Principles of Al Planning Planning by state-space search

Malte Helmert Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

November 8th, 2006

Al Planning

M. Helmert B. Nebel

ivormai form

Normal form for effects

- Similarly to normal forms in propositional logic (DNF, CNF, NNF, ...) we can define a normal form for effects.
- 2 Nesting of conditionals, as in $a \triangleright (b \triangleright c)$, can be eliminated.
- **3** Effects e within a conditional effect $\phi \triangleright e$ can be restricted to atomic effects $(a \text{ or } \neg a)$.
- Only a small polynomial increase in size by transformation to normal form.
 - Compare: transformation to CNF or DNF may increase formula size exponentially.

Al Planning

M. Helmert, B. Nebel

Normal form STRIPS operators

Normal form for effects

- Similarly to normal forms in propositional logic (DNF, CNF, NNF, ...) we can define a normal form for effects.
- ② Nesting of conditionals, as in $a \triangleright (b \triangleright c)$, can be eliminated.
- **3** Effects e within a conditional effect $\phi \triangleright e$ can be restricted to atomic effects $(a \text{ or } \neg a)$.
- Only a small polynomial increase in size by transformation to normal form.
 - Compare: transformation to CNF or DNF may increase formula size exponentially.

Al Planning

M. Helmert, B. Nebel

Normal form STRIPS operators

Normal form for effects

- Similarly to normal forms in propositional logic (DNF, CNF, NNF, ...) we can define a normal form for effects.
- ② Nesting of conditionals, as in $a \triangleright (b \triangleright c)$, can be eliminated.
- **3** Effects e within a conditional effect $\phi \triangleright e$ can be restricted to atomic effects $(a \text{ or } \neg a)$.
- Only a small polynomial increase in size by transformation to normal form.
 - Compare: transformation to CNF or DNF may increase formula size exponentially.

Al Planning

M. Helmert, B. Nebel

Normal form STRIPS operators

$$c \rhd (e_1 \land \dots \land e_n) \equiv (c \rhd e_1) \land \dots \land (c \rhd e_n)$$
 (1)

$$(c_1 \triangleright e) \land (c_2 \triangleright e) \equiv (c_1 \lor c_2) \triangleright e \tag{3}$$

$$e \wedge (c \triangleright e) \equiv e \tag{4}$$

$$e \equiv \top \triangleright e \tag{5}$$

$$e \equiv \top \wedge e \tag{6}$$

$$e_1 \wedge e_2 \equiv e_2 \wedge e_1 \tag{7}$$

$$(e_1 \wedge e_2) \wedge e_3 \equiv e_1 \wedge (e_2 \wedge e_3) \tag{8}$$

Al Planning

M. Helmert, B. Nebel

Normal form STRIPS operators

$$c \triangleright (e_{1} \wedge \cdots \wedge e_{n}) \equiv (c \triangleright e_{1}) \wedge \cdots \wedge (c \triangleright e_{n}) \quad (1)$$

$$c_{1} \triangleright (c_{2} \triangleright e) \equiv (c_{1} \wedge c_{2}) \triangleright e \quad (2)$$

$$(c_{1} \triangleright e) \wedge (c_{2} \triangleright e) \equiv (c_{1} \vee c_{2}) \triangleright e \quad (3)$$

$$e \wedge (c \triangleright e) \equiv e \quad (4)$$

$$e \equiv \top \triangleright e \quad (5)$$

$$e \equiv \top \wedge e \quad (6)$$

$$e_{1} \wedge e_{2} \equiv e_{2} \wedge e_{1} \quad (7)$$

Al Planning

M. Helmert, B. Nebel

Normal form STRIPS operators

$$c \triangleright (e_{1} \wedge \cdots \wedge e_{n}) \equiv (c \triangleright e_{1}) \wedge \cdots \wedge (c \triangleright e_{n}) \quad (1)$$

$$c_{1} \triangleright (c_{2} \triangleright e) \equiv (c_{1} \wedge c_{2}) \triangleright e \quad (2)$$

$$(c_{1} \triangleright e) \wedge (c_{2} \triangleright e) \equiv (c_{1} \vee c_{2}) \triangleright e \quad (3)$$

$$e \wedge (c \triangleright e) \equiv e \quad (4)$$

$$e \equiv \top \triangleright e \quad (5)$$

$$e \equiv \top \wedge e \quad (6)$$

$$e_{1} \wedge e_{2} \equiv e_{2} \wedge e_{1} \quad (7)$$

Al Planning

M. Helmert B. Nebel

Normal form STRIPS operators

$$c \rhd (e_1 \land \cdots \land e_n) \equiv (c \rhd e_1) \land \cdots \land (c \rhd e_n)$$
 (1)

$$c_1 \rhd (c_2 \rhd e) \equiv (c_1 \land c_2) \rhd e$$
 (2)

$$(c_1 \rhd e) \land (c_2 \rhd e) \equiv (c_1 \lor c_2) \rhd e \tag{3}$$

$$e \wedge (c \triangleright e) \equiv e$$

$$e \equiv \top \triangleright e \tag{5}$$

$$e \equiv \top \wedge e$$
 (6)

$$e_1 \wedge e_2 \equiv e_2 \wedge e_1 \tag{7}$$

$$(e_1 \wedge e_2) \wedge e_3 \equiv e_1 \wedge (e_2 \wedge e_3) \tag{8}$$

Al Planning

M. Helmert, B. Nebel

Normal form STRIPS operators

$$c \rhd (e_1 \land \cdots \land e_n) \equiv (c \rhd e_1) \land \cdots \land (c \rhd e_n)$$
 (1)

$$c_1 \rhd (c_2 \rhd e) \equiv (c_1 \land c_2) \rhd e$$
 (2)

$$(c_1 \rhd e) \land (c_2 \rhd e) \equiv (c_1 \lor c_2) \rhd e \tag{3}$$

$$e \wedge (c \rhd e) \equiv e \tag{4}$$

$$e \equiv \top \triangleright e$$
 (5)

$$e \equiv \top \wedge e \tag{6}$$

$$e_1 \wedge e_2 \equiv e_2 \wedge e_1 \tag{7}$$

$$(e_1 \wedge e_2) \wedge e_3 \equiv e_1 \wedge (e_2 \wedge e_3) \tag{8}$$

Al Planning

M. Helmert B. Nebel

Normal form STRIPS operators

 $c \rhd (e_1 \land \dots \land e_n) \equiv (c \rhd e_1) \land \dots \land (c \rhd e_n)$ (1)

$$c_1 \rhd (c_2 \rhd e) \equiv (c_1 \land c_2) \rhd e$$
 (2)

$$(c_1 \rhd e) \land (c_2 \rhd e) \equiv (c_1 \lor c_2) \rhd e \tag{3}$$

$$e \wedge (c \rhd e) \equiv e \tag{4}$$

$$e \equiv \top \triangleright e \tag{5}$$

$$e \equiv \top \wedge e$$
 (6)

