Al Planning

M. Helmert,

B. Nebel

Principles of Al Planning

Planning by state-space search

Malte Helmert Bernhard Nebel

Albert-Ludwigs-Universitat Freiburg

November 8th, 2006

Normal form for effects

Al Planning

M. Helmert,
B. Nebel
@ Similarly to normal forms in propositional logic (DNF,

CNF, NNF, ...) we can define a normal form for effects.

Normal form

Normal form for effects

Al Planning

M. Helmert,

B. Nebel
@ Similarly to normal forms in propositional logic (DNF,

CNF, NNF, ...) we can define a normal form for effects.

Normal form

@ Nesting of conditionals, as in a > (b > ¢), can be
eliminated.

© Effects e within a conditional effect ¢ > e can be
restricted to atomic effects (a or —a).

Normal form for effects

Al Planning

M. Helmert,

B. Nebel
@ Similarly to normal forms in propositional logic (DNF,
CNF, NNF, ...) we can define a normal form for effects.

Normal form

@ Nesting of conditionals, as in a > (b > ¢), can be
eliminated.

© Effects e within a conditional effect ¢ > e can be
restricted to atomic effects (a or —a).

@ Only a small polynomial increase in size by transformation
to normal form.
Compare: transformation to CNF or DNF may increase
formula size exponentially.

Equivalences on effects

Al Planning

M. Helmert,

B. Nebel

Normal form

c>(e1N---Nep) = (c>e)N---AN(ec>ey)

Equivalences on effects

Al Planning

M. Helmert,

B. Nebel

Normal form

c>(e1N---Nep) = (c>e)AN---AN(e>e,) (1)
caa>(ce>e) = (ahe)>e

Equivalences on effects

Al Planning

M. Helmert,

B. Nebel

Normal form

c>(e1N---Nep) = (c>e)AN---AN(e>e,) (1)
caa>(ce>e) = (ahe)>e (2)
(1e)A(pa>e) = (aVe)>e

Equivalences on effects

Al Planning

M. Helmert,

B. Nebel

Normal form

c>e)N--NA(e>ey) (1)

()

aaVe)>e (3)

)

-

\%

—~

Q

N

\%

3N
— — — ~—
(e
QA o~~~

)

[aly

>

Q

N

~

\%

Cb

Equivalences on effects

Al Planning

M. Helmert,

B. Nebel

Normal form

c>(e1N---Nep) = (c>e)AN---AN(e>e,) (1)
caa>(ce>e) = (ahe)>e (2)
(a>e)A(ca>e) = (aVe)>e (3)
eN(c>e) = e (4)

e = Tp>e

Equivalences on effects

Al Planning

M. Helmert,

B. Nebel

Normal form

c>(e1N---Nep) = (c>e)AN---AN(e>e,) (1)
caa>(ce>e) = (ahe)>e (2)
(a>e)A(ca>e) = (aVe)>e (3)
eN(c>e) = e (4)

e = Tp>e (5)

Equivalences on effects

Al Planning

M. Helmert,

B. Nebel

Normal form

c>(e1N---Nep) = (c>e)AN---AN(e>e,) (1)
caa>(ce>e) = (ahe)>e (2)
(a>e)A(ca>e) = (aVe)>e (3)
eN(c>e) = e (4)

e = Tp>e (5)

e = TAe (6)

Equivalences on effects

Al Planning

M. Helmert,
B. Nebel

Normal form

c>(e1N---Nep) = (c>e)AN---AN(e>e,) (1)
caa>(ce>e) = (ahe)>e (2)
(1e)A(pa>e) = (aVe)>e (3)
eN(c>e) = e (4)

e = Tre (5)

e = TAe (6)

et Nes = esAeg (7)
(e1Nex)Nes = er A(ea Aes) (8)

Normal form for operators and effects

Al Planning

M. Helmert,

B. Nebel

Deﬁnition Normal form

An operator (c, e) is in normal form if for all occurrences of
c > € in e the effect €' is either a or —a for some a € A, and
there is at most one occurrence of any atomic effect in e.

For every operator there is an equivalent one in normal form. \

Proof is constructive: we can transform any operator into
normal form by using the equivalences from the previous slide.

Normal form for effects

Example

Al Planning
M. Helmert,
B. Nebel
(a>(bA
(c>(=dAe))))A
(—\b > 6)

transformed to normal form is

(a>d) A
((aNec)>—d) A
((=bV (anc))>e)

STRIPS operators

Al Planning
Def|n|t|on M. Helmert,
B. Nebel
An operator (c, e) is a STRIPS operator if
@ cis a conjunction of literals, and STRIPS

@ e is a conjunction of atomic effects.

Hence every STRIPS operator is of the form
(g N ANlpy BN AL

where [; are literals and l; are atomic effects.

STanford Research Institute Planning System, Fikes & Nilsson,
1971.

Planning by state-space search

Al Planning
M. Helmert,
. . . B. Nebel
There are many alternative ways of doing planning by
state-space search.
@ different ways of expressing planning as a search problem: SnCE

@ search direction: forward, backward
@ representation of search space: states, sets of states
@ different search algorithms: depth-first, breadth-first,
informed (heuristic) search (systematic: Ax, IDAx, ..
local: hill-climbing, simulated annealing, ...), ...
© different ways of controlling search:

@ heuristics for heuristic search algorithms
@ pruning techniques: invariants, symmetry elimination, ...

