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Heuristic search Incomplete plans

Plan search with heuristic search algorithms

I For forward and backward search (progression, regression) the search
space consists of incomplete plans that are respectively prefixes of
possible plans and suffixes of possible plans.

I Search starts from the empty plan.
I The neighbors/children of an incomplete plan in the search space are

those that are obtained by

1. adding an operator to the incomplete plan, or
2. removing an operator from the incomplete plan.

I Systematic search algorithms (like A∗) keep track of the incomplete
plans generated so far, and therefore can go back to them.
Hence removing operators from incomplete plans is only needed for
local search algorithms which do not keep track of the history of the
search process.
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Heuristic search Incomplete plans

Plan search: incomplete plans for progression

For progression, the incomplete plans are prefixes o1, o2, . . . , on of
potential plans.
An incomplete plan is extended by

1. adding an operator after the last operator,
from o1, . . . , on to o1, o2, . . . , on, o for some o ∈ O, or

2. removing one or more of the last operators,
from o1, . . . , on to o1, . . . , oi for some i < n.
This is for local search algorithms only.

o1, o2, . . . , on is a plan if appon(appon−1(· · · appo1(I ) · · · )) |= G .
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Heuristic search Incomplete plans

Plan search: incomplete plans for regression

For regression, the incomplete plans are suffixes on, . . . , o1 of potential
plans.
An incomplete plan is extended by

1. adding an operator in front of the first operator,
from on, . . . , o1 to o, on, . . . , o1 for o ∈ O, or

2. deleting one or more of the first operators,
from on, . . . , o1 to oi , . . . , o1 for some i < n.
This is for local search algorithms only.

on, . . . , o1 is a plan if I |= regron(· · · regro2(regro1(G )) · · · ).

Remark
The above is for the simplest case when formulae are not split. With
splitting the formalization is slightly trickier.
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Heuristic search Incomplete plans

Planning by heuristic search
Forward search

G
I

distance estimatedistance estimate

distance estimate

dis
tan

ce
est

im
ate

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 15th, 2006 6 / 69



Heuristic search Incomplete plans

Planning by heuristic search
Backward search
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Heuristic search Incomplete plans

Planning by heuristic search
Selection of operators based on distance estimates

Select next operator o ∈ O based on the estimated distance (number of
operators) between

1. appo(appon(appon−1(· · · appo1(I ) · · · ))) and G ,
for forward search.

2. I and regro(regron(· · · regro2(regro1(G )) · · · )),
for backward search.
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Heuristic search A∗

Search algorithms: A∗

Search control of A∗

A∗ uses the function f (σ) = g(σ) + h(σ) to guide search:

I g(σ) = cost so far, i. e. number of operators in σ

I h(σ) = estimated remaining cost (distance)

I admissibility: h(σ) must be less than or equal to the actual remaining
cost h∗(σ) (distance), otherwise A∗ is not guaranteed to find an
optimal solution.
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Heuristic search A∗

Search algorithms: A∗

Example
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Heuristic search A∗

Search algorithms: A∗

Definition

Notation for operator sequences

appo1;o2;...;on(s) denotes appon(. . . appo2(appo1(s)) . . .) and ε denotes the
empty sequence for which appε(s) = s.

Algorithm A∗

Forward search with A∗ works as follows.
open := {ε}, closed := ∅
loop:

if open = ∅:
return unsolvable

Choose an element σ ∈ open with the least f (σ).
if appσ(I ) |= G :

return σ
open := open \ {σ}; closed := closed ∪ {σ}
open := open ∪ ({σ; o | o ∈ O} \ closed)
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Heuristic search Local search

Local search: random walk

Random walk
σ := ε
loop:

if appσ(I ) |= G :
return σ

Randomly choose a neighbor σ′ of σ.
σ := σ′

Remark
The algorithm usually does not find any solutions, unless almost every
sequence of actions is a plan.
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Heuristic search Local search

Local search: steepest descent hill-climbing

Hill-climbing

σ := ε
loop:

if appσ(I ) |= G :
return σ

Randomly choose a neighbor σ′ of σ with the least h(σ′).
σ := σ′

Remark
The algorithm gets stuck in local minima if no neighbor σ′ has a better
heuristic value than the current incomplete plan σ.
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Heuristic search Local search

Local search: simulated annealing

Simulated annealing

σ := ε
loop:

if appσ(I ) |= G :
return σ

Randomly choose a neighbor σ′ of σ.
if h(σ′) < h(σ):

σ := σ′

else with probability exp
(
−h(σ′)−h(σ)

T

)
:

σ := σ′

Decrease T . (Different possible strategies!)

