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Plan search with heuristic search algorithms

For forward and backward search (progression, regression)
the search space consists of incomplete plans that are
respectively prefixes of possible plans and suffixes of
possible plans.

Search starts from the empty plan.

The neighbors/children of an incomplete plan in the
search space are those that are obtained by

1 adding an operator to the incomplete plan, or
2 removing an operator from the incomplete plan.

Systematic search algorithms (like A∗) keep track of the
incomplete plans generated so far, and therefore can go
back to them.
Hence removing operators from incomplete plans is only
needed for local search algorithms which do not keep track
of the history of the search process.
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Plan search: incomplete plans for progression

For progression, the incomplete plans are prefixes o1, o2, . . . , on

of potential plans.
An incomplete plan is extended by

1 adding an operator after the last operator,
from o1, . . . , on to o1, o2, . . . , on, o for some o ∈ O, or

2 removing one or more of the last operators,
from o1, . . . , on to o1, . . . , oi for some i < n.
This is for local search algorithms only.

o1, o2, . . . , on is a plan if appon(appon−1(· · · appo1(I) · · · )) |= G.
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Plan search: incomplete plans for regression

For regression, the incomplete plans are suffixes on, . . . , o1 of
potential plans.
An incomplete plan is extended by

1 adding an operator in front of the first operator,
from on, . . . , o1 to o, on, . . . , o1 for o ∈ O, or

2 deleting one or more of the first operators,
from on, . . . , o1 to oi, . . . , o1 for some i < n.
This is for local search algorithms only.

on, . . . , o1 is a plan if I |= regron(· · · regro2(regro1(G)) · · · ).

Remark

The above is for the simplest case when formulae are not split.
With splitting the formalization is slightly trickier.
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Planning by heuristic search
Forward search
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Planning by heuristic search
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Planning by heuristic search
Selection of operators based on distance estimates

Select next operator o ∈ O based on the estimated distance
(number of operators) between

1 appo(appon(appon−1(· · · appo1(I) · · · ))) and G,
for forward search.

2 I and regro(regron(· · · regro2(regro1(G)) · · · )),
for backward search.
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Search algorithms: A∗

Search control of A∗

A∗ uses the function f(σ) = g(σ) + h(σ) to guide search:

g(σ) = cost so far, i. e. number of operators in σ

h(σ) = estimated remaining cost (distance)

admissibility: h(σ) must be less than or equal to the
actual remaining cost h∗(σ) (distance), otherwise A∗ is
not guaranteed to find an optimal solution.
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Search algorithms: A∗
Example
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Search algorithms: A∗
Definition

Notation for operator sequences

appo1;o2;...;on(s) denotes appon(. . . appo2(appo1(s)) . . .) and ε
denotes the empty sequence for which appε(s) = s.

Algorithm A∗

Forward search with A∗ works as follows.
open := {ε}, closed := ∅
loop:

if open = ∅:
return unsolvable

Choose an element σ ∈ open with the least f(σ).
if appσ(I) |= G:

return σ
open := open \ {σ}; closed := closed ∪ {σ}
open := open ∪ ({σ; o | o ∈ O} \ closed)
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Local search: random walk

Random walk
σ := ε
loop:

if appσ(I) |= G:
return σ

Randomly choose a neighbor σ′ of σ.
σ := σ′

Remark

The algorithm usually does not find any solutions, unless
almost every sequence of actions is a plan.
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Local search: steepest descent hill-climbing

Hill-climbing
σ := ε
loop:

if appσ(I) |= G:
return σ

Randomly choose a neighbor σ′ of σ with the least h(σ′).
σ := σ′

Remark

The algorithm gets stuck in local minima if no neighbor σ′ has
a better heuristic value than the current incomplete plan σ.
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Local search: simulated annealing

Simulated annealing
σ := ε
loop:

if appσ(I) |= G:
return σ

Randomly choose a neighbor σ′ of σ.
if h(σ′) < h(σ):

σ := σ′

else with probability exp
(
−h(σ′)−h(σ)

T

)
:

σ := σ′

Decrease T . (Different possible strategies!)

The temperature T is initially high and then gradually
decreased.
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Local search: simulated annealing
Illustration

temperature



AI Planning

M. Helmert,
B. Nebel

Heuristic
search

Incomplete plans

A∗

Local search

Deriving
heuristics

Relaxation

Deriving
Heuristic
Estimates
from
Relaxations

How to obtain heuristics?

General procedure for obtaining a heuristic

Solve a simplified / less restricted version of the problem.

Example (Route planning for a road network)

The road network is formalized as a weighted graph where the
weight of an edge is the road distance between two locations.
A heuristic is obtained from the Euclidean distance√
|x1 − x2|2 + |y1 − y2|2. It is a lower bound on the road

distance between (x1, y1) and (x2, y2).
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An admissible heuristic for route planning
Example
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Heuristics for deterministic planning
STRIPS

STRIPS (Fikes & Nilsson, 1971) used the number of state
variables that differ in current state s and a goal state s′:

|{a ∈ A | s(a) 6= s′(a)}|.

“The more goal literals an operator makes true, the more
useful the operator is.”

The above heuristic is not admissible because one operator
may reduce this measure by more than one. Instead,

|{a ∈ A | s(a) 6= s′(a)}|
n

is admissible when no operator has > n atomic effects.
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Intuition

To compute heuristics for planning tasks, we consider a
relaxed version of the original problem, where some
difficult aspects of the original problem are ignored.