Planning by forward search

with depth-first search

Al Planning

M. Helmert,

B. Nebel

Ideas

Planning by forward search

with depth-first search

Al Planning
M. Helmert,
B. Nebel
I . Ideas
[]
® (()
L--"TTT= ~
J ¢ “ ¢) ¢ J

Planning by forward search

with depth-first search

Al Planning
M. Helmert,
B. Nebel
I . Ideas
[]
® (()
L--"TTT= ~
J “ ¢) ¢ J

Planning by forward search

with depth-first search

Al Planning
M. Helmert,
B. Nebel
I . Ideas
[]
® (()
g > S .
N ¢) ¢ J

Planning by forward search

with depth-first search

Al Planning
M. Helmert,
B. Nebel
I . Ideas
[]
® (()
g > S .
N ¢) ¢ J

Planning by forward search

with depth-first search

Al Planning
M. Helmert,
B. Nebel
I . Ideas
[]
¢ o
L--"TTT= ~
J ¢ “ ¢) ¢ J

Planning by forward search

with depth-first search

Al Planning
M. Helmert,
B. Nebel
I . Ideas
[]
¢ o
L--"TTT= ~
J “ ¢) ¢ J

Planning by forward search

with depth-first search

Al Planning
M. Helmert,
B. Nebel
I . Ideas
[]
¢ o
g > S .
N ¢) ¢ J

Planning by forward search

with depth-first search

Al Planning
M. Helmert,
B. Nebel
I . Ideas
[]
¢ o
g > S .
N ¢) ¢ J

Planning by forward search

with depth-first search

Al Planning
M. Helmert,
B. Nebel
I . Ideas
[]
¢ o
. "~~~ - ~
J ¢ “ ¢) ¢ J

Planning by backward search

with depth-first search, one state at a time

Al Planning

M. Helmert,

B. Nebel

Ideas

Planning by backward search

with depth-first search, one state at a time

Al Planning

M. Helmert,

B. Nebel

I Ideas

Planning by backward search

with depth-first search, one state at a time

Al Planning

M. Helmert,

B. Nebel

I Ideas

Planning by backward search

with depth-first search, one state at a time

Al Planning

M. Helmert,

B. Nebel

I Ideas

Planning by backward search

with depth-first search, one state at a time

Al Planning

M. Helmert,

B. Nebel

Ideas

Planning by backward search

with depth-first search, one state at a time

Al Planning

M. Helmert,

B. Nebel

Ideas

Planning by backward search

with depth-first search, one state at a time

Al Planning

M. Helmert,

B. Nebel

Ideas

Planning by backward search

with depth-first search, for state sets (represented as formulae)

Al Planning

M. Helmert,

B. Nebel

Ideas

Planning by backward search

with depth-first search, for state sets (represented as formulae)

Al Planning

G M. Helmert,

B. Nebel

I Ideas

Planning by backward search

with depth-first search, for state sets (represented as formulae)

Al Planning
¢1 — I’egr_)(G) ¢1 —>G M. Helmert,
B. Nebel
I Ideas

Planning by backward search

with depth-first search, for state sets (represented as formulae)

Al Planning
¢1 - regr—)(G) ¢2 _>¢1 —>G M ||e|rme:|t,
o = regr—. (1) B. Nebel

Ideas

Planning by backward search

with depth-first search, for state sets (represented as formulae)

Al Planning

o1 = regr—.(Q) b3 — by — b —> o
¢ = regr—.(¢1) B. Nebel
¢

Ideas

Progression

Al Planning

M. Helmert,

B. Nebel

@ Progression means computing the successor state app,(s)
of s with respect to o.

@ Used in forward search: from the initial state toward the
goal states.

Progression

@ Very easy and efficient to implement.

Regression

Al Planning
M. Helmert,
. . . . B. Nebel
@ Regression is computing the possible predecessor states of

a set of states.

@ The formula regr,(¢) represents the states from which a
state represented by ¢ is reached by operator o.

Regression

@ Used in backward search: from the goal states toward the
initial state.

@ Regression is powerful because it allows handling sets of
states (progression: only one state at a time.)

e Handling state sets (formulae) is more complicated than
handling states: many questions about regression are
NP-hard.

Regression for STRIPS operators

Al Planning

M. Helmert,

B. Nebel

Regression for STRIPS operators is very simple.

@ Goals are conjunctions of literals I3 A --- Al,.
. Regression
o First step: Choose an operator that makes some of
l1,...,1, true and makes none of them false.

@ Second step: Form a new goal by removing the fulfilled
goal literals and adding the preconditions of the operator.

Regression for STRIPS operators

Definition

The STRIPS-regression regrs'(¢) of ¢ =1 A -+ A1}l with
respect to

o= {1 A= Nlp, IyN---NI)

is the conjunction of literals

AN,) Ul D))

provided that {1,..., 0L, } N {l},..., 1/} = 0.

Al Planning

M. Helmert,

B. Nebel

Regression

Regression for STRIPS operators

Example

Al Planning

M. Helmert,

B. Nebel

NOTE: Predecessor states are in general not unique.
This picture is just for illustration purposes.