The temperature T is initially high and then gradually decreased.
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Heuristic search Local search

Local search: simulated annealing
Illustration

temperature

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 15th, 2006 15 / 69



Heuristic search Deriving heuristics

How to obtain heuristics?

General procedure for obtaining a heuristic

Solve a simplified / less restricted version of the problem.

Example (Route planning for a road network)

The road network is formalized as a weighted graph where the weight of
an edge is the road distance between two locations.
A heuristic is obtained from the Euclidean distance√
|x1 − x2|2 + |y1 − y2|2. It is a lower bound on the road distance between

(x1, y1) and (x2, y2).
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Heuristic search Deriving heuristics

An admissible heuristic for route planning
Example
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Heuristic search Deriving heuristics

Heuristics for deterministic planning
STRIPS

I STRIPS (Fikes & Nilsson, 1971) used the number of state variables
that differ in current state s and a goal state s ′:

|{a ∈ A | s(a) 6= s ′(a)}|.

“The more goal literals an operator makes true, the more useful the
operator is.”

I The above heuristic is not admissible because one operator may
reduce this measure by more than one. Instead,

|{a ∈ A | s(a) 6= s ′(a)}|
n

is admissible when no operator has > n atomic effects.
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Relaxation Positive normal form

Intuition

I To compute heuristics for planning tasks, we consider a relaxed
version of the original problem, where some difficult aspects of the
original problem are ignored.

I This is a general technique for heuristic design:
I Straight-line heuristic (route planning): Ignore the fact that one must

stay on roads.
I Manhattan heuristic (15-puzzle): Ignore the fact that one cannot move

through occupied tiles.

I For general planning problems, we will ignore negative interactions.
Informally, we ignore “bad side effects” of applying operators.
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Relaxation Positive normal form

Intuition

Question: Which operator effects are good, and which are bad?

This is difficult to answer in general, because it depends on context:

I If we want to prevent burglars from breaking into our flat, locking the
entrance door is good.

I If we want to pass through it, locking the entrance door is bad.

We will now consider a reformulation of planning problems that makes the
distinction between good and bad effects obvious.
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Relaxation Positive normal form

Positive normal form

Definition
An operator o = 〈c , e〉 is in positive normal form if it is in normal form, no
negation symbols appear in c , and no negation symbols appear in any
effect condition in e.

A succinct deterministic transition system 〈A, I ,O,G 〉 is in positive normal
form if all operators in O are in positive normal form and no negation
symbols occur in the goal G .

Theorem
For every succinct deterministic transition system, an equivalent succinct
deterministic transition system in positive normal form can be computed in
polynomial time.

Equivalence here means that the represented (non-succinct) deterministic
transition systems are isomorphic.
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Relaxation Positive normal form

Positive normal form: algorithm

Transformation of 〈A, I , O, G 〉 to positive normal form

Convert all operators o ∈ O to normal form.
Convert all conditions to negation normal form (NNF).
while any condition contains a negative literal ¬a:

Let a be a variable which occurs negatively in a condition.
A := A ∪ {â} for some new state variable â
I (â) := 1− I (a)
Replace the effect ¬a by (¬a ∧ â) in all operators o ∈ O.
Replace the effect a by (a ∧ ¬â) in all operators o ∈ O.
Replace ¬a by â in all conditions.

Convert all operators o ∈ O to normal form (again).

Here, all conditions refers to all operator preconditions, operator effect
conditions and the goal.
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Relaxation Positive normal form

Positive normal form: Example

Example

A = {home, uni, lecture, bike, bike-locked}
I = {home 7→ 1, bike 7→ 1, bike-locked 7→ 1,

uni 7→ 0, lecture 7→ 0}
O = {〈home ∧ bike ∧ ¬bike-locked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked〉,
〈bike ∧ ¬bike-locked, bike-locked〉,
〈uni, lecture ∧ ((bike ∧ ¬bike-locked) B ¬bike)〉}

G = lecture ∧ bike
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Relaxation Positive normal form

Positive normal form: Example

Example

A = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ 1, bike 7→ 1, bike-locked 7→ 1,

uni 7→ 0, lecture 7→ 0, bike-unlocked 7→ 0}
O = {〈home ∧ bike ∧ bike-unlocked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked ∧ bike-unlocked〉,
〈bike ∧ bike-unlocked, bike-locked ∧ ¬bike-unlocked〉,
〈uni, lecture ∧ ((bike ∧ bike-unlocked) B ¬bike)〉}

G = lecture ∧ bike
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Relaxation Relaxation

Intuition

In positive normal form, good and bad effects are easy to distinguish:

I Effects that make state variables true are good
(add effects).