$$e_1 \wedge e_2 \equiv e_2 \wedge e_1 \tag{7}$$

$$(e_1 \wedge e_2) \wedge e_3 \equiv e_1 \wedge (e_2 \wedge e_3) \tag{8}$$

Al Planning

M. Helmert B. Nebel

Normal form STRIPS operators

$$c \rhd (e_1 \land \cdots \land e_n) \equiv (c \rhd e_1) \land \cdots \land (c \rhd e_n)$$
 (1)

$$c_1 \rhd (c_2 \rhd e) \equiv (c_1 \land c_2) \rhd e$$
 (2)

$$(c_1 \rhd e) \land (c_2 \rhd e) \equiv (c_1 \lor c_2) \rhd e \tag{3}$$

$$e \wedge (c \rhd e) \equiv e \tag{4}$$

$$e \equiv \top \triangleright e \tag{5}$$

$$e \equiv \top \wedge e \tag{6}$$

$$e_1 \wedge e_2 \equiv e_2 \wedge e_1 \tag{7}$$

$$(e_1 \wedge e_2) \wedge e_3 \equiv e_1 \wedge (e_2 \wedge e_3) \tag{8}$$

Al Planning

M. Helmert B. Nebel

Normal form STRIPS operators

$$c \rhd (e_1 \land \dots \land e_n) \equiv (c \rhd e_1) \land \dots \land (c \rhd e_n)$$
 (1)
$$c_1 \rhd (c_2 \rhd e) \equiv (c_1 \land c_2) \rhd e$$
 (2)

$$(c_1 \triangleright e) \land (c_2 \triangleright e) \equiv (c_1 \lor c_2) \triangleright e \tag{3}$$

$$e \wedge (c \rhd e) \equiv e \tag{4}$$

$$e \equiv \top \triangleright e \tag{5}$$

$$e \equiv \top \wedge e \tag{6}$$

$$e_1 \wedge e_2 \equiv e_2 \wedge e_1 \tag{7}$$

$$(e_1 \wedge e_2) \wedge e_3 \equiv e_1 \wedge (e_2 \wedge e_3) \tag{8}$$

Al Planning

M. Helmert, B. Nebel

Normal form STRIPS operators

Normal form for operators and effects

Definition

An operator $\langle c,e \rangle$ is in normal form if for all occurrences of $c' \rhd e'$ in e the effect e' is either a or $\neg a$ for some $a \in A$, and there is at most one occurrence of any atomic effect in e.

Theorem

For every operator there is an equivalent one in normal form.

Proof is constructive: we can transform any operator into normal form by using the equivalences from the previous slide.

Al Planning

M. Helmert, B. Nebel

Normal form STRIPS operators

Normal form for effects Example

Example

$$(a \rhd (b \land (c \rhd (\neg d \land e)))) \land (\neg b \rhd e)$$

transformed to normal form is

$$(a \rhd b) \land ((a \land c) \rhd \neg d) \land ((\neg b \lor (a \land c)) \rhd e)$$

Al Planning

B. Nebel

Normal form STRIPS operators

STRIPS operators

Definition

An operator $\langle c,e \rangle$ is a STRIPS operator if

- $oldsymbol{0}$ c is a conjunction of literals, and
- $oldsymbol{e}$ e is a conjunction of atomic effects.

Hence every STRIPS operator is of the form

$$\langle l_1 \wedge \cdots \wedge l_n, l'_1 \wedge \cdots \wedge l'_m \rangle$$

where l_i are literals and l'_i are atomic effects.

STRIPS

STanford Research Institute Planning System, Fikes & Nilsson, 1971.

Al Planning

M. Helmert B. Nebel

STRIPS operators

Planning by state-space search

There are many alternative ways of doing planning by state-space search.

- different ways of expressing planning as a search problem:
 - search direction: forward, backward
 - representation of search space: states, sets of states
- different search algorithms: depth-first, breadth-first, informed (heuristic) search (systematic: A*, IDA*, ...; local: hill-climbing, simulated annealing, ...), ...
- different ways of controlling search:
 - heuristics for heuristic search algorithms
 - pruning techniques: invariants, symmetry elimination, . . .

Al Planning

M. Helmert, B. Nebel

Normal form

State-space search

Planning by forward search with depth-first search

Al Planning

M. Helmert B. Nebel

Normal form

State-space search

Ideas

with depth-first search

Al Planning

M. Helmert B. Nebel

Normal form

State-space search

Ideas
Progression
Regression
Complexity

with depth-first search

Al Planning

M. Helmert B. Nebel

Normal form

State-space search

Ideas Progression Regression

with depth-first search

Al Planning

M. Helmert B. Nebel

Normal form

State-space search

Ideas
Progression
Regression
Complexity

with depth-first search

Al Planning

M. Helmert B. Nebel

Normal form

State-space search

Ideas

with depth-first search

Al Planning

M. Helmert B. Nebel

Normal form

State-space search

Ideas
Progression
Regression
Complexity

with depth-first search

Al Planning

M. Helmert B. Nebel

Normal form

State-space search

search Ideas

with depth-first search

Al Planning

M. Helmert B. Nebel

Normal form

State-space search

Ideas Progression

with depth-first search

Al Planning

M. Helmert B. Nebel

Normal form

State-space search

search Ideas

with depth-first search

Al Planning

M. Helmert B. Nebel

Normal form

State-space search

search Ideas

Planning by backward search with depth-first search, one state at a time

Al Planning

M. Helmert B. Nebel

Normal form

State-space search

search Ideas

with depth-first search, one state at a time

Al Planning

M. Helmert B. Nebel

Normal form

State-space search

Ideas
Progression
Regression
Complexity

with depth-first search, one state at a time

Al Planning

M. Helmert B. Nebel

Normal form

State-space search

with depth-first search, one state at a time

Al Planning

M. Helmert B. Nebel

Normal form

State-space search

Ideas Progression Regression

Regression Complexity Branching

Planning by backward search with depth-first search, one state at a time

Al Planning

M. Helmert B. Nebel

Normal form

State-space search

Ideas Progression Regression Complexity

with depth-first search, one state at a time

Al Planning

M. Helmert B. Nebel

Normal form

State-space search

Planning by backward search with depth-first search, one state at a time

Al Planning

M. Helmert B. Nebel

Normal form

State-space search

Ideas Progression

with depth-first search, for state sets (represented as formulae)

AI Planning

M. Helmert B. Nebel

Normal form

State-space search

Ideas Progression Regression

with depth-first search, for state sets (represented as formulae)