Regression

01 = (Hon® A Hclr, —Hon® A HonT A Mclr)
02 = (MonM A Miclr A Hclr, —Hclr A —Monl A Honl A Hclr)
o3 = (MonT A Miclr A Biclr, ~Mclr A —MonT A BMonM)

G =Monl A Honl

Regression for STRIPS operators

Example

Al Planning

M. Helmert,

B. Nebel

Regression

G =Honl A Honl

Regression for STRIPS operators

Example

Al Planning

M. Helmert,

B. Nebel

03

Regression

03 =(A A , A A Honi)

G =Monl A

Regression for STRIPS operators

Example

Al Planning

M. Helmert,

B. Nebel

03

Regression

03 = (lonT A Mclr A Mclr, A A)

G= A Honll

Regression for STRIPS operators

Example

Al Planning

M. Helmert,

B. Nebel

-

Regression

03 = (lonT A Mclr A Mclr, A A)

G= A HonH
¢1 = regril"(G) = MonM A HonT A Mclr A Bclr

Regression for STRIPS operators

Example

Al Planning

M. Helmert,

B. Nebel

-

Regression

¢1 = regril"(G) = MonM A MonT A Mclr A Bclr

Regression for STRIPS operators

Example

Al Planning

M. Helmert,

B. Nebel

-

Regression

02 = (A A , A A Honll A Mclr)

¢1 = regrsl" (G) = MonM A A Mclr A

Regression for STRIPS operators

Example

Al Planning

M. Helmert,

B. Nebel

-

Regression

02 = (Monl A Miclr A Hclr, A A A)

p1=regri"(G) = A HonT A A Mclr

Regression for STRIPS operators

Example

Al Planning

M. Helmert,

B. Nebel

S

Regression

02 = (Monl A Miclr A Hclr, A A A)

p1=regri"(G) = A HonT A A Mclr
¢2 = regril"(¢1) = MonT A Miclr A MonM A Mclr

Regression for STRIPS operators

Example

Al Planning

M. Helmert,

B. Nebel

Regression

¢2 = regril"(¢1) = MonT A Miclr A MonM A Mclr

Regression for STRIPS operators

Example

Al Planning

M. Helmert,

B. Nebel

Regression

o1 = A , A A Mclr)

¢2 = regril(¢1) = A Mclr A A

Regression for STRIPS operators

Example

Al Planning

M. Helmert,
B. Nebel
01 ﬂ

Regression

o1 = (lon® N Hclr, A A)

¢2 = regril"(¢1) = MonT A A Honl A Hclr

Regression for STRIPS operators

Example

Al Planning

M. Helmert,
B. Nebel
01 ﬂ

Regression

o1 = (lon® N Hclr, A A)

¢2 = regril"(¢1) = MonT A A Honl A Hclr
¢3=regrl"(¢o) = MonT A MonM A Hclr A HonM

Regression for STRIPS operators

Example

Al Planning

M. Helmert,

B. Nebel

Regression

¢3=regrl"(¢o) = MonT A MonM A Hiclr A HonM

Regression for general operators

Al Planning
M. Helmert,
B. Nebel
e With disjunction and conditional effects, things become
more tricky. How to regress AV (B A C') with respect to
(Q,D > B)?
@ The story about goals and subgoals and fulfilling subgoals, Regreetan

as in the STRIPS case, is no longer useful.

Regression for general operators

Al Planning
M. Helmert,
B. Nebel
e With disjunction and conditional effects, things become
more tricky. How to regress AV (B A C') with respect to
(Q,D > B)?
@ The story about goals and subgoals and fulfilling subgoals, Regreetan

as in the STRIPS case, is no longer useful.
@ We present a general method for doing regression for any
formula and any operator.

@ Now we extensively use the idea of representing sets of
states as formulae.

Precondition for effect [to take place: EPG(e)

Definition

Al Planning

M. Helmert,
B. Nebel

The condition EPC;(e) for literal [to become true under effect
e is defined as follows.

Regression

EPG(l) = T
EPC(l') = L whenl#1 (for literals ")
EPCZ() = L1
EPCl(el SAN en) = EPCl(el) VeV EPCl(en)
EPCl(c >e) = EPG(e)Ac

Precondition for effect [to take place: EPG(e)

Example

Al Planning
M. Helmert,
B. Nebel
Example
Regression

EPCi(bAc) = Llvli=1

Precondition for effect [to take place: EPG(e)

Example

Al Planning

M. Helmert,

B. Nebel

EPCi(bAc) = Llvli=1
EPCy(a N (b1> a)) TV(TAL)=T

Regression

Precondition for effect [to take place: EPG(e)

Example

Al Planning

M. Helmert,

B. Nebel

EPCi(bAc) = Llvli=1
EPCi(an(br>a)) = TV(TAL)=T
EPC,((c>a)A(b>a)) = (TAc)V(TAb)=cVb

Precondition for effect [to take place: EPG(e)

Connection to [e]s

Lemma (A)

Let s be a state, | a literal and e an effect. Thenl € [e]s if and
only if s = EPC(e).

Induction on the structure of the effect e.

A\

Al Planning

M. Helmert,
B. Nebel

Regression

Precondition for effect [to take place: EPG(e)

Connection to [e]s

Lemma (A)

Let s be a state, | a literal and e an effect. Thenl € [e]s if and
only if s = EPC(e).

| A\

Proof.

Induction on the structure of the effect e.

Base case 1, e = T: By definition of [T]s; we have [& [T]s =0
and by definition of EPC(T) we have s [~ EPG(T) = L:

Both sides of the equivalence are false.

A\

Al Planning

M. Helmert,
B. Nebel

Regression

Precondition for effect [to take place: EPG(e)

Connection to [e]s

Lemma (A)

Let s be a state, | a literal and e an effect. Thenl € [e]s if and
only if s = EPC(e).

| A\

Proof.

Induction on the structure of the effect e.

Base case 1, e = T: By definition of [T]s; we have [& [T]s =0
and by definition of EPC(T) we have s [~ EPG(T) = L:

Both sides of the equivalence are false.

Base case 2, e = 1: [€ [I]s = {l} by definition, and

s = EPG(l) = T by definition. Both sides are true.