This is a general technique for heuristic design:

Straight-line heuristic (route planning): Ignore the fact
that one must stay on roads.
Manhattan heuristic (15-puzzle): Ignore the fact that one
cannot move through occupied tiles.

For general planning problems, we will ignore negative
interactions. Informally, we ignore “bad side effects” of
applying operators.
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Intuition

Question: Which operator effects are good, and which are bad?

This is difficult to answer in general, because it depends on
context:

If we want to prevent burglars from breaking into our flat,
locking the entrance door is good.

If we want to pass through it, locking the entrance door is
bad.

We will now consider a reformulation of planning problems that
makes the distinction between good and bad effects obvious.
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Positive normal form

Definition

An operator o = 〈c, e〉 is in positive normal form if it is in
normal form, no negation symbols appear in c, and no negation
symbols appear in any effect condition in e.

A succinct deterministic transition system 〈A, I,O,G〉 is in
positive normal form if all operators in O are in positive normal
form and no negation symbols occur in the goal G.

Theorem

For every succinct deterministic transition system, an
equivalent succinct deterministic transition system in positive
normal form can be computed in polynomial time.

Equivalence here means that the represented (non-succinct)
deterministic transition systems are isomorphic.
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Positive normal form: algorithm

Transformation of 〈A, I,O,G〉 to positive normal form

Convert all operators o ∈ O to normal form.
Convert all conditions to negation normal form (NNF).
while any condition contains a negative literal ¬a:

Let a be a variable which occurs negatively in a condition.
A := A ∪ {â} for some new state variable â
I(â) := 1− I(a)
Replace the effect ¬a by (¬a ∧ â) in all operators o ∈ O.
Replace the effect a by (a ∧ ¬â) in all operators o ∈ O.
Replace ¬a by â in all conditions.

Convert all operators o ∈ O to normal form (again).

Here, all conditions refers to all operator preconditions,
operator effect conditions and the goal.
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Positive normal form: Example

Example

A = {home, uni, lecture, bike, bike-locked}
I = {home 7→ 1, bike 7→ 1, bike-locked 7→ 1,

uni 7→ 0, lecture 7→ 0}
O = {〈home ∧ bike ∧ ¬bike-locked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked〉,
〈bike ∧ ¬bike-locked, bike-locked〉,
〈uni, lecture ∧ ((bike ∧ ¬bike-locked) B ¬bike)〉}

G = lecture ∧ bike
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Positive normal form: Example

Example

A = {home, uni, lecture, bike, bike-locked}
I = {home 7→ 1, bike 7→ 1, bike-locked 7→ 1,

uni 7→ 0, lecture 7→ 0}
O = {〈home ∧ bike ∧ ¬bike-locked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked〉,
〈bike ∧ ¬bike-locked, bike-locked〉,
〈uni, lecture ∧ ((bike ∧ ¬bike-locked) B ¬bike)〉}

G = lecture ∧ bike
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Positive normal form: Example

Example

A = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ 1, bike 7→ 1, bike-locked 7→ 1,

uni 7→ 0, lecture 7→ 0, bike-unlocked 7→ 0}
O = {〈home ∧ bike ∧ ¬bike-locked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked〉,
〈bike ∧ ¬bike-locked, bike-locked〉,
〈uni, lecture ∧ ((bike ∧ ¬bike-locked) B ¬bike)〉}

G = lecture ∧ bike
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Positive normal form: Example

Example

A = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ 1, bike 7→ 1, bike-locked 7→ 1,

uni 7→ 0, lecture 7→ 0, bike-unlocked 7→ 0}
O = {〈home ∧ bike ∧ ¬bike-locked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked〉,
〈bike ∧ ¬bike-locked, bike-locked〉,
〈uni, lecture ∧ ((bike ∧ ¬bike-locked) B ¬bike)〉}

G = lecture ∧ bike
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Positive normal form: Example

Example

A = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ 1, bike 7→ 1, bike-locked 7→ 1,

uni 7→ 0, lecture 7→ 0, bike-unlocked 7→ 0}
O = {〈home ∧ bike ∧ ¬bike-locked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked ∧ bike-unlocked〉,
〈bike ∧ ¬bike-locked, bike-locked ∧ ¬bike-unlocked〉,
〈uni, lecture ∧ ((bike ∧ ¬bike-locked) B ¬bike)〉}

G = lecture ∧ bike
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Positive normal form: Example

Example

A = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ 1, bike 7→ 1, bike-locked 7→ 1,

uni 7→ 0, lecture 7→ 0, bike-unlocked 7→ 0}
O = {〈home ∧ bike ∧ ¬bike-locked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked ∧ bike-unlocked〉,
〈bike ∧ ¬bike-locked, bike-locked ∧ ¬bike-unlocked〉,
〈uni, lecture ∧ ((bike ∧ ¬bike-locked) B ¬bike)〉}

G = lecture ∧ bike
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Positive normal form: Example

Example

A = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ 1, bike 7→ 1, bike-locked 7→ 1,

uni 7→ 0, lecture 7→ 0, bike-unlocked 7→ 0}
O = {〈home ∧ bike ∧ bike-unlocked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked ∧ bike-unlocked〉,
〈bike ∧ bike-unlocked, bike-locked ∧ ¬bike-unlocked〉,
〈uni, lecture ∧ ((bike ∧ bike-unlocked) B ¬bike)〉}

G = lecture ∧ bike
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Positive normal form: Example

Example

A = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ 1, bike 7→ 1, bike-locked 7→ 1,

uni 7→ 0, lecture 7→ 0, bike-unlocked 7→ 0}
O = {〈home ∧ bike ∧ bike-unlocked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked ∧ bike-unlocked〉,
〈bike ∧ bike-unlocked, bike-locked ∧ ¬bike-unlocked〉,
〈uni, lecture ∧ ((bike ∧ bike-unlocked) B ¬bike)〉}

G = lecture ∧ bike
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Intuition

In positive normal form, good and bad effects are easy to
distinguish:

Effects that make state variables true are good
(add effects).

