-degree zero, the gates with type $(v) \in\{\neg\}$ have in-degree one, and the gates with type $(v) \in\{\vee, \wedge\}$ have in-degree two. The gates with no outgoing edge are called output gates. The gates with no incoming edges are called input gates.

Definition
Given a value assignment to the input gates, the circuit
computes the value of gates in the obvious way.
What is the relation between circuits and relaxed planning graphs?

Boolean circuits

Definition

A Boolean circuit is a directed acyclic graph $G=(V, E)$, where the nodes V are called gates. Each gate $v \in V$ has a type type $(v) \in\{\neg, \wedge, \vee, \top, \perp,\} \cup\{a, b, c, \ldots\}$. The gates with type $(v) \in\{\top, \perp, a, b, c, \ldots\}$ have in-degree zero, the gates with type $(v) \in\{\neg\}$ have in-degree one, and the gates with type $(v) \in\{\vee, \wedge\}$ have in-degree two. The gates with no outgoing edge are called output gates. The gates with no incoming edges are called input gates.

Definition

Given a value assignment to the input gates, the circuit computes the value of gates in the obvious way.

What is the relation between circuits and relaxed planning

Boolean circuits

Definition

A Boolean circuit is a directed acyclic graph $G=(V, E)$, where the nodes V are called gates. Each gate $v \in V$ has a type type $(v) \in\{\neg, \wedge, \vee, \top, \perp,\} \cup\{a, b, c, \ldots\}$. The gates with type $(v) \in\{\top, \perp, a, b, c, \ldots\}$ have in-degree zero, the gates with type $(v) \in\{\neg\}$ have in-degree one, and the gates with type $(v) \in\{\vee, \wedge\}$ have in-degree two. The gates with no outgoing edge are called output gates. The gates with no incoming edges are called input gates.

Definition

Given a value assignment to the input gates, the circuit computes the value of gates in the obvious way.

What is the relation between circuits and relaxed planning graphs?

Relaxed planning graphs and Boolean circuits

Observations:

- Relaxed planning graphs can be understood as special (monotone) Boolean circuits,
- the direction of the arrows has to be inverted
- proposition nodes in the 0-th layer are \perp gates or depending on their initial value.
- proposition nodes outside the 0-th layer are
- action nodes are \wedge gates (or V gates)
- Δ-nodes are

Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning graphs

- A parallel plan solves the planning task with n steps iff the

Circuits
value of the goal node on layer n has the value 1
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

- The plan consists of all action nodes that have a value of 1 and that are "on a path to the goal node", which has a value of 1

Relaxed planning graphs and Boolean circuits

Observations:

- Relaxed planning graphs can be understood as special (monotone) Boolean circuits, where
- the direction of the arrows has to be inverted
- proposition nodes in the 0 -th layer are \perp gates or T gates, depending on their initial value.
- proposition nodes outside the 0 -th layer are \vee gates
- action nodes are \wedge gates (or \vee gates)
- \triangleright-nodes are \wedge gates
- A parallel plan solves the planning task with n steps iff the value of the goal node on layer n has the value 1 .

Heuristic
search
Relaxation

Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
${ }^{h_{\text {FF }}}$
Shortest plans
FF

- The plan consists of all action nodes that have a value of 1 and that are "on a path to the goal node", which has a value of 1

Relaxed planning graphs and Boolean circuits

Observations:

- Relaxed planning graphs can be understood as special (monotone) Boolean circuits, where
- the direction of the arrows has to be inverted
- proposition nodes in the 0 -th layer are \perp gates or T gates, depending on their initial value.
- proposition nodes outside the 0 -th layer are \vee gates
- action nodes are \wedge gates (or \vee gates)
- \triangleright-nodes are \wedge gates
- A parallel plan solves the planning task with n steps iff the value of the goal node on layer n has the value 1 .

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
${ }^{h_{\mathrm{FF}}}$
Shortest plans
FF

- The plan consists of all action nodes that have a value of 1 and that are "on a path to the goal node", which has a value of 1

Relaxed planning graphs and Boolean circuits

Observations:

- Relaxed planning graphs can be understood as special (monotone) Boolean circuits, where
- the direction of the arrows has to be inverted
- proposition nodes in the 0 -th layer are \perp gates or T gates, depending on their initial value.
- proposition nodes outside the 0-th layer are \vee gates
- action nodes are \wedge gates (or \vee gates)
- \triangleright-nodes are \wedge gates
- A parallel plan solves the planning task with n steps iff the value of the goal node on layer n has the value 1 .