A\

Al Planning

M. Helmert,
B. Nebel

Regression

Precondition for effect [to take place: EPG(e)

Connection to [e]s

Al Planning

Lem ma (A) M. Helmert,
B. Nebel

Let s be a state, | a literal and e an effect. Thenl € [e]s if and
only if s = EPC(e).

| A

Proof.

Induction on the structure of the effect e.

Base case 1, e = T: By definition of [T]s; we have [& [T]s =0
and by definition of EPC(T) we have s [~ EPG(T) = L:

Both sides of the equivalence are false.

Base case 2, e = 1: [€ [I]s = {l} by definition, and

s = EPG(l) = T by definition. Both sides are true.

Base case 3, e = I’ for some literal I" £ 1: | & [I']s = {lI'} by
definition, and s = EPC(I') = L by definition. Both sides are
false.

Regression

A\

Precondition for effect [to take place: EPG(e)

Connection to [e]s

Al Planning

. M. Helmert,
proof continues. . . B. Nebel

Inductive case 1, e = e1 A --- Aey:
[€ e]siff L € [er]s U+ - Ulen]s (

Regression

Precondition for effect [to take place: EPG(e)

Connection to [e]s

Al Planning

. M. Helmert,
proof continues. . . B. Nebel

Inductive case 1, e = e1 A --- Aey:
[€ e]siff L € [er]s U+ - Ulen]s (

iff s = EPCy(e') for some €’ € {e1,...,en} (IH)

Regression

Precondition for effect [to take place: EPG(e)

Connection to [e]s

Al Planning

. M. Helmert,
proof continues. . . B. Nebel

Inductive case 1, e = e1 A --- Aey:
[€ e]siff L € [er]s U+ - Ulen]s (

iff s = EPCy(e') for some €’ € {e1,...,en} (IH)
iff s = EPCy(e1) V - - V EPGy(en)

Regression

Precondition for effect [to take place: EPG(e)

Connection to [e]s

Al Planning

. M. Helmert,
proof continues. . . B. Nebel

Inductive case 1, e = e1 A --- Aey:
L€ [e]siff L € [er]s U---Ulen]s (Def [ex A -+ Aen]s)
iff [€ [€/]s for some €’ € {e1,...,e,}
iff s = EPCy(e') for some €’ € {e1,...,en} (IH)
iff s = EPC(e1) V - - - V EPCy(en)
iff s = EPGi(e1 A -+ N ep). (Def EPC)

Regression

Precondition for effect [to take place: EPG(e)

Connection to [e]s

proof continues. . .

Inductive case 1, e = e1 A --- Aey:
L€ [e]siff L € [er]s U---Ulen]s (Def [ex A -+ Aen]s)
iff [€ [€/]s for some €’ € {e1,...,e,}
iff s = EPCy(e') for some €’ € {e1,...,en} (IH)
iff s = EPCy(e1) V - - - V EPGy(en)
iff s = EPGi(e1 A -+ N ep). (Def EPC)
Inductive case 2, e = ¢ > ¢
le[eresiffl € [€]s and s = ¢ (

Al Planning

M. Helmert,
B. Nebel

Regression

Precondition for effect [to take place: EPG(e)

Connection to [e]s

Al Planning

. M. Helmert,
proof continues. . . B. Nebel

Inductive case 1, e = e1 A --- Aey:
L€ [e]siff L € [er]s U---Ulen]s (Def [ex A -+ Aen]s)
iff [€ [€/]s for some €’ € {e1,...,e,}
iff s = EPCy(e') for some €’ € {e1,...,en} (IH)
iff s = EPC(e1) V - - - V EPCy(en)

Regression

iff s = EPGi(e1 A -+ N ep). (Def EPC)
Inductive case 2, e = ¢ > ¢
le[eresiffl € [€]s and s = ¢ (

iff s = EPC(¢’) and s = ¢ (IH)

Precondition for effect [to take place: EPG(e)

Connection to [e]s

Al Planning

. M. Helmert,
proof continues. . . B. Nebel

Inductive case 1, e = e1 A --- Aey:
L€ [e]siff L € [er]s U---Ulen]s (Def [ex A -+ Aen]s)
iff [€ [€/]s for some €’ € {e1,...,e,}
iff s = EPCy(e') for some €’ € {e1,...,en} (IH)
iff s = EPC(e1) V - - - V EPCy(en)

Regression

iff s = EPGi(e1 A -+ N ep). (Def EPC)
Inductive case 2, e = ¢ > €”:
le[eresiffl € [€]s and s = ¢ (
iff s = EPC(¢’) and s = ¢ (IH)

iff s = EPG(e') AN ¢

Precondition for effect [to take place: EPG(e)

Connection to [e]s

Al Planning

. M. Helmert,
proof continues. . . B. Nebel

Inductive case 1, e = e1 A --- Aey:
L€ [e]siff L € [er]s U---Ulen]s (Def [ex A -+ Aen]s)
iff [€ [€/]s for some €’ € {e1,...,e,}
iff s = EPCy(e') for some €’ € {e1,...,en} (IH)
iff s = EPC(e1) V - - - V EPCy(en)

Regression

iff s = EPGi(e1 A -+ N ep). (Def EPC)
Inductive case 2, e = ¢ > €”:
le[eresiffl € [€]s and s = ¢ (Def [c > €]s)
iff s = EPC(¢’) and s = ¢ (IH)
iff s = EPG(e') AN ¢
iff s = EPG(c 1> €). (Def EPC)

Ol

Precondition for effect [to take place: EPG(e)

Connection to the normal form

Notice that in terms of EPC,(e) any operator (c,e) can be
expressed in normal form as

<c, /\ (EPCu(e) > a) A (EPCa(e) > —|a)> .

acA

Al Planning

M. Helmert,

B. Nebel

Regression

Regression: definition for state variables

Regressing a state variable

The formula EPC,(e) V (a A =EPC-4(€)) expresses the value of
a € A after applying o in terms of values of state variables

before applying o: Either
@ a became true, or

@ a was true before and it did not become false.