Effects that make state variables false are bad
(delete effects).

Idea for the heuristic: Ignore all delete effects.
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Relaxation

Definition

The relaxation o+ of an operator o = 〈c, e〉 in positive normal
form is the operator which is obtained by replacing all negative
effects ¬a within e by the do-nothing effect >.

The relaxation P+ of a succinct deterministic transition system
P = 〈A, I,O,G〉 in positive normal form is the succinct
deterministic transition system P+ := 〈A, I, {o+ | o ∈ O}, G〉.
The relaxation of an operator sequence π = o1, . . . , on is the
operator sequence π+ := o1

+, . . . , on
+.
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Relaxation: properties

The on-set on(s) of a state s is the set of true state variables
in s, i.e. on(s) = s−1({1}).
A state s′ dominates another state s iff on(s) ⊆ on(s′).

Lemma (domination)

Let s and s′ be valuations of a set of propositional variables
and let χ be a propositional formula which does not contain
negation symbols.
If s |= χ and s′ dominates s, then s′ |= χ.

Proof by induction over the structure of χ (exercise).
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Relaxation: properties

Lemma (relaxation leads to dominated states)

Let s be a state, and let π be an operator sequence which is
applicable in s.
Then π+ is applicable in s and appπ+(s) dominates appπ(s).

Proof.

Induction on the length of π.

Base case: π = ε
Trivial.
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Relaxation: properties

Lemma (relaxation leads to dominated states)

Let s be a state, and let π be an operator sequence which is
applicable in s.
Then π+ is applicable in s and appπ+(s) dominates appπ(s).

Proof.

Induction on the length of π.

Base case: π = ε
Trivial.
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Relaxation: properties

Proof continues.

Inductive case: π = o1
+ . . . on+1

+

By the induction hypothesis, o1
+ . . . on

+ is applicable in s, and
t+ = appo1

+...on
+(s) dominates t = appo1...on(s).

Let o := on+1 = 〈c, e〉 and o+ = 〈c, e+〉. By assumption, o is
applicable in t, and thus t |= c. By the domination lemma, we
get t+ |= c and hence o+ is applicable in t+. Therefore, π+ is
applicable in s.

Because o is in positive normal form, all effect conditions
satisfied by t are also satisfied by t+ (by the domination
lemma). Therefore, ([e]t ∩A) ⊆ [e+]t+ (where A is the set of
state variables, or positive literals).

We get on(appπ(s)) ⊆ on(t) ∪ ([e]t ∩A) ⊆ on(t+) ∪ [e+]t+ =
on(appπ+(s)), and thus appπ+(s) dominates appπ(s).
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Relaxation: properties

Proof continues.

Inductive case: π = o1
+ . . . on+1

+

By the induction hypothesis, o1
+ . . . on

+ is applicable in s, and
t+ = appo1

+...on
+(s) dominates t = appo1...on(s).

Let o := on+1 = 〈c, e〉 and o+ = 〈c, e+〉. By assumption, o is
applicable in t, and thus t |= c. By the domination lemma, we
get t+ |= c and hence o+ is applicable in t+. Therefore, π+ is
applicable in s.

Because o is in positive normal form, all effect conditions
satisfied by t are also satisfied by t+ (by the domination
lemma). Therefore, ([e]t ∩A) ⊆ [e+]t+ (where A is the set of
state variables, or positive literals).

We get on(appπ(s)) ⊆ on(t) ∪ ([e]t ∩A) ⊆ on(t+) ∪ [e+]t+ =
on(appπ+(s)), and thus appπ+(s) dominates appπ(s).
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Relaxation: properties

Proof continues.

Inductive case: π = o1
+ . . . on+1

+

By the induction hypothesis, o1
+ . . . on

+ is applicable in s, and
t+ = appo1

+...on
+(s) dominates t = appo1...on(s).

Let o := on+1 = 〈c, e〉 and o+ = 〈c, e+〉. By assumption, o is
applicable in t, and thus t |= c. By the domination lemma, we
get t+ |= c and hence o+ is applicable in t+. Therefore, π+ is
applicable in s.

Because o is in positive normal form, all effect conditions
satisfied by t are also satisfied by t+ (by the domination
lemma). Therefore, ([e]t ∩A) ⊆ [e+]t+ (where A is the set of
state variables, or positive literals).

We get on(appπ(s)) ⊆ on(t) ∪ ([e]t ∩A) ⊆ on(t+) ∪ [e+]t+ =
on(appπ+(s)), and thus appπ+(s) dominates appπ(s).
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Relaxation: properties

Proof continues.

Inductive case: π = o1
+ . . . on+1

+

By the induction hypothesis, o1
+ . . . on

+ is applicable in s, and
t+ = appo1

+...on
+(s) dominates t = appo1...on(s).

Let o := on+1 = 〈c, e〉 and o+ = 〈c, e+〉. By assumption, o is
applicable in t, and thus t |= c. By the domination lemma, we
get t+ |= c and hence o+ is applicable in t+. Therefore, π+ is
applicable in s.