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
${ }^{h_{\mathrm{FF}}}$
Shortest plans
FF

- The plan consists of all action nodes that have a value of 1 and that are "on a path to the goal node", which has a value of 1 .

Computing gate values

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Computing gate values

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
${ }^{h_{\mathrm{FF}}}$
Shortest plans
FF

Computing gate values

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
${ }^{h_{\mathrm{FF}}}$
Shortest plans
FF

Computing gate values

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
${ }^{h_{\mathrm{FF}}}$
Shortest plans
FF

Computing gate values

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
${ }^{h_{\mathrm{FF}}}$
Shortest plans
FF

Computing gate values

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Computing gate values

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Computing gate values

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Computing gate values

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Computing gate values

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Computing gate values

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Computing gate values

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Computing gate values

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Computing gate values

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Computing gate values

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Computing gate values

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Heuristic estimate $h_{\max }$

- Using relaxed planning graphs, how can we compute the $h_{\text {max }}$ heuristic?
- Solution:
- Create relaxed planning graph of depth n, n being the number of state variables.evaluates to 1 !

Al Planning
M. Helmert
B. Nebel

Parallel plans
Relaxed planning graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans

Heuristic estimate $h_{\max }$

- Using relaxed planning graphs, how can we compute the $h_{\text {max }}$ heuristic?
- Solution:
- Create relaxed planning graph of depth n, n being the number of state variables.

Heuristic
search
Relaxation

Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Heuristic estimate $h_{\max }$

- Using relaxed planning graphs, how can we compute the $h_{\text {max }}$ heuristic?
- Solution:
- Create relaxed planning graph of depth n, n being the number of state variables.
- Compute gate values based on initial state values.
- The $h_{\text {max }}$ value is the lowest layer where the goal gate evaluates to 1 !

Heuristic
search
Relaxation

Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
${ }^{h} \mathrm{FF}$
Shortest plans
FF

Heuristic estimate $h_{\max }$

- Using relaxed planning graphs, how can we compute the $h_{\text {max }}$ heuristic?
- Solution:
- Create relaxed planning graph of depth n, n being the number of state variables.
- Compute gate values based on initial state values.
- The $h_{\text {max }}$ value is the lowest layer where the goal gate evaluates to 1 !

Heuristic
search
Relaxation

Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans

Heuristic estimate $h_{\text {add }}$

- While $h_{\text {max }}$ is admissible, it is not very informative (it does not distinguish between different states).
- Estimate how hard it is to make a proposition true.
- Estimate costs under the assumption that making a proposition true is independent from making any other proposition true (i.e., relaxed planning graph is a tree)
- Any proposition already true in the initial state has cost 0 .
- Conjunctions (if true) have the sum of the costs of the conjunctions
- Disjunctions (if true) have the minimum of the costs of the disjuncts.
- Actions (if executable) add one cost unit.
- This may, of course, over-estimate the real costs!

Heuristic estimate $h_{\text {add }}$

- While $h_{\max }$ is admissible, it is not very informative (it does
M. Helmert
B. Nebel not distinguish between different states).
- Estimate how hard it is to make a proposition true.
- Estimate costs under the assumption that making a proposition true is independent from making any other proposition true (i.e., relaxed planning graph is a tree).
- Any proposition already true in the initial state has cost 0.
- Conjunctions (if true) have the sum of the costs of the conjunctions
- Disjunctions (if true) have the minimum of the costs of the disjuncts.

Heuristic
search
Relaxation

Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Heuristic estimate $h_{\text {add }}$

- While $h_{\text {max }}$ is admissible, it is not very informative (it does not distinguish between different states).
- Estimate how hard it is to make a proposition true.
- Estimate costs under the assumption that making a proposition true is independent from making any other proposition true (i.e., relaxed planning graph is a tree).
- Any proposition already true in the initial state has cost 0 .
- Conjunctions (if true) have the sum of the costs of the conjunctions
- Disjunctions (if true) have the minimum of the costs of the disjuncts.