I Effects that make state variables false are bad
(delete effects).

Idea for the heuristic: Ignore all delete effects.
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Relaxation Relaxation

Relaxation

Definition
The relaxation o+ of an operator o = 〈c , e〉 in positive normal form is the
operator which is obtained by replacing all negative effects ¬a within e by
the do-nothing effect >.

The relaxation P+ of a succinct deterministic transition system
P = 〈A, I ,O,G 〉 in positive normal form is the succinct deterministic
transition system P+ := 〈A, I , {o+ | o ∈ O},G 〉.
The relaxation of an operator sequence π = o1, . . . , on is the operator
sequence π+ := o1

+, . . . , on
+.
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Relaxation Relaxation

Relaxation: properties

The on-set on(s) of a state s is the set of true state variables in s, i.e.
on(s) = s−1({1}).
A state s ′ dominates another state s iff on(s) ⊆ on(s ′).

Lemma (domination)

Let s and s ′ be valuations of a set of propositional variables and let χ be a
propositional formula which does not contain negation symbols.
If s |= χ and s ′ dominates s, then s ′ |= χ.

Proof by induction over the structure of χ (exercise).
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Relaxation Relaxation

Relaxation: properties

Lemma (relaxation leads to dominated states)

Let s be a state, and let π be an operator sequence which is applicable in
s.
Then π+ is applicable in s and appπ+(s) dominates appπ(s).

Proof.
Induction on the length of π.

Base case: π = ε
Trivial.
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Relaxation Relaxation

Relaxation: properties

Proof continues.
Inductive case: π = o1

+ . . . on+1
+

By the induction hypothesis, o1
+ . . . on

+ is applicable in s, and
t+ = appo1

+...on
+(s) dominates t = appo1...on(s).

Let o := on+1 = 〈c , e〉 and o+ = 〈c , e+〉. By assumption, o is applicable
in t, and thus t |= c . By the domination lemma, we get t+ |= c and hence
o+ is applicable in t+. Therefore, π+ is applicable in s.

Because o is in positive normal form, all effect conditions satisfied by t are
also satisfied by t+ (by the domination lemma). Therefore,
([e]t ∩ A) ⊆ [e+]t+ (where A is the set of state variables, or positive
literals).

We get
on(appπ(s)) ⊆ on(t) ∪ ([e]t ∩ A) ⊆ on(t+) ∪ [e+]t+ = on(appπ+(s)), and
thus appπ+(s) dominates appπ(s).
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Relaxation Relaxation

Relaxation: properties

Theorem (solution preservation)

Let π be a plan for a succinct deterministic transition system T in positive
normal form.
Then π+ is a plan for T +.

Proof.
Let T = 〈A, I ,O,G 〉 and thus T + = 〈A, I ,O+,G 〉.
Since π is applicable in I , π+ is also applicable in I (by the previous
lemma).

Also by the previous lemma, the resulting state s+ := appπ+(I ) dominates
the state s := appπ(I ). Because s |= G and G is negation-free, we get
s+ |= G by the domination lemma.

Thus π+ is indeed a plan for T +.
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Relaxation Relaxation

Relaxation: properties

Consequences of the solution preservation theorem:

I Relaxations are never harder to solve than the original problem.

I Optimal solutions to relaxations are never longer than optimal
solutions to the original problem.

In fact, relaxations are much easier to solve than the original problems,
which makes them suitable as the basis for heuristic functions.

We will now consider the problem of solving relaxations.
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Relaxation Solving relaxations

Solving relaxations: properties

Lemma (dominating states are better)

Let s be a state, let s ′ be a state that dominates s, and let π+ be a
relaxed operator sequence which is applicable in s.
Then π+ is applicable in s ′ and appπ+(s ′) dominates appπ+(s).

Proof.
Induction on the length of π+.