Because o is in positive normal form, all effect conditions
satisfied by t are also satisfied by t+ (by the domination
lemma). Therefore, ([e]t ∩A) ⊆ [e+]t+ (where A is the set of
state variables, or positive literals).

We get on(appπ(s)) ⊆ on(t) ∪ ([e]t ∩A) ⊆ on(t+) ∪ [e+]t+ =
on(appπ+(s)), and thus appπ+(s) dominates appπ(s).
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Relaxation: properties

Theorem (solution preservation)

Let π be a plan for a succinct deterministic transition system T
in positive normal form.
Then π+ is a plan for T +.

Proof.

Let T = 〈A, I,O,G〉 and thus T + = 〈A, I,O+, G〉.
Since π is applicable in I, π+ is also applicable in I (by the
previous lemma).

Also by the previous lemma, the resulting state s+ := appπ+(I)
dominates the state s := appπ(I). Because s |= G and G is
negation-free, we get s+ |= G by the domination lemma.

Thus π+ is indeed a plan for T +.
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Relaxation: properties

Theorem (solution preservation)

Let π be a plan for a succinct deterministic transition system T
in positive normal form.
Then π+ is a plan for T +.

Proof.

Let T = 〈A, I,O,G〉 and thus T + = 〈A, I,O+, G〉.
Since π is applicable in I, π+ is also applicable in I (by the
previous lemma).

Also by the previous lemma, the resulting state s+ := appπ+(I)
dominates the state s := appπ(I). Because s |= G and G is
negation-free, we get s+ |= G by the domination lemma.

Thus π+ is indeed a plan for T +.
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Relaxation: properties

Theorem (solution preservation)

Let π be a plan for a succinct deterministic transition system T
in positive normal form.
Then π+ is a plan for T +.

Proof.

Let T = 〈A, I,O,G〉 and thus T + = 〈A, I,O+, G〉.
Since π is applicable in I, π+ is also applicable in I (by the
previous lemma).

Also by the previous lemma, the resulting state s+ := appπ+(I)
dominates the state s := appπ(I). Because s |= G and G is
negation-free, we get s+ |= G by the domination lemma.

Thus π+ is indeed a plan for T +.
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Relaxation: properties

Theorem (solution preservation)

Let π be a plan for a succinct deterministic transition system T
in positive normal form.
Then π+ is a plan for T +.

Proof.

Let T = 〈A, I,O,G〉 and thus T + = 〈A, I,O+, G〉.
Since π is applicable in I, π+ is also applicable in I (by the
previous lemma).

Also by the previous lemma, the resulting state s+ := appπ+(I)
dominates the state s := appπ(I). Because s |= G and G is
negation-free, we get s+ |= G by the domination lemma.

Thus π+ is indeed a plan for T +.
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Relaxation: properties

Consequences of the solution preservation theorem:

Relaxations are never harder to solve than the original
problem.

Optimal solutions to relaxations are never longer than
optimal solutions to the original problem.

In fact, relaxations are much easier to solve than the original
problems, which makes them suitable as the basis for heuristic
functions.

We will now consider the problem of solving relaxations.
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Solving relaxations: properties

Lemma (dominating states are better)

Let s be a state, let s′ be a state that dominates s, and let π+

be a relaxed operator sequence which is applicable in s.
Then π+ is applicable in s′ and appπ+(s′) dominates appπ+(s).

Proof.

Induction on the length of π+.

Base case: π+ = ε
The empty plan ε is applicable in s′.
Moreover, appπ+(s′) = appε(s′) = s′ and
appπ+(s) = appε(s) = s, and s′ dominates s.
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Solving relaxations: properties

Lemma (dominating states are better)

Let s be a state, let s′ be a state that dominates s, and let π+

be a relaxed operator sequence which is applicable in s.
Then π+ is applicable in s′ and appπ+(s′) dominates appπ+(s).

Proof.

Induction on the length of π+.

Base case: π+ = ε
The empty plan ε is applicable in s′.
Moreover, appπ+(s′) = appε(s′) = s′ and
appπ+(s) = appε(s) = s, and s′ dominates s.
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Solving relaxations: properties

Lemma (dominating states are better)

Let s be a state, let s′ be a state that dominates s, and let π+

be a relaxed operator sequence which is applicable in s.
Then π+ is applicable in s′ and appπ+(s′) dominates appπ+(s).

Proof.

Induction on the length of π+.

Base case: π+ = ε
The empty plan ε is applicable in s′.
Moreover, appπ+(s′) = appε(s′) = s′ and
appπ+(s) = appε(s) = s, and s′ dominates s.
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Solving relaxations: properties

Proof continues.

Inductive case: π+ = o1
+ . . . on+1

+

By the induction hypothesis, o1
+ . . . on

+ is applicable in s′, and
t′ = appo1

+...on
+(s′) dominates t = appo1

+...on
+(s).

Let o+ := on+1
+ = 〈c, e〉. By assumption, o+ is applicable in t,

and thus t |= c. By the domination lemma, we get t′ |= c and
hence o+ is applicable in t′. Therefore, π+ is applicable in s′.

Because o+ is in positive normal form, all effect conditions
which are satisfied in t are also satisfied in t′ (by the
domination lemma). Therefore, [e]t ⊆ [e]t′ .
Because all atomic effects in o+ are positive, [e]t and [e]t′ are
sets of positive literals. We thus get
on(appπ+(s)) = on(t) ∪ [e]t ⊆ on(t′) ∪ [e]t′ = on(appπ+(s′)),
and thus appπ+(s′) dominates appπ+(s).
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Solving relaxations: properties

Proof continues.