Heuristic
search
Relaxation

Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Heuristic estimate $h_{\text {add }}$

- While $h_{\max }$ is admissible, it is not very informative (it does not distinguish between different states).
- Estimate how hard it is to make a proposition true.
- Estimate costs under the assumption that making a proposition true is independent from making any other proposition true (i.e., relaxed planning graph is a tree).
- Any proposition already true in the initial state has cost 0 .
- Conjunctions (if true) have the sum of the costs of the conjunctions.
- Disjunctions (if true) have the minimum of the costs of the disjuncts.
- Actions (if executable) add one cost unit.
- This may, of course, over-estimate the real costs!

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
h_{FF}
Shortest plans

Heuristic estimate $h_{\text {add }}$

- While $h_{\max }$ is admissible, it is not very informative (it does not distinguish between different states).
- Estimate how hard it is to make a proposition true.
- Estimate costs under the assumption that making a proposition true is independent from making any other proposition true (i.e., relaxed planning graph is a tree).
- Any proposition already true in the initial state has cost 0 .
- Conjunctions (if true) have the sum of the costs of the conjunctions.
- Disjunctions (if true) have the minimum of the costs of the disjuncts.
- Actions (if executable) add one cost unit.
- This may, of course, over-estimate the real costs!

Computing $h_{\text {add }}$

AI Planning
M. Helmert
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$\underset{h_{\text {max }}}{h_{\text {max }}} h_{\text {add }}$,
${ }^{h_{\text {FF }}}$
Shortest plans
FF

Computing $h_{\text {add }}$

AI Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}^{h_{\text {max }}}, h_{\text {add }}$,
${ }^{h_{\text {FF }}}$
Shortest plans
FF

Computing $h_{\text {add }}$

AI Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}^{h_{\text {max }}}, h_{\text {add }}$,
${ }^{h_{\text {FF }}}$
Shortest plans
FF

Computing $h_{\text {add }}$

AI Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}^{h_{\text {max }}}, h_{\text {add }}$,
${ }^{h_{\text {FF }}}$
Shortest plans
FF

Computing $h_{\text {add }}$

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{h_{\text {FF }}}^{h_{\text {max }}} h_{\text {add }}$,
${ }^{h_{\mathrm{FF}}}$
Shortest plans
FF

Computing $h_{\text {add }}$

AI Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}^{h_{\text {max }}}, h_{\text {add }}$,
${ }^{h_{\text {FF }}}$
Shortest plans
FF

Computing $h_{\text {add }}$

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{h_{\text {FF }}}^{h_{\text {max }}} h_{\text {add }}$,
${ }^{h_{\mathrm{FF}}}$
Shortest plans
FF

Computing $h_{\text {add }}$

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$\underset{h_{\text {FF }}}{h_{\text {max }}}, h_{\text {add }}$,
${ }^{h_{\mathrm{FF}}}$
Shortest plans
FF

Computing $h_{\text {add }}$

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$\underset{h_{\text {FF }}}{h_{\text {max }}}, h_{\text {add }}$,
${ }^{h_{\mathrm{FF}}}$
Shortest plans
FF

Computing $h_{\text {add }}$

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$\underset{h_{\text {FF }}}{h_{\text {max }}} h_{\text {add }}$,
${ }^{h_{\mathrm{FF}}}$
Shortest plans
FF

Computing $h_{\text {add }}$

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}^{h_{\text {max }}}, h_{\text {add }}$,
${ }^{h_{\text {FF }}}$
Shortest plans
FF

Computing $h_{\text {add }}$

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$\underset{h_{\text {FF }}}{h_{\text {max }}}, h_{\text {add }}$,
${ }^{h_{\text {FF }}}$
Shortest plans
FF

Computing $h_{\text {add }}$

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$\underset{h_{\text {FF }}}{h_{\text {max }}}, h_{\text {add }}$,
${ }^{h_{\text {FF }}}$
Shortest plans
FF

Computing $h_{\text {add }}$

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$\underset{h_{\text {FF }}}{h_{\text {max }}}, h_{\text {add }}$,
${ }^{h_{\text {FF }}}$
Shortest plans
FF

Computing $h_{\text {add }}$

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$\underset{h_{\text {FF }}}{h_{\text {max }}}, h_{\text {add }}$,
${ }^{h_{\text {FF }}}$
Shortest plans
FF