Base case: π+ = ε
The empty plan ε is applicable in s ′.
Moreover, appπ+(s ′) = appε(s

′) = s ′ and appπ+(s) = appε(s) = s, and s ′

dominates s.
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Relaxation Solving relaxations

Solving relaxations: properties

Proof continues.
Inductive case: π+ = o1

+ . . . on+1
+

By the induction hypothesis, o1
+ . . . on

+ is applicable in s ′, and
t ′ = appo1

+...on
+(s ′) dominates t = appo1

+...on
+(s).

Let o+ := on+1
+ = 〈c , e〉. By assumption, o+ is applicable in t, and thus

t |= c . By the domination lemma, we get t ′ |= c and hence o+ is
applicable in t ′. Therefore, π+ is applicable in s ′.

Because o+ is in positive normal form, all effect conditions which are
satisfied in t are also satisfied in t ′ (by the domination lemma). Therefore,
[e]t ⊆ [e]t′ .

Because all atomic effects in o+ are positive, [e]t and [e]t′ are sets of
positive literals. We thus get
on(appπ+(s)) = on(t) ∪ [e]t ⊆ on(t ′) ∪ [e]t′ = on(appπ+(s ′)), and thus
appπ+(s ′) dominates appπ+(s).
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Relaxation Solving relaxations

Solving relaxations: properties

Consequences of the lemma:

I If we can find a solution starting from a state s, the same solution
can be used when starting from a dominating state s ′.

I Thus, making a transition to a dominating state never hurts.

Lemma (monotonicity)

Let o+ be a relaxed operator and let s be a state in which o+ is applicable.
Then appo+(s) dominates s.

Proof.
Since relaxed operators only have positive effects, we have
on(s) ⊆ on(s) ∪ [e]o+ = on(appo+(s)).
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Relaxation Solving relaxations

Solving relaxations: algorithm

I Together, the two lemmas imply that making a transition never hurts.

I This suggests the following algorithm.

Greedy planning algorithm for 〈A, I , O+, G 〉
s := I
π+ := ε
loop:

if s |= G :
return π+

else if there is an operator o+ ∈ O+ with appo+(s) 6= s:
Append such an operator o+ to π+.
s := appo+(s)

else:
return unsolvable
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Relaxation Solving relaxations

Solving relaxations: algorithm

The algorithm is sound:

I If it returns a plan, this is indeed a correct solution.

I If it returns “unsolvable”, the task is indeed unsolvable (by the two
lemmas).

What about completeness (termination) and runtime?

I Each iteration of the loop adds at least one atom to on(s).

I This guarantees termination after at most |A| iterations.

I Thus, the algorithm can clearly run in polynomial time.
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Relaxation Solving relaxations

Solving relaxations: optimality

One could use the solution algorithm as a heuristic estimator in a
progression search for general planning tasks as follows:

I In a search node that corresponds to state s, solve the relaxation of
the planning task with s as the initial state.

I Use the length of the relaxed plan as a heuristic estimate.

Is this an admissible heuristic?

I Yes if the relaxed plans are optimal (because of the solution
preservation theorem).

I However, usually they are not, because our greedy planning algorithm
is very poor.
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Relaxation Solving relaxations

Solving relaxations: optimality

So how do we use relaxations for heuristic planning?

Different possibilities:

I Implement an optimal planner for relaxed planning tasks and use its
solution lengths as an estimate (h+ heuristic).
However, optimal planning for relaxed tasks is NP-hard.

I Do not actually solve the relaxed planning task, but compute an
estimate of its difficulty in a different way (hmax heuristic, hadd

heuristic).

I Compute a solution for relaxed planning tasks which is not necessarily
optimal, but “reasonable” (hFF heuristic).
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Deriving Heuristic Estimates from Relaxations Parallel plans

Intutition

Why does the greedy algorithm compute low-quality plans?

I It may apply many operators which are not goal-directed.

How can this problem be fixed?

I Reaching the goal of a relaxed planning task is most easily achieved
with forward search.

I Analyzing relevance of an operator for achieving a goal (or subgoal) is
most easily achieved with backward search.

Idea: Use a forward-backward algorithm that first finds a path to the goal
greedily, then prunes it to a relevant subplan.
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Deriving Heuristic Estimates from Relaxations Parallel plans

Parallel plans

How do we decide which operators to apply in the forward direction?