Inductive case: π+ = o1
+ . . . on+1

+

By the induction hypothesis, o1
+ . . . on

+ is applicable in s′, and
t′ = appo1

+...on
+(s′) dominates t = appo1

+...on
+(s).

Let o+ := on+1
+ = 〈c, e〉. By assumption, o+ is applicable in t,

and thus t |= c. By the domination lemma, we get t′ |= c and
hence o+ is applicable in t′. Therefore, π+ is applicable in s′.

Because o+ is in positive normal form, all effect conditions
which are satisfied in t are also satisfied in t′ (by the
domination lemma). Therefore, [e]t ⊆ [e]t′ .
Because all atomic effects in o+ are positive, [e]t and [e]t′ are
sets of positive literals. We thus get
on(appπ+(s)) = on(t) ∪ [e]t ⊆ on(t′) ∪ [e]t′ = on(appπ+(s′)),
and thus appπ+(s′) dominates appπ+(s).
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Solving relaxations: properties

Proof continues.

Inductive case: π+ = o1
+ . . . on+1

+

By the induction hypothesis, o1
+ . . . on

+ is applicable in s′, and
t′ = appo1

+...on
+(s′) dominates t = appo1

+...on
+(s).

Let o+ := on+1
+ = 〈c, e〉. By assumption, o+ is applicable in t,

and thus t |= c. By the domination lemma, we get t′ |= c and
hence o+ is applicable in t′. Therefore, π+ is applicable in s′.

Because o+ is in positive normal form, all effect conditions
which are satisfied in t are also satisfied in t′ (by the
domination lemma). Therefore, [e]t ⊆ [e]t′ .
Because all atomic effects in o+ are positive, [e]t and [e]t′ are
sets of positive literals. We thus get
on(appπ+(s)) = on(t) ∪ [e]t ⊆ on(t′) ∪ [e]t′ = on(appπ+(s′)),
and thus appπ+(s′) dominates appπ+(s).
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Solving relaxations: properties

Proof continues.

Inductive case: π+ = o1
+ . . . on+1

+

By the induction hypothesis, o1
+ . . . on

+ is applicable in s′, and
t′ = appo1

+...on
+(s′) dominates t = appo1

+...on
+(s).

Let o+ := on+1
+ = 〈c, e〉. By assumption, o+ is applicable in t,

and thus t |= c. By the domination lemma, we get t′ |= c and
hence o+ is applicable in t′. Therefore, π+ is applicable in s′.

Because o+ is in positive normal form, all effect conditions
which are satisfied in t are also satisfied in t′ (by the
domination lemma). Therefore, [e]t ⊆ [e]t′ .
Because all atomic effects in o+ are positive, [e]t and [e]t′ are
sets of positive literals. We thus get
on(appπ+(s)) = on(t) ∪ [e]t ⊆ on(t′) ∪ [e]t′ = on(appπ+(s′)),
and thus appπ+(s′) dominates appπ+(s).
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Solving relaxations: properties

Consequences of the lemma:

If we can find a solution starting from a state s, the same
solution can be used when starting from a dominating
state s′.

Thus, making a transition to a dominating state never
hurts.

Lemma (monotonicity)

Let o+ be a relaxed operator and let s be a state in which o+ is
applicable.
Then appo+(s) dominates s.

Proof.

Since relaxed operators only have positive effects, we have
on(s) ⊆ on(s) ∪ [e]o+ = on(appo+(s)).
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Solving relaxations: algorithm

Together, the two lemmas imply that making a transition
never hurts.

This suggests the following algorithm.

Greedy planning algorithm for 〈A, I,O+, G〉
s := I
π+ := ε
loop:

if s |= G:
return π+

else if there is an operator o+ ∈ O+ with appo+(s) 6= s:
Append such an operator o+ to π+.
s := appo+(s)

else:
return unsolvable
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Greedy planning algorithm for 〈A, I,O+, G〉
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Solving relaxations: algorithm

The algorithm is sound:

If it returns a plan, this is indeed a correct solution.

If it returns “unsolvable”, the task is indeed unsolvable (by
the two lemmas).

What about completeness (termination) and runtime?

Each iteration of the loop adds at least one atom to on(s).
This guarantees termination after at most |A| iterations.

Thus, the algorithm can clearly run in polynomial time.
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The algorithm is sound:

If it returns a plan, this is indeed a correct solution.

If it returns “unsolvable”, the task is indeed unsolvable (by
the two lemmas).

What about completeness (termination) and runtime?

Each iteration of the loop adds at least one atom to on(s).
This guarantees termination after at most |A| iterations.

Thus, the algorithm can clearly run in polynomial time.
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Solving relaxations: optimality

One could use the solution algorithm as a heuristic estimator in
a progression search for general planning tasks as follows:

In a search node that corresponds to state s, solve the
relaxation of the planning task with s as the initial state.

Use the length of the relaxed plan as a heuristic estimate.

Is this an admissible heuristic?

Yes if the relaxed plans are optimal (because of the
solution preservation theorem).

However, usually they are not, because our greedy
planning algorithm is very poor.
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Solving relaxations: optimality

So how do we use relaxations for heuristic planning?

Different possibilities:

Implement an optimal planner for relaxed planning tasks
and use its solution lengths as an estimate (h+ heuristic).
However, optimal planning for relaxed tasks is NP-hard.