Computing $h_{\text {add }}$

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$\underset{h_{\text {FF }}}{h_{\text {max }}}, h_{\text {add }}$,
${ }^{h_{\text {FF }}}$
Shortest plans
FF

Heuristic estimate $h_{\text {FF }}$

- $h_{\text {add }}$ over-estimates because of the independence assumption.
- Positive interactions are ignored.
- Idea: Prune the sub-graph so that it non-redundantly makes the goal node true.
- Start at the first true goal node.
- Select both predecessors of a conjunction gate.
- Select one true predecessor of disjucntion gate.
- Use the number of actions in corresponding parallel plan as the heuristic estimate.
- Of course one would like to have a minimal sub-graph However determining the minimal sub-graph is as hard as finding a minimal relaxed plan, i.e., NP-hard!
M. Helmert,
M. Helmert
B. Nebel

Heuristic
search
Relaxation
Al Planning

Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans

Heuristic estimate $h_{\text {FF }}$

- $h_{\text {add }}$ over-estimates because of the independence
M. Helmert
B. Nebel assumption.
- Positive interactions are ignored.
- Idea: Prune the sub-graph so that it non-redundantly makes the goal node true.
- Start at the first true goal node.
- Select both predecessors of a conjunction gate.
- Select one true predecessor of disjucntion gate.
- Use the number of actions in corresponding parallel plan as the heuristic estimate.

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

- Of course, one would like to have a minimal sub-graph However determining the minimal sub-graph is as hard as finding a minimal relaxed plan, i.e., NP-hard!

Heuristic estimate $h_{\text {FF }}$

- $h_{\text {add }}$ over-estimates because of the independence
M. Helmert,
B. Nebel assumption.
- Positive interactions are ignored.
- Idea: Prune the sub-graph so that it non-redundantly makes the goal node true.
- Start at the first true goal node.
- Select both predecessors of a conjunction gate.
- Select one true predecessor of disiucntion gate.
- Use the number of actions in corresponding parallel plan as the heuristic estimate.

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

- Of course, one would like to have a minimal sub-graph However determining the minimal sub-graph is as hard as finding a minimal relaxed plan, i.e., NP-hard!

Heuristic estimate $h_{\text {FF }}$

- $h_{\text {add }}$ over-estimates because of the independence assumption.
- Positive interactions are ignored.
- Idea: Prune the sub-graph so that it non-redundantly makes the goal node true.
- Start at the first true goal node.
- Select both predecessors of a conjunction gate.
- Select one true predecessor of disjucntion gate.
- Use the number of actions in corresponding parallel plan as the heuristic estimate.

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
h_{FF}
Shortest plans
FF

- Of course, one would like to have a minimal sub-graph However determining the minimal sub-graph is as hard as finding a minimal relaxed plan, i.e., NP-hard!

Heuristic estimate $h_{\text {FF }}$

- $h_{\text {add }}$ over-estimates because of the independence assumption.
- Positive interactions are ignored.
- Idea: Prune the sub-graph so that it non-redundantly makes the goal node true.
- Start at the first true goal node.
- Select both predecessors of a conjunction gate.
- Select one true predecessor of disjucntion gate.
- Use the number of actions in corresponding parallel plan as the heuristic estimate.

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

- Of course, one would like to have a minimal sub-graph However determining the minimal sub-graph is as hard as finding a minimal relaxed plan, i.e., NP-hard!

Heuristic estimate $h_{\text {FF }}$

- $h_{\text {add }}$ over-estimates because of the independence assumption.
- Positive interactions are ignored.
- Idea: Prune the sub-graph so that it non-redundantly makes the goal node true.
- Start at the first true goal node.
- Select both predecessors of a conjunction gate.
- Select one true predecessor of disjucntion gate.
- Use the number of actions in corresponding parallel plan as the heuristic estimate.
- Of course, one would like to have a minimal sub-graph. However determining the minimal sub-graph is as hard as finding a minimal relaxed plan, i.e., NP-hard!