Al Planning

M. Helmert,

B. Nebel

Regression

Regression: definition for state variables

Al Planning

M. Helmert,

B. Nebel
Lete=(b>a)A(cr> —a) ANbA—d.

Regression

variable | EPC_(e) V (--- A =EPC., (e))
a bV (a A —c)
TV(GA-L)=T
LVv(en-L)=¢
Lv(@dn-T)=1

Q0 o

Regression: definition for state variables

Al Planning

Lem ma (B) M. Helmert,
B. Nebel

Let a be a state variable, o = {(c,e) € O an operator, s a state
and s' = app,(s). Then s |= EPC,(e) V (a A =EPC-4(e)) if
and only if s = a.

Regression

| A\

Proof.

First prove the implication from left to right.
Assume s = EPCy(e) V (a AN =EPC-4(e)). Do a case analysis
on the two disjuncts.

Regression: definition for state variables

Al Planning

Lem ma (B) M. Helmert,
B. Nebel

Let a be a state variable, o = {(c,e) € O an operator, s a state
and s' = app,(s). Then s |= EPC,(e) V (a A =EPC-4(e)) if
and only if s = a.

Regression

| A\

Proof.

First prove the implication from left to right.
Assume s = EPCy(e) V (a AN =EPC-4(e)). Do a case analysis
on the two disjuncts.

© Assume that s = EPC,(e).

Regression: definition for state variables

Al Planning

Lem ma (B) M. Helmert,
B. Nebel

Let a be a state variable, o = {(c,e) € O an operator, s a state
and s' = app,(s). Then s |= EPC,(e) V (a A =EPC-4(e)) if
and only if s = a.

Regression

| A\

Proof.

First prove the implication from left to right.
Assume s = EPCy(e) V (a AN =EPC-4(e)). Do a case analysis
on the two disjuncts.

© Assume that s = EPC,(e). By Lemma A a € [¢]; and
hence s’ = a.

Regression: definition for state variables

Al Planning

Lem ma (B) M. Helmert,
B. Nebel

Let a be a state variable, o = {(c,e) € O an operator, s a state
and s' = app,(s). Then s |= EPC,(e) V (a A =EPC-4(e)) if
and only if s = a.

Regression

| A\

Proof.

First prove the implication from left to right.
Assume s = EPCy(e) V (a AN =EPC-4(e)). Do a case analysis
on the two disjuncts.

© Assume that s = EPC,(e). By Lemma A a € [¢]; and
hence s’ = a.
@ Assume that s = a A —~EPC_,(e).

Regression: definition for state variables

Lemma (B)

Let a be a state variable, o = {(c,e) € O an operator, s a state
and s' = app,(s). Then s |= EPC,(e) V (a A =EPC-4(e)) if
and only if s = a.

| A

Proof.

First prove the implication from left to right.
Assume s = EPCy(e) V (a AN =EPC-4(e)). Do a case analysis
on the two disjuncts.

© Assume that s = EPC,(e). By Lemma A a € [¢]; and
hence s’ = a.

@ Assume that s = a A —EPC_,(e). By Lemma A —a ¢ [e]s.
Hence a remains true in s’.

Al Planning

M. Helmert,
B. Nebel

Regression

Regression: definition for state variables

proof continues. . .

We showed that if the formula is true in s, then a is true in s’.
For the second part we show that if the formula is false in s,

then a is false in s'.

Al Planning

M. Helmert,
B. Nebel

Regression

Regression: definition for state variables

proof continues. . .

We showed that if the formula is true in s, then a is true in s’.
For the second part we show that if the formula is false in s,

then a is false in s'.
© So assume s = EPCy(e) V (a A ~EPC-4(€)).
@ Hence s = —EPCy(e) A (—a V EPC-4(€)) (de Morgan).

Al Planning

M. Helmert,
B. Nebel

Regression

Regression: definition for state variables

proof continues. . .

We showed that if the formula is true in s, then a is true in s’.
For the second part we show that if the formula is false in s,

then a is false in s
© So assume s = EPCy(e) V (a A ~EPC-4(€)).
@ Hence s = —EPCy(e) A (—a V EPC-4(€)) (de Morgan).
© Analyze the two cases: a is true or it is false in s.

Al Planning

M. Helmert,
B. Nebel

Regression

Regression: definition for state variables

proof continues. . .

We showed that if the formula is true in s, then a is true in s’.
For the second part we show that if the formula is false in s,

then a is false in s
© So assume s = EPCy(e) V (a A ~EPC-4(€)).
@ Hence s = —EPCy(e) A (—a V EPC-4(€)) (de Morgan).
© Analyze the two cases: a is true or it is false in s.
@ Assume that s | a.

Al Planning

M. Helmert,
B. Nebel

Regression

Regression: definition for state variables

proof continues. . .

We showed that if the formula is true in s, then a is true in s’.
For the second part we show that if the formula is false in s,

then a is false in s'.
© So assume s = EPCy(e) V (a A ~EPC-4(€)).
@ Hence s = —EPCy(e) A (—a V EPC-4(€)) (de Morgan).