Do not actually solve the relaxed planning task, but
compute an estimate of its difficulty in a different way
(hmax heuristic, hadd heuristic).

Compute a solution for relaxed planning tasks which is not
necessarily optimal, but “reasonable” (hFF heuristic).
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Intutition

Why does the greedy algorithm compute low-quality plans?

It may apply many operators which are not goal-directed.

How can this problem be fixed?

Reaching the goal of a relaxed planning task is most easily
achieved with forward search.

Analyzing relevance of an operator for achieving a goal (or
subgoal) is most easily achieved with backward search.

Idea: Use a forward-backward algorithm that first finds a path
to the goal greedily, then prunes it to a relevant subplan.
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Parallel plans

How do we decide which operators to apply in the forward
direction?

We avoid such a decision by applying all applicable
operators simultaneously.

Definition

A plan step is a set of operators σ = {o1, . . . , on}.

A plan step σ = {o1, . . . , on} with oi = 〈ci, ei〉 of a relaxed
planning task is applicable in a state s iff each operator oi ∈ σ
is applicable in s.

The result of applying σ to s, in symbols appσ(s), is defined as
the state s′ with on(s′) = on(s) ∪

⋃n
i=1[ei]s.
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Applying plan steps: Examples

In all cases, s = {a 7→ 0, b 7→ 0, c 7→ 1, d 7→ 0}.
σ = {〈c, a〉, 〈>, b〉}
σ = {〈c, a〉, 〈c, a B b〉}
σ = {〈c, a ∧ b〉, 〈a, b B d〉}
σ = {〈c, a ∧ (b B d)〉, 〈c, b ∧ (a B d)〉}
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Serializations

Applying a plan step to a state is related to applying the
actions in the step to a state in sequence.

Definition

A serialization of plan step σ = {o1, . . . , on} is a sequence
oπ(1), . . . , oπ(n) where π is a permutation of {1, . . . , n}.

Lemma

If σ is a plan step applicable in a state s of a relaxed planning
task, then each serialization o′1, . . . , o

′
n of σ is applicable in s

and appo′1,...,o′n
(s) dominates appσ(s).

Does equality hold for all serializations?

Does equality hold for some serialization?

What if there are no conditional effects?

What if the planning task is not relaxed?
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Parallel plans

Definition

A parallel plan for a relaxed planning task 〈A, I,O+, G〉 is a
sequence of plan steps σ1, . . . , σn of operators in O+ with:

s0 := I

For i = 1, . . . , n, step σi is applicable in si−1

and si := appσi(si−1).
sn |= G

Remark: By ordering the operators within each single step
arbitrarily, we obtain a (regular, non-parallel) plan.
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Forward states and operator sets

Idea: In the forward phase of the heuristic computation, we
first apply the plan step consisting of all initially applicable
operators, then the plan step consisting of all operators
applicable in the resulting state, etc.

Definition

The 0-th parallel forward state, in symbols sF0 , of a relaxed
planning task 〈A, I,O+, G〉 is defined as sF0 := s.
For n ∈ N1, the n-th forward plan step, in symbols σF

n, is the
set of operators applicable in sFn−1, and the n-th parallel
forward state, in symbols sFn, is defined as sFn := appσF

n
(sFn−1).

For n ∈ N0, the n-th parallel forward set, in symbols SF
n, is

defined as SF
n := on(sFn).
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Parallel forward distances

Definition

The parallel forward distance of a relaxed planning task
〈A, I,O+, G〉 is the lowest number n ∈ N0 such that sFn |= G,
or ∞ if no parallel forward state satisfies G.

Remark: The parallel forward distance can be computed in
polynomial time. (How?)

Definition

The hmax estimate of a state s in a planning task
P = 〈A, I,O,G〉 in positive normal form is the parallel forward
distance of the relaxed planning task 〈A, s,O+, G〉.

Remark: The hmax estimate is admissible. (Why?)
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Parallel forward distances

Definition

The parallel forward distance of a relaxed planning task
〈A, I,O+, G〉 is the lowest number n ∈ N0 such that sFn |= G,
or ∞ if no parallel forward state satisfies G.

Remark: The parallel forward distance can be computed in
polynomial time. (How?)

Definition

The hmax estimate of a state s in a planning task
P = 〈A, I,O,G〉 in positive normal form is the parallel forward
distance of the relaxed planning task 〈A, s,O+, G〉.

Remark: The hmax estimate is admissible. (Why?)
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So far, so good. . .

We have seen how systematic computation of forward
states leads to an admissible estimate for heuristic
planning.

However, this estimate is very coarse.

To improve it, we need to include backward propagation of
information.

For this purpose, we use a data structure called a relaxed
planning graph.
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Relaxed planning graphs: running example

As a running example, consider the relaxed planning task
〈A, I, {o1, o2, o3, o4}, G〉 with

A = {a, b, c, d, e, f, g, h}
I = {a 7→ 1, b 7→ 0, c 7→ 1, d 7→ 1,

e 7→ 0, f 7→ 0, g 7→ 0, h 7→ 0}
o1 = 〈b ∨ (c ∧ d), b ∧ ((a ∧ b) B e)〉
o2 = 〈>, f〉
o3 = 〈f, g〉
o4 = 〈f, h〉
G = e ∧ (g ∧ h)
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Relaxed planning graphs

Relaxed planning graphs encode

which propositions can be made true in a given number of
plan steps,

and how they can be made true.

They consist of four kinds of components:

Proposition nodes represent the truth value of propositions
after applying a certain number of plan steps.