I We avoid such a decision by applying all applicable operators
simultaneously.

Definition
A plan step is a set of operators σ = {o1, . . . , on}.

A plan step σ = {o1, . . . , on} with oi = 〈ci , ei 〉 of a relaxed planning task
is applicable in a state s iff each operator oi ∈ σ is applicable in s.

The result of applying σ to s, in symbols appσ(s), is defined as the state
s ′ with on(s ′) = on(s) ∪

⋃n
i=1[ei ]s .
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Deriving Heuristic Estimates from Relaxations Parallel plans

Applying plan steps: Examples

In all cases, s = {a 7→ 0, b 7→ 0, c 7→ 1, d 7→ 0}.
I σ = {〈c , a〉, 〈>, b〉}
I σ = {〈c , a〉, 〈c , a B b〉}
I σ = {〈c , a ∧ b〉, 〈a, b B d〉}
I σ = {〈c , a ∧ (b B d)〉, 〈c , b ∧ (a B d)〉}
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Deriving Heuristic Estimates from Relaxations Parallel plans

Serializations

Applying a plan step to a state is related to applying the actions in the
step to a state in sequence.

Definition
A serialization of plan step σ = {o1, . . . , on} is a sequence oπ(1), . . . , oπ(n)

where π is a permutation of {1, . . . , n}.

Lemma
If σ is a plan step applicable in a state s of a relaxed planning task, then
each serialization o ′1, . . . , o

′
n of σ is applicable in s and appo′1,...,o

′
n
(s)

dominates appσ(s).

I Does equality hold for all serializations?

I Does equality hold for some serialization?

I What if there are no conditional effects?

I What if the planning task is not relaxed?
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Deriving Heuristic Estimates from Relaxations Parallel plans

Parallel plans

Definition
A parallel plan for a relaxed planning task 〈A, I ,O+,G 〉 is a sequence of
plan steps σ1, . . . , σn of operators in O+ with:

I s0 := I

I For i = 1, . . . , n, step σi is applicable in si−1

and si := appσi (si−1).

I sn |= G

Remark: By ordering the operators within each single step arbitrarily, we
obtain a (regular, non-parallel) plan.
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Deriving Heuristic Estimates from Relaxations Parallel plans

Forward states and operator sets

Idea: In the forward phase of the heuristic computation, we first apply the
plan step consisting of all initially applicable operators, then the plan step
consisting of all operators applicable in the resulting state, etc.

Definition
The 0-th parallel forward state, in symbols sF

0 , of a relaxed planning task
〈A, I ,O+,G 〉 is defined as sF

0 := s.
For n ∈ N1, the n-th forward plan step, in symbols σF

n , is the set of
operators applicable in sF

n−1, and the n-th parallel forward state, in
symbols sF

n , is defined as sF
n := appσF

n
(sF

n−1).

For n ∈ N0, the n-th parallel forward set, in symbols SF
n , is defined as

SF
n := on(sF

n ).
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Deriving Heuristic Estimates from Relaxations Parallel plans

Parallel forward distances

Definition
The parallel forward distance of a relaxed planning task 〈A, I ,O+,G 〉 is
the lowest number n ∈ N0 such that sF

n |= G , or ∞ if no parallel forward
state satisfies G .

Remark: The parallel forward distance can be computed in polynomial
time. (How?)

Definition
The hmax estimate of a state s in a planning task P = 〈A, I ,O,G 〉 in
positive normal form is the parallel forward distance of the relaxed
planning task 〈A, s,O+,G 〉.
Remark: The hmax estimate is admissible. (Why?)
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Deriving Heuristic Estimates from Relaxations Parallel plans

So far, so good. . .

I We have seen how systematic computation of forward states leads to
an admissible estimate for heuristic planning.

I However, this estimate is very coarse.

I To improve it, we need to include backward propagation of
information.

For this purpose, we use a data structure called a relaxed planning graph.
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Relaxed planning graphs: running example

As a running example, consider the relaxed planning task
〈A, I , {o1, o2, o3, o4},G 〉 with

A = {a, b, c , d , e, f , g , h}
I = {a 7→ 1, b 7→ 0, c 7→ 1, d 7→ 1,

e 7→ 0, f 7→ 0, g 7→ 0, h 7→ 0}
o1 = 〈b ∨ (c ∧ d), b ∧ ((a ∧ b) B e)〉
o2 = 〈>, f 〉
o3 = 〈f , g〉
o4 = 〈f , h〉
G = e ∧ (g ∧ h)
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Relaxed planning graphs

Relaxed planning graphs encode

I which propositions can be made true in a given number of plan steps,

I and how they can be made true.