Selection of an $h_{\text {FF }}$ sub-graph

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Selection of an $h_{\text {FF }}$ sub-graph

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Selection of an $h_{\text {FF }}$ sub-graph

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Selection of an $h_{\text {FF }}$ sub-graph

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Selection of an $h_{\text {FF }}$ sub-graph

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Selection of an $h_{\text {FF }}$ sub-graph

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
${ }^{h_{\text {FF }}}$
Shortest plans
FF

Selection of an $h_{\text {FF }}$ sub-graph

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Selection of an $h_{\text {FF }}$ sub-graph

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Selection of an $h_{\text {FF }}$ sub-graph

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Selection of an $h_{\text {FF }}$ sub-graph

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
${ }^{h}{ }_{\text {FF }}$
Shortest plans
FF

Selection of an $h_{\text {FF }}$ sub-graph

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
${ }^{h_{\text {FF }}}$
Shortest plans
FF

Selection of an $h_{\text {FF }}$ sub-graph

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Selection of an $h_{\text {FF }}$ sub-graph

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Selection of an $h_{\text {FF }}$ sub-graph

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Selection of an $h_{\text {FF }}$ sub-graph

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Selection of an $h_{\text {FF }}$ sub-graph

Al Planning
M. Helmert,
B. Nebel

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Why is it hard to find a shortest relaxed plan?

The problem is hard, even if our actions do not have
B. Nebel preconditions (and are all executed in parallel in one step)!

Problem
Heuristic
search

The set cover problem ist the following problem:

- Given a set M, a collection of subsets $C=\left\{C_{1}\right.$ with $C_{i} \subseteq M$ and a natural number k
- Does there exist a set cover of size k, i.e., a subset of

Relaxation

Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,

Theorem

Why is it hard to find a shortest relaxed plan?

The problem is hard, even if our actions do not have preconditions (and are all executed in parallel in one step)!

Problem

The set cover problem ist the following problem:

- Given a set M, a collection of subsets $C=\left\{C_{1}, \ldots, C_{n}\right\}$, with $C_{i} \subseteq M$ and a natural number k.
- Does there exist a set cover of size k, i.e., a subset of $S=\left\{S_{1}, \ldots, S_{j}\right\} \subseteq C$ with $S_{1} \cup \ldots \cup S_{j}=M$ and $j \leq k ?$

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
h_{FF}
Shortest plans
FF

Why is it hard to find a shortest relaxed plan?

The problem is hard, even if our actions do not have preconditions (and are all executed in parallel in one step)!

Problem

The set cover problem ist the following problem:

- Given a set M, a collection of subsets $C=\left\{C_{1}, \ldots, C_{n}\right\}$, with $C_{i} \subseteq M$ and a natural number k.
- Does there exist a set cover of size k, i.e., a subset of $S=\left\{S_{1}, \ldots, S_{j}\right\} \subseteq C$ with $S_{1} \cup \ldots \cup S_{j}=M$ and $j \leq k ?$

Theorem

The set cover problem is NP-complete.

The Reduction

- An instance of the set cover problem $\langle M, C, k\rangle$ is given.
- Construct a relaxed planning task

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans

- This implies that finding a shortest plan is NP-hard.

The Reduction

- An instance of the set cover problem $\langle M, C, k\rangle$ is given.
- Construct a relaxed planning task $\left\langle A, I, O^{+}, G\right\rangle$:

Heuristic
search
Relaxation

Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
h_{FF}
Shortest plans

- This implies that finding a shortest plan is NP-hard.

The Reduction

- An instance of the set cover problem $\langle M, C, k\rangle$ is given.
- Construct a relaxed planning task $\left\langle A, I, O^{+}, G\right\rangle$:

Heuristic
search
Relaxation

Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans

- This implies that finding a shortest plan is NP-hard

The Reduction

Al Planning
M. Helmert
B. Nebel

- An instance of the set cover problem $\langle M, C, k\rangle$ is given.
- Construct a relaxed planning task $\left\langle A, I, O^{+}, G\right\rangle$:

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
${ }^{1} \mathrm{FF}$
Shortest plans

- This implies that finding a shortest plan is NP-hard.

The Reduction

- An instance of the set cover problem $\langle M, C, k\rangle$ is given.
- Construct a relaxed planning task $\left\langle A, I, O^{+}, G\right\rangle$:

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
${ }^{n} \mathrm{FF}$
Shortest plans

- This implies that finding a shortest plan is NP-hard.