Al Planning

M. Helmert B. Nebel

Normal form

State-space search

with depth-first search, for state sets (represented as formulae)

$$\phi_1 = regr_{\longrightarrow}(G) \qquad \qquad \phi_1 \longrightarrow$$

Al Planning

M. Helmert, B. Nebel

Normal form

State-space search

Ideas Progression Regression Complexity

Planning by backward search

with depth-first search, for state sets (represented as formulae)

$$\phi_1 = regr_{\longrightarrow}(G)$$
$$\phi_2 = regr_{\longrightarrow}(\phi_1)$$

Al Planning

M. Helmert, B. Nebel

Normal form

State-space search

search Ideas

Progression Regression Complexity Branching

Planning by backward search

with depth-first search, for state sets (represented as formulae)

$$\phi_1 = regr_{\longrightarrow}(G) \qquad \phi_3 \longrightarrow \phi_2 \longrightarrow \phi_1 \longrightarrow G$$

$$\phi_2 = regr_{\longrightarrow}(\phi_1)$$

$$\phi_3 = regr_{\longrightarrow}(\phi_2), I \models \phi_3$$

Al Planning

M. Helmert, B. Nebel

Normal form

State-space search

search Ideas

Progression Regression Complexity Branching

Progression

- Progression means computing the successor state $app_o(s)$ of s with respect to o.
- Used in forward search: from the initial state toward the goal states.
- Very easy and efficient to implement.

Al Planning

M. Helmert, B. Nebel

Normal form

State-space search

Progression
Regression
Complexity
Branching

Regression

- Regression is computing the possible predecessor states of a set of states.
- The formula $regr_o(\phi)$ represents the states from which a state represented by ϕ is reached by operator o.
- Used in backward search: from the goal states toward the initial state.
- Regression is powerful because it allows handling sets of states (progression: only one state at a time.)
- Handling state sets (formulae) is more complicated than handling states: many questions about regression are NP-hard.

Al Planning

M. Helmert, B. Nebel

Normal form

Regression for STRIPS operators

- Regression for STRIPS operators is very simple.
- Goals are conjunctions of literals $l_1 \wedge \cdots \wedge l_n$.
- First step: Choose an operator that makes some of l_1, \ldots, l_n true and makes none of them false.
- Second step: Form a new goal by removing the fulfilled goal literals and adding the preconditions of the operator.

Al Planning

M. Helmert, B. Nebel

Normal form

Regression for STRIPS operators

Definition

The STRIPS-regression $regr_o^{str}(\phi)$ of $\phi = l_1'' \wedge \cdots \wedge l_k''$ with respect to

$$o = \langle l_1 \wedge \cdots \wedge l_n, l'_1 \wedge \cdots \wedge l'_m \rangle$$

is the conjunction of literals

$$\bigwedge \left(\left(\left\{ l_1'', \ldots, l_k'' \right\} \setminus \left\{ l_1', \ldots, l_m' \right\} \right) \cup \left\{ l_1, \ldots, l_n \right\} \right)$$

provided that $\{l_1',\ldots,l_m'\}\cap\{\overline{l_1''},\ldots,\overline{l_k''}\}=\emptyset$.

AI Planning

M. Helmert, B. Nebel

Normal form

NOTE: Predecessor states are in general not unique. This picture is just for illustration purposes.

Al Planning

M. Helmert, B. Nebel

Normal form

Al Planning

M. Helmert B. Nebel

Normal form

$$o_3 = \langle \text{lonT} \land \text{llclr} \land \text{llclr} \land \neg \text{llclr} \land \neg \text{llonT} \land \text{llon} \rangle$$

$$G = \text{lon} \land \text{llon}$$

Al Planning

M. Helmert B. Nebel

Normal form

$$o_3 = \langle \blacksquare \text{onT} \land \blacksquare \text{clr} \land \blacksquare \text{clr}, \neg \blacksquare \text{clr} \land \neg \blacksquare \text{onT} \land \blacksquare \text{on} \blacksquare \rangle$$

$$G = \blacksquare \text{on} \blacksquare \land \blacksquare \text{on} \blacksquare$$

Al Planning

M. Helmert, B. Nebel

Normal form

$$\begin{aligned} o_3 &= \langle \blacksquare \mathsf{onT} \land \blacksquare \mathsf{clr} \land \blacksquare \mathsf{clr}, \neg \blacksquare \mathsf{clr} \land \neg \blacksquare \mathsf{onT} \land \blacksquare \mathsf{on} \blacksquare \rangle \\ G &= \blacksquare \mathsf{on} \blacksquare \land \blacksquare \mathsf{on} \blacksquare \\ \phi_1 &= regr_{o_3}^{str}(G) = \blacksquare \mathsf{on} \blacksquare \land \blacksquare \mathsf{onT} \land \blacksquare \mathsf{clr} \land \blacksquare \mathsf{clr} \end{aligned}$$

Al Planning

M. Helmert, B. Nebel

ivormai form

Al Planning

M. Helmert B. Nebel

Normal form

$$\phi_1 = \operatorname{regr}_{o_3}^{str}(G) = \operatorname{\squareon} \wedge \operatorname{\squareon} \wedge \operatorname{\squareclr} \wedge \operatorname{\squareclr}$$

Regression for STRIPS operators

$$o_2 = \langle \texttt{mon} \land \texttt{mclr} \land \texttt{mclr}, \neg \texttt{mclr} \land \neg \texttt{mon} \blacktriangle \land \texttt{mon} \blacktriangle \land \texttt{mclr} \rangle$$

$$\phi_1 = \operatorname{regr}_{o_3}^{str}(G) = \operatorname{lon} \wedge \operatorname{lon} \wedge \operatorname{lclr} \wedge \operatorname{lclr} \wedge \operatorname{lclr}$$

Al Planning

M. Helmert B. Nebel

Normal form

Regression for STRIPS operators

$$o_2 = \langle \blacksquare \mathsf{on} \blacksquare \land \blacksquare \mathsf{clr} \land \blacksquare \mathsf{clr}, \neg \blacksquare \mathsf{clr} \land \neg \blacksquare \mathsf{on} \blacksquare \land \blacksquare \mathsf{on} \blacksquare \land \blacksquare \mathsf{clr} \rangle$$

$$\phi_1 = \operatorname{regr}_{o_3}^{str}(G) = \blacksquare \circ n \blacksquare \land \blacksquare \circ n \top \land \blacksquare \operatorname{clr} \land \blacksquare \operatorname{clr}$$

Al Planning

M. Helmert B. Nebel

ivormai form

$$o_2 = \langle \blacksquare \mathsf{on} \blacksquare \land \blacksquare \mathsf{clr} \land \blacksquare \mathsf{clr}, \neg \blacksquare \mathsf{clr} \land \neg \blacksquare \mathsf{on} \blacksquare \land \blacksquare \mathsf{on} \blacksquare \land \blacksquare \mathsf{clr} \rangle$$

$$\begin{array}{l} \phi_1 = \mathit{regr}_{o_3}^{\mathit{str}}(G) = \blacksquare \mathsf{on} \blacksquare \land \blacksquare \mathsf{on} \top \land \blacksquare \mathsf{clr} \land \blacksquare \mathsf{clr} \\ \phi_2 = \mathit{regr}_{o_2}^{\mathit{str}}(\phi_1) = \blacksquare \mathsf{on} \top \land \blacksquare \mathsf{clr} \land \blacksquare \mathsf{on} \blacksquare \land \blacksquare \mathsf{clr} \\ \end{array}$$