Idle arcs represent state variables that do not change their
value when applying a plan step.

Action subgraphs represent the application of a given
action in a given plan step.

Goal subgraphs represent the truth value of the goal
condition after applying a certain number of plan steps.
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Relaxed planning graph: proposition layers

Let P = 〈A, I,O+, G〉 be a relaxed planning task, let N ∈ N0.

For each i ∈ {0, . . . , N}, the relaxed planning graph of depth
N contains one proposition layer which consists of:

a proposition node ai for each state variable a ∈ A.



AI Planning

M. Helmert,
B. Nebel

Heuristic
search

Relaxation

Deriving
Heuristic
Estimates
from
Relaxations

Parallel plans

Relaxed planning
graphs

Circuits

hmax, hadd,
hFF
Shortest plans

FF

Relaxed planning graph: proposition layers
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Relaxed planning graph: proposition layers
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Relaxed planning graph: proposition layers
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Relaxed planning graph: idle arcs

For each proposition node ai with i ∈ {1, . . . , N}, the relaxed
planning graph of depth N contains an arc from ai to ai−1

(idle arcs).

Intuition: If a state variable is true in step i, one of the possible
reasons is that it was already previously true.
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Relaxed planning graph: idle arcs
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Relaxed planning graph: idle arcs
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Relaxed planning graph: action subgraphs

For each i ∈ {1, . . . , N} and each operator o = 〈c, e〉 ∈ O, the
relaxed planning graph of depth N contains a subgraph called
an action subgraph with the following parts:

one formula node ni
χ for each formula χ which is a

subformula of c or of some effect condition in e:

If χ = a for some atom a, niχ is the proposition node ai−1.

If χ = >, niχ is a new node labeled (>).
If χ = ⊥, niχ is a new node labeled (⊥).
If χ = (φ ∧ ψ), niχ is a new node labeled (∧)
with outgoing arcs to niφ and niψ.

If χ = (φ ∨ ψ), niχ is a new node labeled (∨)
with outgoing arcs to niφ and niψ.
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Relaxed planning graph: action subgraphs

For each i ∈ {1, . . . , N} and each operator o = 〈c, e〉 ∈ O, the
relaxed planning graph of depth N contains a subgraph called
an action subgraph with the following parts:

an action node oi with an outgoing arc to the precondition
formula node ni

c

for each add effect a in e which does not occur within a
conditional effect, an arc from proposition node ai+1 to
action node oi.

for each conditional effect (c′ B a) in e, a node ni
c′Ba

labeled (B) with an incoming arc from proposition node
ai+1 and outgoing arcs to action node oi and formula
node ni

c′ .
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Relaxed planning graph: action subgraphs

Action subgraph for o1 = 〈b ∨ (c ∧ d), b ∧ ((a ∧ b) B e)〉
for layer i = 0.
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Relaxed planning graph: goal subgraphs

For each i ∈ {0, . . . , N}, the relaxed planning graph of depth
N contains a subgraph called a goal subgraph with the
following parts:

one formula node ni
χ for each formula χ which is a

subformula of G:

If χ = a for some atom a, niχ is the proposition node ai.

If χ = >, niχ is a new node labeled (>).
If χ = ⊥, niχ is a new node labeled (⊥).
If χ = (φ ∧ ψ), niχ is a new node labeled (∧)
with outgoing arcs to niφ and niψ.

If χ = (φ ∨ ψ), niχ is a new node labeled (∨)
with outgoing arcs to niφ and niψ.

The node ni
G is called a goal node.
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Relaxed planning graph: goal subgraphs

Goal subgraph for G = e ∧ (g ∧ h)
and layer i = 2:
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Relaxed planning graph: complete example
(depth 2)
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Relaxed planning graph: complete example
(depth 2)
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Relaxed planning graph: complete example
(depth 2)

o1 = 〈b ∨ (c ∧ d), b ∧ ((a ∧ b) B e)〉
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Relaxed planning graph: complete example
(depth 2)

o1 = 〈b ∨ (c ∧ d), b ∧ ((a ∧ b) B e)〉
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Relaxed planning graph: complete example
(depth 2)
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Relaxed planning graph: complete example
(depth 2)

o2 = 〈>, f〉
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Relaxed planning graph: complete example
(depth 2)
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Relaxed planning graph: complete example
(depth 2)

o3 = 〈f, g〉
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Relaxed planning graph: complete example
(depth 2)

o4 = 〈f, h〉
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Relaxed planning graph: complete example
(depth 2)

o4 = 〈f, h〉
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Relaxed planning graph: complete example
(depth 2)

G = e ∧ (g ∧ h)
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Relaxed planning graph: complete example
(depth 2)

G = e ∧ (g ∧ h)
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Relaxed planning graph: complete example
(depth 2)

G = e ∧ (g ∧ h)
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Relaxed planning graph: complete example
(depth 2)
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Boolean circuits

Definition

A Boolean circuit is a directed acyclic graph G = (V,E), where
the nodes V are called gates. Each gate v ∈ V has a type
type(v) ∈ {¬,∧,∨,>,⊥, } ∪ {a, b, c, . . .}. The gates with
type(v) ∈ {>,⊥, a, b, c, . . .} have in-degree zero, the gates
with type(v) ∈ {¬} have in-degree one, and the gates with
type(v) ∈ {∨,∧} have in-degree two. The gates with no
outgoing edge are called output gates. The gates with no
incoming edges are called input gates.

Definition

Given a value assignment to the input gates, the circuit
computes the value of gates in the obvious way.