They consist of four kinds of components:

I Proposition nodes represent the truth value of propositions after
applying a certain number of plan steps.

I Idle arcs represent state variables that do not change their value when
applying a plan step.

I Action subgraphs represent the application of a given action in a
given plan step.

I Goal subgraphs represent the truth value of the goal condition after
applying a certain number of plan steps.
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Relaxed planning graph: proposition layers

Let P = 〈A, I ,O+,G 〉 be a relaxed planning task, let N ∈ N0.

For each i ∈ {0, . . . ,N}, the relaxed planning graph of depth N contains
one proposition layer which consists of:

I a proposition node ai for each state variable a ∈ A.
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Relaxed planning graph: proposition layers
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Relaxed planning graph: idle arcs

For each proposition node ai with i ∈ {1, . . . ,N}, the relaxed planning
graph of depth N contains an arc from ai to ai−1 (idle arcs).

Intuition: If a state variable is true in step i , one of the possible reasons is
that it was already previously true.
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Relaxed planning graph: idle arcs
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Relaxed planning graph: action subgraphs

For each i ∈ {1, . . . ,N} and each operator o = 〈c , e〉 ∈ O, the relaxed
planning graph of depth N contains a subgraph called an action subgraph
with the following parts:

I one formula node ni
χ for each formula χ which is a subformula of c or

of some effect condition in e:
I If χ = a for some atom a, ni

χ is the proposition node ai−1.
I If χ = >, ni

χ is a new node labeled (>).
I If χ = ⊥, ni

χ is a new node labeled (⊥).
I If χ = (φ ∧ ψ), ni

χ is a new node labeled (∧)

with outgoing arcs to ni
φ and ni

ψ.
I If χ = (φ ∨ ψ), ni

χ is a new node labeled (∨)

with outgoing arcs to ni
φ and ni

ψ.
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Relaxed planning graph: action subgraphs

For each i ∈ {1, . . . ,N} and each operator o = 〈c , e〉 ∈ O, the relaxed
planning graph of depth N contains a subgraph called an action subgraph
with the following parts:

I an action node o i with an outgoing arc to the precondition formula
node ni

c

I for each add effect a in e which does not occur within a conditional
effect, an arc from proposition node ai+1 to action node o i .

I for each conditional effect (c ′ B a) in e, a node ni
c ′Ba labeled (B)

with an incoming arc from proposition node ai+1 and outgoing arcs to
action node o i and formula node ni

c ′ .
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Relaxed planning graph: action subgraphs

Action subgraph for o1 = 〈b ∨ (c ∧ d), b ∧ ((a ∧ b) B e)〉
for layer i = 0.
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Relaxed planning graph: goal subgraphs

For each i ∈ {0, . . . ,N}, the relaxed planning graph of depth N contains a
subgraph called a goal subgraph with the following parts:

I one formula node ni
χ for each formula χ which is a subformula of G :

I If χ = a for some atom a, ni
χ is the proposition node ai .

I If χ = >, ni
χ is a new node labeled (>).

I If χ = ⊥, ni
χ is a new node labeled (⊥).

I If χ = (φ ∧ ψ), ni
χ is a new node labeled (∧)

with outgoing arcs to ni
φ and ni

ψ.
I If χ = (φ ∨ ψ), ni

χ is a new node labeled (∨)

with outgoing arcs to ni
φ and ni

ψ.

The node ni
G is called a goal node.
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Relaxed planning graph: goal subgraphs

Goal subgraph for G = e ∧ (g ∧ h)
and layer i = 2:
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Relaxed planning graph: complete example
(depth 2)
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Boolean circuits

Definition
A Boolean circuit is a directed acyclic graph G = (V ,E ), where the nodes
V are called gates. Each gate v ∈ V has a type
type(v) ∈ {¬,∧,∨,>,⊥, } ∪ {a, b, c , . . .}. The gates with
type(v) ∈ {>,⊥, a, b, c , . . .} have in-degree zero, the gates with
type(v) ∈ {¬} have in-degree one, and the gates with type(v) ∈ {∨,∧}
have in-degree two. The gates with no outgoing edge are called output
gates. The gates with no incoming edges are called input gates.