Al Planning

M. Helmert, B. Nebel

Normal form

Al Planning

M. Helmert B. Nebel

Normal form

$$\phi_2 = regr_{o_2}^{str}(\phi_1) = \blacksquare \text{onT} \land \blacksquare \text{clr} \land \blacksquare \text{on} \blacksquare \land \blacksquare \text{clr}$$

Regression for STRIPS operators

$$o_1 = \langle \text{mon} \land \text{mclr}, \neg \text{mon} \land \text{mon} \land \text{mclr} \rangle$$

$$\phi_2 = \operatorname{regr}_{o_2}^{str}(\phi_1) = \operatorname{lon} \mathsf{T} \wedge \operatorname{lon} \mathsf{lon} \wedge \operatorname{lon} \mathsf{lon} \wedge \operatorname{lon} \mathsf{lon}$$

Al Planning

M. Helmert B. Nebel

Normal form

$$o_1 = \langle \blacksquare \mathsf{on} \blacksquare \land \blacksquare \mathsf{clr}, \neg \blacksquare \mathsf{on} \blacksquare \land \blacksquare \mathsf{on} \top \land \blacksquare \mathsf{clr} \rangle$$

$$\phi_2 = regr_{o_2}^{str}(\phi_1) = \blacksquare \text{onT} \land \blacksquare \text{clr} \land \blacksquare \text{on} \blacksquare \land \blacksquare \text{clr}$$

Al Planning

M. Helmert B. Nebel

ivormai form

$$o_1 = \langle \blacksquare \mathsf{on} \blacksquare \land \blacksquare \mathsf{clr}, \lnot \blacksquare \mathsf{on} \blacksquare \land \blacksquare \mathsf{on} \top \land \blacksquare \mathsf{clr} \rangle$$

$$\begin{array}{l} \phi_2 = \mathit{regr}_{o_2}^{\mathit{str}}(\phi_1) = \blacksquare \mathsf{onT} \land \blacksquare \mathsf{clr} \land \blacksquare \mathsf{on} \blacksquare \land \blacksquare \mathsf{clr} \\ \phi_3 = \mathit{regr}_{o_1}^{\mathit{str}}(\phi_2) = \blacksquare \mathsf{onT} \land \blacksquare \mathsf{on} \blacksquare \land \blacksquare \mathsf{clr} \land \blacksquare \mathsf{on} \blacksquare \end{array}$$

Al Planning

M. Helmert, B. Nebel

ivormai form

Al Planning

M. Helmert B. Nebel

Normal form

$$\phi_3 = regr_{o_1}^{str}(\phi_2) = \blacksquare \text{onT} \land \blacksquare \text{on} \blacksquare \land \blacksquare \text{clr} \land \blacksquare \text{on} \blacksquare$$

Regression for general operators

- With disjunction and conditional effects, things become more tricky. How to regress $A \vee (B \wedge C)$ with respect to $\langle Q, D \rhd B \rangle$?
- The story about goals and subgoals and fulfilling subgoals, as in the STRIPS case, is no longer useful.
- We present a general method for doing regression for any formula and any operator.
- Now we extensively use the idea of representing sets of states as formulae.

Al Planning

M. Helmert, B. Nebel

Normal form

Regression for general operators

- With disjunction and conditional effects, things become more tricky. How to regress $A \vee (B \wedge C)$ with respect to $\langle Q, D \rhd B \rangle$?
- The story about goals and subgoals and fulfilling subgoals, as in the STRIPS case, is no longer useful.
- We present a general method for doing regression for any formula and any operator.
- Now we extensively use the idea of representing sets of states as formulae.

Al Planning

M. Helmert, B. Nebel

Normal form

Precondition for effect l to take place: $EPC_l(e)$

Definition

The condition $EPC_l(e)$ for literal l to become true under effect e is defined as follows.

```
egin{array}{lll} {\it EPC}_l(l) &=& \top \ {\it EPC}_l(l') &=& \bot \ {\it when} \ l 
eq l' \ ({\it for literals} \ l') \ {\it EPC}_l(\top) &=& \bot \ {\it EPC}_l(e_1 \wedge \cdots \wedge e_n) &=& {\it EPC}_l(e_1) \vee \cdots \vee {\it EPC}_l(e_n) \ {\it EPC}_l(c \rhd e) &=& {\it EPC}_l(e) \wedge c \end{array}
```

Al Planning

M. Helmert, B. Nebel

Normal form

Precondition for effect l to take place: $\mathit{EPC}_l(e)$ $_{\mathsf{Example}}$

Example

```
\begin{array}{cccc} \textit{EPC}_a(b \wedge c) & = & \bot \lor \bot \equiv \bot \\ \textit{EPC}_a(a \wedge (b \rhd a)) & = & \top \lor (\top \wedge b) \equiv \top \\ \textit{EPC}_a((c \rhd a) \wedge (b \rhd a)) & = & (\top \wedge c) \lor (\top \wedge b) \equiv c \end{array}
```

Al Planning

M. Helmert, B. Nebel

Normal form

Precondition for effect l to take place: $\mathit{EPC}_l(e)$ $_{\mathsf{Example}}$

Example

```
egin{array}{lll} {\it EPC}_a(b \wedge c) &=& oldsymbol{oldsymbol{oldsymbol{oldsymbol{b}}}} oldsymbol{oldsymbol{oldsymbol{b}}} oldsymbol{oldsymbol{oldsymbol{c}}} {\it EPC}_a(a \wedge (b \rhd a)) &=& oldsymbol{oldsymbol{oldsymbol{c}}} oldsymbol{oldsymbol{b}}} oldsymbol{oldsymbol{oldsymbol{c}}} oldsymbol{oldsymbol{b}}} oldsymbol{oldsymbol{c}} oldsymbol{oldsymbol{c}}} oldsymbol{oldsymbol{oldsymbol{c}}} oldsymbol{oldsymbol{c}}} oldsymbol{oldsymbol{c}} oldsymbol{oldsymbol{c}} oldsymbol{c} oldsymbol{c} oldsymbol{c}} oldsymbol{oldsymbol{c}} oldsymbol{c} oldsy
```

Al Planning

M. Helmert B. Nebel

Normal form

Precondition for effect l to take place: $\mathit{EPC}_l(e)$ $_{\mathsf{Example}}$

Example

```
\begin{aligned} \textit{EPC}_a(b \land c) &= \quad \bot \lor \bot \equiv \bot \\ \textit{EPC}_a(a \land (b \rhd a)) &= \quad \top \lor (\top \land b) \equiv \top \\ \textit{EPC}_a((c \rhd a) \land (b \rhd a)) &= \quad (\top \land c) \lor (\top \land b) \equiv c \lor b \end{aligned}
```

Al Planning

M. Helmert B. Nebel

Normal form

Lemma (A)

Let s be a state, l a literal and e an effect. Then $l \in [e]_s$ if and only if $s \models EPC_l(e)$.