The Reduction

Al Planning
M. Helmert
B. Nebel

- An instance of the set cover problem $\langle M, C, k\rangle$ is given.
- Construct a relaxed planning task $\left\langle A, I, O^{+}, G\right\rangle$:

Heuristic
search

- $A=M$,
- $G=\bigwedge_{a \in A} a$,
- $I=\{a \mapsto 0 \mid a \in A\}$,
- $O^{+}=\left\{\left\langle\top, \bigwedge_{a \in C_{i}} a\right\rangle \mid C_{i} \in C\right\}$
- Now clearly: There exists a plan containing at most k operators iff there exists a set cover of size k
- This implies that finding a shortest plan is NP-hard.

Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
${ }^{h} \mathrm{FF}$
Shortest plans
FF

The Reduction

- An instance of the set cover problem $\langle M, C, k\rangle$ is given.
- Construct a relaxed planning task $\left\langle A, I, O^{+}, G\right\rangle$:

Heuristic
search
Relaxation

- $A=M$,
- $G=\bigwedge_{a \in A} a$,
- $I=\{a \mapsto 0 \mid a \in A\}$,
- $O^{+}=\left\{\left\langle\top, \bigwedge_{a \in C_{i}} a\right\rangle \mid C_{i} \in C\right\}$
- Now clearly: There exists a plan containing at most k operators iff there exists a set cover of size k
- This implies that finding a shortest plan is NP-hard

Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
${ }^{2}$ FF
Shortest plans
FF

The Reduction

- An instance of the set cover problem $\langle M, C, k\rangle$ is given.
- Construct a relaxed planning task $\left\langle A, I, O^{+}, G\right\rangle$:

Heuristic
search
Relaxation

- $A=M$,
- $G=\bigwedge_{a \in A} a$,
- $I=\{a \mapsto 0 \mid a \in A\}$,
- $O^{+}=\left\{\left\langle\top, \bigwedge_{a \in C_{i}} a\right\rangle \mid C_{i} \in C\right\}$
- Now clearly: There exists a plan containing at most k operators iff there exists a set cover of size k
- This implies that finding a shortest plan is NP-hard.

Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
${ }^{h}$ FF
Shortest plans
FF

Putting $h_{\text {FF }}$ to work: FF

The FF planning system works roughly as follows:

- It does enforced hill-climbing using h_{FF}. This is hill-climbing extended by breadth-first search in cases where there are no states with a better heuristic value.

Heuristic
search
Relaxation

Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
$h_{\text {FF }}$
Shortest plans
FF

Putting $h_{\text {FF }}$ to work: FF

The FF planning system works roughly as follows:
AI Planning
M. Helmert

- It does enforced hill-climbing using h_{FF}. This is hill-climbing extended by breadth-first search in cases where there are no states with a better heuristic value.
- In addition, FF uses helpful action pruning, i.e., it considers only those actions that are used in the first level of the relaxed planning graph.
- If a hill-climbing step with helpful action pruning fails, then the fall-back is to use all possible actions.

Putting $h_{\text {FF }}$ to work: FF

The FF planning system works roughly as follows:

- It does enforced hill-climbing using h_{FF}. This is hill-climbing extended by breadth-first search in cases where there are no states with a better heuristic value.
- In addition, FF uses helpful action pruning, i.e., it considers only those actions that are used in the first level of the relaxed planning graph.
- If a hill-climbing step with helpful action pruning fails, then the fall-back is to use all possible actions.

Heuristic
search
Relaxation
Deriving
Heuristic
Estimates
from
Relaxations
Parallel plans
Relaxed planning
graphs
Circuits
$h_{\text {max }}, h_{\text {add }}$,
h_{FF}
Shortest plans
FF

Putting $h_{\text {FF }}$ to work: FF

Al Planning
M. Helmert

The FF planning system works roughly as follows:

- It does enforced hill-climbing using h_{FF}. This is hill-climbing extended by breadth-first search in cases where there are no states with a better heuristic value.
- In addition, FF uses helpful action pruning, i.e., it considers only those actions that are used in the first level of the relaxed planning graph.
- If a hill-climbing step with helpful action pruning fails, then the fall-back is to use all possible actions.
- If no plan is found, FF restarts the search as a greedy best-first search with h_{FF} as the heuristic.