Definition
Given a value assignment to the input gates, the circuit computes the
value of gates in the obvious way.

What is the relation between circuits and relaxed planning graphs?
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Relaxed planning graphs and Boolean circuits

Observations:
I Relaxed planning graphs can be understood as special (monotone)

Boolean circuits, where
I the direction of the arrows has to be inverted
I proposition nodes in the 0-th layer are ⊥ gates or > gates, depending

on their initial value.
I proposition nodes outside the 0-th layer are ∨ gates
I action nodes are ∧ gates (or ∨ gates)
I B-nodes are ∧ gates

I A parallel plan solves the planning task with n steps iff the value of
the goal node on layer n has the value 1.

I The plan consists of all action nodes that have a value of 1 and that
are “on a path to the goal node”, which has a value of 1.
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Computing gate values
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Heuristic estimate hmax

I Using relaxed planning graphs, how can we compute the hmax

heuristic?
I Solution:

I Create relaxed planning graph of depth n, n being the number of state
variables.

I Compute gate values based on initial state values.
I The hmax value is the lowest layer where the goal gate evaluates to 1!
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Heuristic estimate hadd

I While hmax is admissible, it is not very informative (it does not
distinguish between different states).

I Estimate how hard it is to make a proposition true.
I Estimate costs under the assumption that making a proposition true

is independent from making any other proposition true (i.e., relaxed
planning graph is a tree).

I Any proposition already true in the initial state has cost 0.
I Conjunctions (if true) have the sum of the costs of the conjunctions.
I Disjunctions (if true) have the minimum of the costs of the disjuncts.
I Actions (if executable) add one cost unit.

I This may, of course, over-estimate the real costs!
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Computing hadd
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Heuristic estimate hFF

I hadd over-estimates because of the independence assumption.

I Positive interactions are ignored.
I Idea: Prune the sub-graph so that it non-redundantly makes the goal

node true.
I Start at the first true goal node.
I Select both predecessors of a conjunction gate.
I Select one true predecessor of disjucntion gate.

I Use the number of actions in corresponding parallel plan as the
heuristic estimate.

I Of course, one would like to have a minimal sub-graph. However
determining the minimal sub-graph is as hard as finding a minimal
relaxed plan, i.e., NP-hard!
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Selection of an hFF sub-graph

a0

b0

c0

d0

e0

f 0

g0

h0

∧

∧

∨

∧

>

∧

o1

o2

o3

o4

B

a1

b1

c1

d1

e1

f 1

g1

h1

∧

∧

∨

∧

>

∧

o1

o2

o3

o4

B

a2

b2

c2

d2

e2

f 2

g2

h2

∧

∧

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 15th, 2006 66 / 69



Deriving Heuristic Estimates from Relaxations Shortest plans

Why is it hard to find a shortest relaxed plan?

The problem is hard, even if our actions do not have preconditions (and
are all executed in parallel in one step)!

Problem
The set cover problem ist the following problem:

I Given a set M, a collection of subsets C = {C1, . . . ,Cn}, with
Ci ⊆ M and a natural number k.

I Does there exist a set cover of size k, i.e., a subset of
S = {S1, . . . ,Sj} ⊆ C with S1 ∪ . . . ∪ Sj = M and j ≤ k?

Theorem
The set cover problem is NP-complete.
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The Reduction

I An instance of the set cover problem 〈M,C , k〉 is given.
I Construct a relaxed planning task 〈A, I ,O+,G 〉:

I A = M,
I G =

∧
a∈A a,

I I = { a 7→ 0 | a ∈ A },
I O+ = { 〈>,

∧
a∈Ci

a〉 | Ci ∈ C }
I Now clearly: There exists a plan containing at most k operators iff

there exists a set cover of size k

I This implies that finding a shortest plan is NP-hard.
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Putting hFF to work: FF

The FF planning system works roughly as follows:

I It does enforced hill-climbing using hFF. This is hill-climbing extended
by breadth-first search in cases where there are no states with a
better heuristic value.

I In addition, FF uses helpful action pruning, i.e., it considers only those
actions that are used in the first level of the relaxed planning graph.

I If a hill-climbing step with helpful action pruning fails, then the
fall-back is to use all possible actions.

I If no plan is found, FF restarts the search as a greedy best-first search
with hFF as the heuristic.
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