Proof.

Induction on the structure of the effect e.

Base case 1, $e = \top$: By definition of $[\top]_s$ we have $l \notin [\top]_s = \emptyset$ and by definition of $EPC_l(\top)$ we have $s \not\models EPC_l(\top) = \bot$: Both sides of the equivalence are false.

base case 2, e=t. $t \in [t]_s = \{t\}$ by definition, and $s \models EPC_l(l) = \top$ by definition. Both sides are true. Base case 3, e=l' for some literal $l' \neq l$: $l \notin [l']_s = \{l'\}$ by definition, and $s \not\models EPC_l(l') = \bot$ by definition. Both sides are false

Al Planning

M. Helmert, B. Nebel

Normal form

Lemma (A)

Let s be a state, l a literal and e an effect. Then $l \in [e]_s$ if and only if $s \models EPC_l(e)$.

Proof.

Induction on the structure of the effect e.

Base case 1, $e = \top$: By definition of $[\top]_s$ we have $l \notin [\top]_s = \emptyset$ and by definition of $EPC_l(\top)$ we have $s \not\models EPC_l(\top) = \bot$: Both sides of the equivalence are false.

 $s \models EPC_l(l) = \top$ by definition. Both sides are true. Base case 3, e = l' for some literal $l' \neq l$: $l \notin [l']_s = \{l'\}$ by definition, and $s \not\models EPC_l(l') = \bot$ by definition. Both sides are false.

Al Planning

M. Helmert, B. Nebel

Normal form

Lemma (A)

Let s be a state, l a literal and e an effect. Then $l \in [e]_s$ if and only if $s \models EPC_l(e)$.

Proof.

Induction on the structure of the effect e.

Base case 1, $e = \top$: By definition of $[\top]_s$ we have $l \notin [\top]_s = \emptyset$ and by definition of $EPC_l(\top)$ we have $s \not\models EPC_l(\top) = \bot$: Both sides of the equivalence are false.

Base case 2, e = l: $l \in [l]_s = \{l\}$ by definition, and $s \models EPC_l(l) = \top$ by definition. Both sides are true.

Base case 3, e = l' for some literal $l' \neq l$: $l \notin [l']_s = \{l'\}$ by definition, and $s \not\models EPC_l(l') = \bot$ by definition. Both sides are false.

Al Planning

M. Helmert, B. Nebel

Normal form

Lemma (A)

Let s be a state, l a literal and e an effect. Then $l \in [e]_s$ if and only if $s \models EPC_l(e)$.

Proof.

false.

Induction on the structure of the effect e.

Base case 1, $e = \top$: By definition of $[\top]_s$ we have $l \notin [\top]_s = \emptyset$ and by definition of $EPC_l(\top)$ we have $s \not\models EPC_l(\top) = \bot$: Both sides of the equivalence are false.

Base case 2, e=l: $l\in [l]_s=\{l\}$ by definition, and $s\models EPC_l(l)=\top$ by definition. Both sides are true. Base case 3, e=l' for some literal $l'\neq l$: $l\not\in [l']_s=\{l'\}$ by definition, and $s\not\models EPC_l(l')=\bot$ by definition. Both sides are

Al Planning

M. Helmert, B. Nebel

Normal form

```
proof continues. . .
Inductive case 1, e = e_1 \wedge \cdots \wedge e_n:
  l \in [e]_s iff l \in [e_1]_s \cup \cdots \cup [e_n]_s (Def [e_1 \wedge \cdots \wedge e_n]_s)
```

Al Planning

M. Helmert, B. Nebel

Normal form

```
proof continues. . .
Inductive case 1, e = e_1 \wedge \cdots \wedge e_n:
  l \in [e]_s iff l \in [e_1]_s \cup \cdots \cup [e_n]_s (Def [e_1 \wedge \cdots \wedge e_n]_s)
            iff s \models EPC_l(e') for some e' \in \{e_1, \dots, e_n\}
                                                                                  (IH)
```

Al Planning

M. Helmert, B. Nebel

Normal form

```
proof continues. . .
Inductive case 1, e = e_1 \wedge \cdots \wedge e_n:
  l \in [e]_s iff l \in [e_1]_s \cup \cdots \cup [e_n]_s (Def [e_1 \wedge \cdots \wedge e_n]_s)
            iff s \models EPC_l(e') for some e' \in \{e_1, \dots, e_n\}
                                                                                    (IH)
            iff s \models EPC_l(e_1) \lor \cdots \lor EPC_l(e_n)
```

Al Planning

M. Helmert, B. Nebel

Normal form

```
proof continues. . .
Inductive case 1, e = e_1 \wedge \cdots \wedge e_n:
  l \in [e]_s iff l \in [e_1]_s \cup \cdots \cup [e_n]_s (Def [e_1 \wedge \cdots \wedge e_n]_s)
            iff l \in [e']_s for some e' \in \{e_1, \dots, e_n\}
            iff s \models EPC_l(e') for some e' \in \{e_1, \dots, e_n\}
                                                                                   (IH)
            iff s \models EPC_l(e_1) \lor \cdots \lor EPC_l(e_n)
            iff s \models EPC_l(e_1 \land \cdots \land e_n).
                                                                        (Def EPC)
```

Al Planning

M. Helmert, B. Nebel

Normal form

```
proof continues. . .
Inductive case 1, e = e_1 \wedge \cdots \wedge e_n:
  l \in [e]_s iff l \in [e_1]_s \cup \cdots \cup [e_n]_s (Def [e_1 \wedge \cdots \wedge e_n]_s)
             iff l \in [e']_s for some e' \in \{e_1, \ldots, e_n\}
             iff s \models EPC_l(e') for some e' \in \{e_1, \dots, e_n\}
                                                                                        (IH)
             iff s \models EPC_l(e_1) \lor \cdots \lor EPC_l(e_n)
                                                                            (Def EPC)
             iff s \models EPC_l(e_1 \land \cdots \land e_n).
Inductive case 2. e = c \triangleright e':
  l \in [c \triangleright e']_s iff l \in [e']_s and s \models c
                                                                        (Def [c \triangleright e']_s)
```