© Analyze the two cases: a is true or it is false in s.

@ Assume that s = a. Now s = EPC_,(e) because
S ': —a V EPCﬁa(e).

Al Planning

M. Helmert,
B. Nebel

Regression

Regression: definition for state variables

proof continues. . .

We showed that if the formula is true in s, then a is true in s’.
For the second part we show that if the formula is false in s,

then a is false in s'.

© So assume s = EPCy(e) V (a A ~EPC-4(€)).
@ Hence s = —EPCy(e) A (—a V EPC-4(€)) (de Morgan).
© Analyze the two cases: a is true or it is false in s.

@ Assume that s = a. Now s = EPC_,(e) because
s = —aV EPC.,(e). Hence by Lemma A —a € [e]s and
we get s’ [~ a.

Al Planning

M. Helmert,
B. Nebel

Regression

Regression: definition for state variables

proof continues. . .

We showed that if the formula is true in s, then a is true in s’.
For the second part we show that if the formula is false in s,
then a is false in s'.

© So assume s = EPCy(e) V (a A ~EPC-4(€)).
@ Hence s = —EPCy(e) A (—a V EPC-4(€)) (de Morgan).
© Analyze the two cases: a is true or it is false in s.

@ Assume that s = a. Now s = EPC_,(e) because
s = —aV EPC.,(e). Hence by Lemma A —a € [e]s and
we get s’ [~ a.

@ Assume that s [~ a.

Al Planning

M. Helmert,
B. Nebel

Regression

Regression: definition for state variables

proof continues. . .

We showed that if the formula is true in s, then a is true in s’.
For the second part we show that if the formula is false in s,
then a is false in s'.

© So assume s = EPCy(e) V (a A ~EPC-4(€)).
@ Hence s = —EPCy(e) A (—a V EPC-4(€)) (de Morgan).
© Analyze the two cases: a is true or it is false in s.
@ Assume that s = a. Now s = EPC_,(e) because
s = —aV EPC.,(e). Hence by Lemma A —a € [e]s and
we get s’ [~ a.
@ Assume that s [~ a. Because s = “EPC,(e), by Lemma A
a & [e]s and hence s’ [~ a.

Al Planning

M. Helmert,
B. Nebel

Regression

Regression: definition for state variables

proof continues. . .

We showed that if the formula is true in s, then a is true in s’.
For the second part we show that if the formula is false in s,
then a is false in s'.

© So assume s = EPCy(e) V (a A ~EPC-4(€)).
@ Hence s = —EPCy(e) A (—a V EPC-4(€)) (de Morgan).
© Analyze the two cases: a is true or it is false in s.

@ Assume that s = a. Now s = EPC_,(e) because
s = —aV EPC.,(e). Hence by Lemma A —a € [e]s and
we get s’ [~ a.

@ Assume that s [~ a. Because s = “EPC,(e), by Lemma A
a & [e]s and hence s’ [~ a.

Therefore in both cases s’ }~ a.

Al Planning

M. Helmert,
B. Nebel

Regression

Regression: general definition

We base the definition of regression on formulae EPC(e).

Definition

Let ¢ be a propositional formula and 0 = (¢, e) an operator.
The regression of ¢ with respect to o is

rEgro((b) =cAN¢r A f

where

@ ¢, is obtained from ¢ by replacing each a € A by
EPC,(e) V (a A =EPC-4(e)), and

Q [= Nyea ~(EPCy(e) N EPCy(€)).

The formula f says that no state variable may become
simultaneously true and false.

Al Planning

M. Helmert,

B. Nebel

Regression

Regression: examples

Al Planning

M. Helmert,

B. Nebel

Q regrigpy(b) =an(TV(A-L)AT =a

Regression

Regression: examples

Al Planning

M. Helmert,

B. Nebel

Q regrigpn(d) =aN(TV(A-L)AT =a
Q regrign(bAcAd)=aN(TV(OA-L)A(LV(cA
“ANA(LV@A-L)AT =aNcAd

Regression

Regression: examples

Al Planning

M. Helmert,

B. Nebel

Q regrigpn(d) =aN(TV(A-L)AT =a
Q regrigpy(bAcAd)=an(TV(bA-L)A(LV(cA
“ANA(LV(@A-L)AT =aAcAd

Q regrigeppy(b) =an(eV(OA-L)AT=an(cVD)

Regression

Regression: examples

© 0

Al Planning

M. Helmert,

B. Nebel

regriap () =aAN(TV(OA-L)AT =a
regrigpy(bAcAd)=an(TV(A-L)A(LV(cA
“ANA(LV(@A-L)AT =aAcAd

regriaesby(b) = aA(eV(OA-L) AT =an(cVD)
regria,(csb)a(bs—b)) (0) = a A (e V (b A =b)) A=(cAb) =

a/NcA—b

Regression

Regression: examples

© 0

Al Planning

M. Helmert,

B. Nebel

regriap () =aAN(TV(OA-L)AT =a
regrigpy(bAcAd)=an(TV(A-L)A(LV(cA
“ANA(LV(@A-L)AT =aAcAd

regriaesby(b) = aA(eV(OA-L) AT =an(cVD)
regr<a7(cbb),\(b[>ﬁb)>(b) =al (C vV (b VAN _\b)) A _'(C VAN b) =
a/cA-b

regria,(esb)n(ds—b)) (0) = a A (cV (DA =d)) A—(cAd) =

aA(cVb)A(cV—d)A(—cV—d)

Regression

Regression: examples

Blocks World with conditional effects

Operators to move blocks A and B onto the table from the Al Planning

other block if they are clear: M. Helmert,

o1 = (T, (AonBA Aclear) > (AonT A Bclear A —=AonB))
02 = (T, (BonAA Bclear) > (BonT A Aclear A ~BonA))

Plan for putting both blocks onto the table from any blocks
world state with two blocks is 02, 01. Proof by regression:

Regression

G = AonTA BonT
o1 = regro,(G) = ((AonB A Aclear) vV AonT) A BonT
b2 = regro,(¢1)
= ((AonB A ((BonA A Bclear) v Aclear)) V AonT)
A ((BonA A Bclear) V BonT)

All three 2-block states satisfy ¢». Similar plans exist for any
number of blocks.