What is the relation between circuits and relaxed planning
graphs?
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Relaxed planning graphs and Boolean circuits

Observations:

Relaxed planning graphs can be understood as special
(monotone) Boolean circuits, where

the direction of the arrows has to be inverted
proposition nodes in the 0-th layer are ⊥ gates or > gates,
depending on their initial value.
proposition nodes outside the 0-th layer are ∨ gates
action nodes are ∧ gates (or ∨ gates)
B-nodes are ∧ gates

A parallel plan solves the planning task with n steps iff the
value of the goal node on layer n has the value 1.

The plan consists of all action nodes that have a value of
1 and that are “on a path to the goal node”, which has a
value of 1.
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Heuristic estimate hmax

Using relaxed planning graphs, how can we compute the
hmax heuristic?

Solution:

Create relaxed planning graph of depth n, n being the
number of state variables.
Compute gate values based on initial state values.
The hmax value is the lowest layer where the goal gate
evaluates to 1!



AI Planning

M. Helmert,
B. Nebel

Heuristic
search

Relaxation

Deriving
Heuristic
Estimates
from
Relaxations

Parallel plans

Relaxed planning
graphs

Circuits

hmax, hadd,
hFF
Shortest plans

FF

Heuristic estimate hmax

Using relaxed planning graphs, how can we compute the
hmax heuristic?

Solution:

Create relaxed planning graph of depth n, n being the
number of state variables.
Compute gate values based on initial state values.
The hmax value is the lowest layer where the goal gate
evaluates to 1!



AI Planning

M. Helmert,
B. Nebel

Heuristic
search

Relaxation

Deriving
Heuristic
Estimates
from
Relaxations

Parallel plans

Relaxed planning
graphs

Circuits

hmax, hadd,
hFF
Shortest plans

FF

Heuristic estimate hmax

Using relaxed planning graphs, how can we compute the
hmax heuristic?

Solution:

Create relaxed planning graph of depth n, n being the
number of state variables.
Compute gate values based on initial state values.
The hmax value is the lowest layer where the goal gate
evaluates to 1!



AI Planning

M. Helmert,
B. Nebel

Heuristic
search

Relaxation

Deriving
Heuristic
Estimates
from
Relaxations

Parallel plans

Relaxed planning
graphs

Circuits

hmax, hadd,
hFF
Shortest plans

FF

Heuristic estimate hmax
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Solution:
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Heuristic estimate hadd

While hmax is admissible, it is not very informative (it does
not distinguish between different states).

Estimate how hard it is to make a proposition true.

Estimate costs under the assumption that making a
proposition true is independent from making any other
proposition true (i.e., relaxed planning graph is a tree).

Any proposition already true in the initial state has cost 0.
Conjunctions (if true) have the sum of the costs of the
conjunctions.
Disjunctions (if true) have the minimum of the costs of the
disjuncts.
Actions (if executable) add one cost unit.

This may, of course, over-estimate the real costs!
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hadd over-estimates because of the independence
assumption.

Positive interactions are ignored.

Idea: Prune the sub-graph so that it non-redundantly
makes the goal node true.

Start at the first true goal node.
Select both predecessors of a conjunction gate.
Select one true predecessor of disjucntion gate.

Use the number of actions in corresponding parallel plan
as the heuristic estimate.

Of course, one would like to have a minimal sub-graph.
However determining the minimal sub-graph is as hard as
finding a minimal relaxed plan, i.e., NP-hard!
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Of course, one would like to have a minimal sub-graph.
However determining the minimal sub-graph is as hard as
finding a minimal relaxed plan, i.e., NP-hard!
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Idea: Prune the sub-graph so that it non-redundantly
makes the goal node true.

Start at the first true goal node.
Select both predecessors of a conjunction gate.
Select one true predecessor of disjucntion gate.

Use the number of actions in corresponding parallel plan
as the heuristic estimate.

Of course, one would like to have a minimal sub-graph.
However determining the minimal sub-graph is as hard as
finding a minimal relaxed plan, i.e., NP-hard!
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Why is it hard to find a shortest relaxed plan?

The problem is hard, even if our actions do not have
preconditions (and are all executed in parallel in one step)!

Problem

The set cover problem ist the following problem:

Given a set M , a collection of subsets C = {C1, . . . , Cn},
with Ci ⊆M and a natural number k.

Does there exist a set cover of size k, i.e., a subset of
S = {S1, . . . , Sj} ⊆ C with S1 ∪ . . .∪ Sj = M and j ≤ k?

Theorem

The set cover problem is NP-complete.
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The Reduction

An instance of the set cover problem 〈M,C, k〉 is given.

Construct a relaxed planning task 〈A, I,O+, G〉:
A = M ,
G =

∧
a∈A a,

I = { a 7→ 0 | a ∈ A },
O+ = { 〈>,

∧
a∈Ci

a〉 | Ci ∈ C }
Now clearly: There exists a plan containing at most k
operators iff there exists a set cover of size k

This implies that finding a shortest plan is NP-hard.
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Putting hFF to work: FF

The FF planning system works roughly as follows:

It does enforced hill-climbing using hFF. This is
hill-climbing extended by breadth-first search in cases
where there are no states with a better heuristic value.

In addition, FF uses helpful action pruning, i.e., it
considers only those actions that are used in the first level
of the relaxed planning graph.

If a hill-climbing step with helpful action pruning fails,
then the fall-back is to use all possible actions.

If no plan is found, FF restarts the search as a greedy
best-first search with hFF as the heuristic.
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