Al Planning

M. Helmert, B. Nebel

Normal form

```
proof continues. . .
Inductive case 1, e = e_1 \wedge \cdots \wedge e_n:
  l \in [e]_s iff l \in [e_1]_s \cup \cdots \cup [e_n]_s (Def [e_1 \wedge \cdots \wedge e_n]_s)
             iff l \in [e']_s for some e' \in \{e_1, \ldots, e_n\}
             iff s \models EPC_l(e') for some e' \in \{e_1, \dots, e_n\}
                                                                                       (IH)
             iff s \models EPC_l(e_1) \lor \cdots \lor EPC_l(e_n)
             iff s \models EPC_l(e_1 \land \cdots \land e_n).
                                                                           (Def EPC)
Inductive case 2. e = c \triangleright e':
  l \in [c \triangleright e']_s iff l \in [e']_s and s \models c
                                                                       (Def [c \triangleright e']_s)
                     iff s \models EPC_l(e') and s \models c
                                                                                       (IH)
```

Al Planning

M. Helmert, B. Nebel

Normal form

Precondition for effect l to take place: $EPC_l(e)$ Connection to $[e]_s$

```
proof continues...
Inductive case 1, e = e_1 \wedge \cdots \wedge e_n:
  l \in [e]_s iff l \in [e_1]_s \cup \cdots \cup [e_n]_s (Def [e_1 \wedge \cdots \wedge e_n]_s)
             iff l \in [e']_s for some e' \in \{e_1, \dots, e_n\}
             iff s \models EPC_l(e') for some e' \in \{e_1, \dots, e_n\}
                                                                                       (IH)
             iff s \models EPC_l(e_1) \lor \cdots \lor EPC_l(e_n)
             iff s \models EPC_l(e_1 \land \cdots \land e_n).
                                                                           (Def EPC)
Inductive case 2. e = c \triangleright e':
  l \in [c \triangleright e']_s iff l \in [e']_s and s \models c
                                                                       (Def [c \triangleright e']_s)
                    iff s \models EPC_l(e') and s \models c
                                                                                       (IH)
                    iff s \models EPC_l(e') \land c
```

Al Planning

M. Helmert, B. Nebel

Normal form

Precondition for effect l to take place: $EPC_l(e)$ Connection to $[e]_s$

```
proof continues...
Inductive case 1, e = e_1 \wedge \cdots \wedge e_n:
  l \in [e]_s iff l \in [e_1]_s \cup \cdots \cup [e_n]_s (Def [e_1 \wedge \cdots \wedge e_n]_s)
             iff l \in [e']_s for some e' \in \{e_1, \ldots, e_n\}
             iff s \models EPC_l(e') for some e' \in \{e_1, \dots, e_n\}
                                                                                       (IH)
             iff s \models EPC_l(e_1) \lor \cdots \lor EPC_l(e_n)
                                                                            (Def EPC)
             iff s \models EPC_l(e_1 \land \cdots \land e_n).
Inductive case 2. e = c \triangleright e':
  l \in [c \triangleright e']_s iff l \in [e']_s and s \models c
                                                                        (Def [c \triangleright e']_s)
                     iff s \models EPC_l(e') and s \models c
                                                                                       (IH)
                    iff s \models EPC_l(e') \land c
                     iff s \models EPC_l(c \triangleright e').
                                                                            (Def EPC)
```

Al Planning

M. Helmert, B. Nebel

Normal form

Precondition for effect l to take place: $\mathit{EPC}_l(e)$

Connection to the normal form

Remark

Notice that in terms of $EPC_a(e)$ any operator $\langle c,e \rangle$ can be expressed in normal form as

$$\left\langle c, \bigwedge_{a \in A} (\mathsf{EPC}_a(e) \rhd a) \land (\mathsf{EPC}_{\neg a}(e) \rhd \neg a) \right\rangle.$$

Al Planning

M. Helmert, B. Nebel

Normal form

State-space search

Ideas
Progression
Regression
Complexity
Branching

Regressing a state variable

The formula $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$ expresses the value of $a \in A$ after applying o in terms of values of state variables before applying o: Either

- a became true, or
- a was true before and it did not become false.

AI Planning

M. Helmert, B. Nebel

Normal form

Example

Let
$$e = (b \rhd a) \land (c \rhd \neg a) \land b \land \neg d$$
.

variable	$EPC_{}(e) \lor (\cdots \land \neg EPC_{\neg}(e))$
\overline{a}	$b \lor (a \land \neg c)$
b	$\top \lor (b \land \neg \bot) \equiv \top$
c	$\bot \lor (c \land \neg \bot) \equiv c$
d	$\bot \lor (d \land \neg \top) \equiv \bot$

Al Planning

M. Helmert, B. Nebel

Normal form

State-space search

Progression Regression Complexity

Lemma (B)

Let a be a state variable, $o = \langle c, e \rangle \in O$ an operator, s a state and $s' = \mathsf{app}_o(s)$. Then $s \models \mathsf{EPC}_a(e) \lor (a \land \neg \mathsf{EPC}_{\neg a}(e))$ if and only if $s' \models a$.

Proof.

First prove the implication from left to right.

Assume $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. Do a case analysis on the two disjuncts.

- ① Assume that $s \models EPC_a(e)$. By Lemma A $a \in [e]_s$ and hence $s' \models a$.
- ② Assume that $s \models a \land \neg EPC_{\neg a}(e)$. By Lemma A $\neg a \notin [e]_s$ Hence a remains true in s'.

Al Planning

M. Helmert, B. Nebel

Normal form

Lemma (B)

Let a be a state variable, $o = \langle c, e \rangle \in O$ an operator, s a state and $s' = \mathsf{app}_o(s)$. Then $s \models \mathsf{EPC}_a(e) \lor (a \land \neg \mathsf{EPC}_{\neg a}(e))$ if and only if $s' \models a$.

Proof.

First prove the implication from left to right.

Assume $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. Do a case analysis on the two disjuncts.

- **1** Assume that $s \models EPC_a(e)$. By Lemma A $a \in [e]_s$ and hence $s' \models a$.
- 2 Assume that $s \models a \land \neg EPC_{\neg a}(e)$. By Lemma A $\neg a \notin [e]_s$. Hence a remains true in s'.

Al Planning

M. Helmert, B. Nebel

Normal form

Lemma (B)

Let a be a state variable, $o = \langle c, e \rangle \in O$ an operator, s a state and $s' = \mathsf{app}_o(s)$. Then $s \models \mathsf{EPC}_a(e) \lor (a \land \neg \mathsf{EPC}_{\neg a}(e))$ if and only if $s' \models a$.

Proof.

First prove the implication from left to right.

Assume $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. Do a case analysis on the two disjuncts.

- Assume that $s \models EPC_a(e)$. By Lemma A $a \in [e]_s$ and hence $s' \models a$.
- 2 Assume that $s \models a \land \neg EPC_{\neg a}(e)$. By Lemma A $\neg a \notin [e]_s$. Hence a remains true in s'.