Regression: examples

Incrementing a binary number

Al Planning
(_‘bo > bo) /\ M. Helmert,
((=b1 A bo) > (b1 A —bg)) A B Nebel
((mb2 A b1 A bg) > (ba A —by A —bg))

EPCbz(e) ==by A by A by
EPCbl(e) =-by A by
EPC,. (¢) = —bo
EPC_,(¢)= L
EPC_y,(e)=—ba Aby Abyg
EPCﬁbo(e) = (—‘bl AN bo) \Y (“bg A by A b()) = (—|b1 vV —|b2) A bg

Regression replaces state variables as follows:
by by (—\bg Abi A bo) V (b2 A\ —|J_) = (bl VAN bo) V by
by by (=b1 Abo)V (br A—(=bz Ab1 Abp))
= (ﬁbl A\ bo) V (bl AN (b2 V ﬁbo))
bo by —byV (bo VAN —|((—|b1 \Y —|b2) VAN bo)) = by V (bl VAN bz)

Regression

Regression: properties

Lemma (C)

Let ¢ be a formula, o an operator, s any state and
s' = appo(s). Then s |= regro(¢) if and only if s' |= ¢.

Proof.
Let e be the effect of 0. We show by structural induction over
subformulae ¢’ of ¢ that s |= ¢/ iff s’ = ¢/, where ¢/, is ¢/ with
every a € A replaced by EPC,(e) V (a A =EPC-4(e)). Rest of
regro(¢) just states that o is applicable in s.

Al Planning

M. Helmert,
B. Nebel

Regression

Regression: properties

Lemma (C)

Let ¢ be a formula, o an operator, s any state and
s' = appo(s). Then s |= regro(¢) if and only if s' |= ¢.

Proof.

Let e be the effect of 0. We show by structural induction over
subformulae ¢’ of ¢ that s |= ¢/ iff s’ = ¢/, where ¢/, is ¢/ with
every a € A replaced by EPC,(e) V (a A =EPC-4(e)). Rest of
regro(¢) just states that o is applicable in s.

Induction hypothesis s = ¢!, if and only if s’ = ¢'.

Al Planning

M. Helmert,
B. Nebel

Regression

Regression: properties

Lemma (C)

Let ¢ be a formula, o an operator, s any state and
s' = appo(s). Then s |= regro(¢) if and only if s' |= ¢.

Let e be the effect of 0. We show by structural induction over
subformulae ¢’ of ¢ that s |= ¢/ iff s’ = ¢/, where ¢/, is ¢/ with
every a € A replaced by EPC,(e) V (a A =EPC-4(e)). Rest of
regro(¢) just states that o is applicable in s.
Induction hypothesis s = ¢!, if and only if s’ = ¢'.

Base cases 1 & 2 ¢/ = T or ¢/ = L: Trivial as ¢. = ¢'.

Al Planning

M. Helmert,
B. Nebel

Regression

Regression: properties

Lemma (C)

Let ¢ be a formula, o an operator, s any state and
s' = appo(s). Then s |= regro(¢) if and only if s' |= ¢.

Let e be the effect of 0. We show by structural induction over
subformulae ¢’ of ¢ that s |= ¢/ iff s’ = ¢/, where ¢/, is ¢/ with
every a € A replaced by EPC,(e) V (a A =EPC-4(e)). Rest of
regro(¢) just states that o is applicable in s.
Induction hypothesis s = ¢!, if and only if s’ = ¢'.
Base cases 1 & 2 ¢/ = T or ¢/ = L: Trivial as ¢. = ¢'.
Base case 3 ¢/ = a for some a € A: Now
¢l = EPCy(e) V (a AN ~EPC-4(€)).

Al Planning

M. Helmert,
B. Nebel

Regression

Regression: properties

Lemma (C)

Let ¢ be a formula, o an operator, s any state and
s' = appo(s). Then s |= regro(¢) if and only if s' |= ¢.

Let e be the effect of 0. We show by structural induction over
subformulae ¢’ of ¢ that s |= ¢/ iff s’ = ¢/, where ¢/, is ¢/ with
every a € A replaced by EPC,(e) V (a A =EPC-4(e)). Rest of
regro(¢) just states that o is applicable in s.

Induction hypothesis s = ¢!, if and only if s’ = ¢'.
Base cases 1 & 2 ¢/ = T or ¢/ = L: Trivial as ¢. = ¢'.
Base case 3 ¢/ = a for some a € A: Now

¢l = EPCy(€e) V (a A 2EPC_4(e)).
By Lemma B s = ¢/ iff ' = ¢'.

Al Planning

M. Helmert,
B. Nebel

Regression

Regression: properties

proof continues. . .

Inductive case 1 ¢/ = —): By the induction hypothesis s = 1,

iff s’ = 1. Hence s = ¢l iff s’ |= ¢ by the
truth-definition of —.