Al Planning

M. Helmert, B. Nebel

Normal form

Lemma (B)

Let a be a state variable, $o = \langle c, e \rangle \in O$ an operator, s a state and $s' = \mathsf{app}_o(s)$. Then $s \models \mathsf{EPC}_a(e) \lor (a \land \neg \mathsf{EPC}_{\neg a}(e))$ if and only if $s' \models a$.

Proof.

First prove the implication from left to right.

Assume $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. Do a case analysis on the two disjuncts.

- Assume that $s \models EPC_a(e)$. By Lemma A $a \in [e]_s$ and hence $s' \models a$.
- ② Assume that $s \models a \land \neg EPC_{\neg a}(e)$. By Lemma A $\neg a \notin [e]_s$. Hence a remains true in s'.

Al Planning

M. Helmert, B. Nebel

Normal form

Lemma (B)

Let a be a state variable, $o = \langle c, e \rangle \in O$ an operator, s a state and $s' = \mathsf{app}_o(s)$. Then $s \models \mathsf{EPC}_a(e) \lor (a \land \neg \mathsf{EPC}_{\neg a}(e))$ if and only if $s' \models a$.

Proof.

First prove the implication from left to right.

Assume $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. Do a case analysis on the two disjuncts.

- Assume that $s \models EPC_a(e)$. By Lemma A $a \in [e]_s$ and hence $s' \models a$.
- ② Assume that $s \models a \land \neg EPC_{\neg a}(e)$. By Lemma A $\neg a \notin [e]_s$. Hence a remains true in s'.

Al Planning

M. Helmert, B. Nebel

Normal form

proof continues...

We showed that if the formula is true in s, then a is true in s'. For the second part we show that if the formula is false in s, then a is false in s'.

- ① So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$.
- ② Hence $s \models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ (de Morgan).
- \odot Analyze the two cases: a is true or it is false in s.
 - Assume that $s \models a$. Now $s \models EPC_{\neg a}(e)$ because $s \models \neg a \lor EPC_{\neg a}(e)$. Hence by Lemma A $\neg a \in [e]_s$ and we get $s' \not\models a$.
 - Assume that $s \not\models a$. Because $s \models \neg EPC_a(e)$, by Lemma A $a \not\in [e]_s$ and hence $s' \not\models a$.

Therefore in both cases $s' \not\models a$.

Al Planning

M. Helmert, B. Nebel

Normal form

proof continues...

We showed that if the formula is true in s, then a is true in s'. For the second part we show that if the formula is false in s, then a is false in s'.

- So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$.
- **②** Hence $s \models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ (de Morgan).
- **3** Analyze the two cases: a is true or it is false in s.
 - Assume that $s \models a$. Now $s \models EPC_{\neg a}(e)$ because $s \models \neg a \lor EPC_{\neg a}(e)$. Hence by Lemma A $\neg a \in [e]_s$ and we get $s' \not\models a$.
 - **2** Assume that $s \not\models a$. Because $s \models \neg EPC_a(e)$, by Lemma A $a \not\in [e]_s$ and hence $s' \not\models a$.

Therefore in both cases $s' \not\models a$.

Al Planning

M. Helmert, B. Nebel

Normal form

proof continues...

We showed that if the formula is true in s, then a is true in s'. For the second part we show that if the formula is false in s, then a is false in s'.

- So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$.
- **②** Hence $s \models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ (de Morgan).
- **3** Analyze the two cases: a is true or it is false in s.
 - Assume that $s \models a$. Now $s \models EPC_{\neg a}(e)$ because $s \models \neg a \lor EPC_{\neg a}(e)$. Hence by Lemma A $\neg a \in [e]_s$ and we get $s' \not\models a$.
 - **2** Assume that $s \not\models a$. Because $s \models \neg EPC_a(e)$, by Lemma A $a \not\in [e]_s$ and hence $s' \not\models a$.

Therefore in both cases $s' \not\models a$.

Al Planning

M. Helmert, B. Nebel

Normal form

proof continues...

We showed that if the formula is true in s, then a is true in s'. For the second part we show that if the formula is false in s, then a is false in s'.

- So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$.
- **②** Hence $s \models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ (de Morgan).
- **3** Analyze the two cases: a is true or it is false in s.
 - **4.** Assume that $s \models a$. Now $s \models EPC_{\neg a}(e)$ because $s \models \neg a \lor EPC_{\neg a}(e)$. Hence by Lemma A $\neg a \in [e]_s$ and we get $s' \not\models a$.
 - Assume that $s \not\models a$. Because $s \models \neg EPC_a(e)$, by Lemma A $a \notin [e]_s$ and hence $s' \not\models a$.

Therefore in both cases $s' \not\models a$.

Al Planning

M. Helmert, B. Nebel

Normal form

proof continues...

We showed that if the formula is true in s, then a is true in s'. For the second part we show that if the formula is false in s, then a is false in s'.

- So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$.
- **②** Hence $s \models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ (de Morgan).
- **3** Analyze the two cases: a is true or it is false in s.
 - Assume that $s \models a$. Now $s \models EPC_{\neg a}(e)$ because $s \models \neg a \lor EPC_{\neg a}(e)$. Hence by Lemma A $\neg a \in [e]_s$ and we get $s' \not\models a$.
 - Assume that $s \not\models a$. Because $s \models \neg EPC_a(e)$, by Lemma A $a \not\in [e]_s$ and hence $s' \not\models a$.

Therefore in both cases $s' \not\models a$.

Al Planning

M. Helmert, B. Nebel

Normal form

proof continues...

We showed that if the formula is true in s, then a is true in s'. For the second part we show that if the formula is false in s, then a is false in s'.

- So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$.
- **②** Hence $s \models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ (de Morgan).
- **3** Analyze the two cases: a is true or it is false in s.
 - Assume that $s \models a$. Now $s \models EPC_{\neg a}(e)$ because $s \models \neg a \lor EPC_{\neg a}(e)$. Hence by Lemma A $\neg a \in [e]_s$ and we get $s' \not\models a$.
 - Assume that $s \not\models a$. Because $s \models \neg EPC_a(e)$, by Lemma A $a \not\in [e]_s$ and hence $s' \not\models a$.

Therefore in both cases $s' \not\models a$.

Al Planning

M. Helmert, B. Nebel

Normal form

proof continues...

We showed that if the formula is true in s, then a is true in s'. For the second part we show that if the formula is false in s, then a is false in s'.

- So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$.
- **②** Hence $s \models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ (de Morgan).
- **3** Analyze the two cases: a is true or it is false in s.
 - Assume that $s \models a$. Now $s \models EPC_{\neg a}(e)$ because $s \models \neg a \lor EPC_{\neg a}(e)$. Hence by Lemma A $\neg a \in [e]_s$ and we get $s' \not\models a$.
 - **2** Assume that $s \not\models a$. Because $s \models \neg EPC_a(e)$, by Lemma A $a \not\in [e]_s$ and hence $s' \not\models a$.