Al Planning

M. Helmert,
B. Nebel

Regression

Regression: properties

Al Planning

B. Nebel
Inductive case 1 ¢/ = —): By the induction hypothesis s = 1,
iff s’ = 1. Hence s = ¢l iff s’ |= ¢ by the
truth-definition of —.
Inductive case 2 ¢ =1V ¢': By the induction hypothesis
sE Y, iff ' =, and s E YL ff s E Y.
Hence s = ¢! iff s |= ¢’ by the
truth-definition of V.

Regression

Regression: properties

proof continues.

Inductive case 1

Inductive case 2

Inductive case 3

¢’ = —p: By the induction hypothesis s = 1,
iff s’ = 1. Hence s = ¢l iff s’ |= ¢ by the
truth-definition of —.

¢’ =1V ': By the induction hypothesis
sE Y, iff ' =, and s E YL ff s E Y.
Hence s = ¢! iff s |= ¢’ by the
truth-definition of V.

¢’ =1 A)': By the induction hypothesis
sE Y iff S E 1, and s =4 iff s =,
Hence s | ¢! iff s’ = ¢/ by the
truth-definition of A.

Al Planning

M. Helmert,
B. Nebel

Regression

Regression: complexity issues

Al Planning

M. Helmert,

B. Nebel
The following two tests are useful when generating a search
tree with regression.

@ Testing that a formula regr,(¢) does not represent the
empty set (= search is in a blind alley).
For example, regri,) (p) =a A L = 1.

Complexity

@ Testing that a regression step does not make the set of
states smaller (= more difficult to reach).
For example, regry, (a) = a Ab.

Both of these problems are NP-hard.

Regression: complexity issues

Al Planning

The formula regr,, (regro,(. . . regr,, ,(regro, (¢)))) may have

. . . M. Helmert,
size O(|¢|]o1]|oz2] ... |on—1||on|), i.e. the product of the sizes of B. Nebel
¢ and the operators.

The size in the worst case O(m") is hence exponential in n.

Logical simplifications
Q@ LANp=1L, TAd=0¢, LVOd=0d, TVO=T Complexity

Q@ avVo=aVeo[l/a], ~aV ¢ =-aVo[T/al,
aNp=aNd[T/a], 7aN¢=-aAnd¢[Ll/a]

To obtain the maximum benefit from the last equivalences, e.g.
for (a A b) A ¢(a), the equivalences for associativity and
commutativity are useful: (¢1V ¢2) V @3 = ¢1 V (d2 V ¢3),
P1V 2=V 1, (1A 2) Ad3 =1 A(P2A3),

1A P2 = g2 A 1.

Regression: generation of search trees

Al Planning
M. Helmert,

. . . B. Nebel
Problem Formulae obtained with regression may become very

big.

Cause Disjunctivity in the formulae. Formulae without
disjunctions easily convertible to small formulae
I3 A -+ ANl where [; are literals and n is at most the
number of state variables.

Branching

Solution Handle disjunctivity when generating search trees.
Alternatives:
@ Do nothing. (May lead to very big formulae!!!)
@ Always eliminate all disjunctivity.
© Reduce disjunctivity if formula becomes too big.

Regression: generation of search trees

Unrestricted regression (= do nothing about formula size)

Al Planning

M. Helmert,
Reach goal a A b from state I such that I = —a A —b A —ec. e
—aNg
(e, 4)
OJ\‘ G =a /\ b Branching
(meVa)Ab_ ~c Y

%‘ kbn

(meVa)Ab

Regression: generation of search trees

Full splitting (= eliminate all disjunctivity)

Al Planning

@ Planners for STRIPS operators only need to use formulae L il
I1 A -+ Al, where l; are literals. B
@ Some PDDL planners also restrict to this class of
formulae. This is done as follows.
Q regr,(¢) is transformed to disjunctive normal form (DNF):
(BN ALYV V(A AT).
@ Each disjunct I; A--- A I5,, is handled in its own subtree of Branching
the search tree.
© The DNF formulae need not exist in its entirety explicitly:
generate one disjunct at a time.
@ Hence branching is both on the choice of operator and on
the choice of the disjunct of the DNF formula.

@ This leads to an increased branching factor and bigger
search trees, but avoids big formulae.

Regression: generation of search trees

Full splitting

Reach goal a A b from state I such that I = —a A —b A —c.
(mc¢Va)Abin DNF is (mc A b) V (a A D).
It is split to —¢ A b and a A b.

—cAb —aNa (
\’Q,é)
alNb
anp2CE a9 o g
a N\ —a

e Abt0me s g \
_1a7b _‘C/\b

—C /\ Q

Al Planning

M. Helmert,

B. Nebel

Branching

Regression: generation of search trees

Restricted splitting

Al Planning

@ With full splitting search tree can be exponentially bigger M Helmer.
than without splitting. (But it is not necessary to
construct the DNF formulae explicitly!)

@ Without splitting the formulae may have size that is
exponential in the number of state variables.

@ A compromise is to split formulae only when necessary:
combine benefits of the two extremes.

Branching

@ There are several ways to split a formula ¢ to ¢1,..., ¢,
such that ¢ = ¢1 V - -- V ¢,,. For example:

@ Transform ¢ to ¢1 V- -V ¢, by equivalences like
distributivity (¢1 V ¢2) A 3 = (¢1 A ¢3) V (2 A $3).

@ Choose state variable a, set ¢1 = a A ¢ and ¢ = —a A ¢,
and simplify with equivalences like a A Y = a A [T /al.

	Normal form for effects
	STRIPS operators

	Planning by state-space search
	Ideas
	Progression
	Regression
	Complexity
	Branching