Therefore in both cases $s' \not\models a$.

Al Planning

M. Helmert, B. Nebel

Normal form

proof continues...

We showed that if the formula is true in s, then a is true in s'. For the second part we show that if the formula is false in s, then a is false in s'.

- So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$.
- **②** Hence $s \models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ (de Morgan).
- **3** Analyze the two cases: a is true or it is false in s.
 - Assume that $s \models a$. Now $s \models EPC_{\neg a}(e)$ because $s \models \neg a \lor EPC_{\neg a}(e)$. Hence by Lemma A $\neg a \in [e]_s$ and we get $s' \not\models a$.
 - **2** Assume that $s \not\models a$. Because $s \models \neg EPC_a(e)$, by Lemma A $a \not\in [e]_s$ and hence $s' \not\models a$.

Therefore in both cases $s' \not\models a$.

Al Planning

M. Helmert, B. Nebel

Normal form

proof continues...

We showed that if the formula is true in s, then a is true in s'. For the second part we show that if the formula is false in s, then a is false in s'.

- So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$.
- ② Hence $s \models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ (de Morgan).
- **3** Analyze the two cases: a is true or it is false in s.
 - Assume that $s \models a$. Now $s \models EPC_{\neg a}(e)$ because $s \models \neg a \lor EPC_{\neg a}(e)$. Hence by Lemma A $\neg a \in [e]_s$ and we get $s' \not\models a$.
 - **2** Assume that $s \not\models a$. Because $s \models \neg EPC_a(e)$, by Lemma A $a \not\in [e]_s$ and hence $s' \not\models a$.

Therefore in both cases $s' \not\models a$.

Al Planning

M. Helmert, B. Nebel

Normal form

Regression: general definition

We base the definition of regression on formulae $EPC_l(e)$.

Definition

Let ϕ be a propositional formula and $o=\langle c,e\rangle$ an operator. The regression of ϕ with respect to o is

$$regr_o(\phi) = c \wedge \phi_r \wedge f$$

where

• ϕ_r is obtained from ϕ by replacing each $a \in A$ by $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$, and

The formula f says that no state variable may become simultaneously true and false.

Al Planning

M. Helmert, B. Nebel

Normal form

- $a \wedge c \wedge \neg b$ $regr_{\langle a, (c \triangleright b) \wedge (b \triangleright \neg b) \rangle}(b) \equiv a \wedge (c \vee (b \wedge \neg b)) \wedge \neg (c \wedge b) \equiv a \wedge c \wedge \neg b$

Al Planning

M. Helmert, B. Nebel

Normal form

Al Planning

M. Helmert, B. Nebel

Normal form

State-space search Ideas Progression

Regression Complexity Branching

Al Planning

M. Helmert, B. Nebel

Normal form

State-space search Ideas Progression

Regression Complexity Branching

Al Planning

M. Helmert, B. Nebel

Normal form

State-space search Ideas Progression Regression

- $regr_{\langle a,(c \rhd b) \land (d \rhd \neg b) \rangle}(b) \equiv a \land (c \lor (b \land \neg d)) \land \neg (c \land d) \equiv a \land (c \lor b) \land (c \lor \neg d) \land (\neg c \lor \neg d)$

Al Planning

M. Helmert, B. Nebel

Normal form

Regression: examples Blocks World with conditional effects

Operators to move blocks A and B onto the table from the other block if they are clear:

$$o_1 = \langle \top, (AonB \land Aclear) \rhd (AonT \land Bclear \land \neg AonB) \rangle$$

 $o_2 = \langle \top, (BonA \land Bclear) \rhd (BonT \land Aclear \land \neg BonA) \rangle$

Plan for putting both blocks onto the table from any blocks world state with two blocks is o_2, o_1 . Proof by regression:

$$\begin{array}{lll} G &=& AonT \land BonT \\ \phi_1 &=& regr_{o_1}(G) \equiv ((AonB \land Aclear) \lor AonT) \land BonT \\ \phi_2 &=& regr_{o_2}(\phi_1) \\ &\equiv& ((AonB \land ((BonA \land Bclear) \lor Aclear)) \lor AonT) \\ &\wedge& ((BonA \land Bclear) \lor BonT) \end{array}$$

All three 2-block states satisfy ϕ_2 . Similar plans exist for any number of blocks.

Al Planning

M. Helmert, B. Nebel

Normal form

Regression: examples Incrementing a binary number

$$(\neg b_0 \rhd b_0) \land \\ ((\neg b_1 \land b_0) \rhd (b_1 \land \neg b_0)) \land \\ ((\neg b_2 \land b_1 \land b_0) \rhd (b_2 \land \neg b_1 \land \neg b_0))$$

$$EPC_{b_2}(e) = \neg b_2 \land b_1 \land b_0$$

$$EPC_{b_1}(e) = \neg b_1 \land b_0$$

$$EPC_{b_0}(e) = \neg b_0$$

$$EPC_{\neg b_2}(e) = \bot$$

$$EPC_{\neg b_1}(e) = \neg b_2 \land b_1 \land b_0$$

Regression replaces state variables as follows:

$$\begin{array}{lll} b_2 & \text{by} & (\neg b_2 \wedge b_1 \wedge b_0) \vee (b_2 \wedge \neg \bot) \equiv (b_1 \wedge b_0) \vee b_2 \\ b_1 & \text{by} & (\neg b_1 \wedge b_0) \vee (b_1 \wedge \neg (\neg b_2 \wedge b_1 \wedge b_0)) \\ & & \equiv (\neg b_1 \wedge b_0) \vee (b_1 \wedge (b_2 \vee \neg b_0)) \\ b_0 & \text{by} & \neg b_0 \vee (b_0 \wedge \neg ((\neg b_1 \vee \neg b_2) \wedge b_0)) \equiv \neg b_0 \vee (b_1 \wedge b_2) \end{array}$$

 $EPC_{\neg b_0}(e) = (\neg b_1 \wedge b_0) \vee (\neg b_2 \wedge b_1 \wedge b_0) \equiv (\neg b_1 \vee \neg b_2) \wedge b_0$

Al Planning

M. Helmert, B. Nebel

Normal form

Lemma (C)

Let ϕ be a formula, o an operator, s any state and $s' = \mathsf{app}_o(s)$. Then $s \models \mathsf{regr}_o(\phi)$ if and only if $s' \models \phi$.

Proof.

Let e be the effect of o. We show by structural induction over subformulae ϕ' of ϕ that $s \models \phi'_r$ iff $s' \models \phi'$, where ϕ'_r is ϕ' with every $a \in A$ replaced by $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. Rest of $regr_o(\phi)$ just states that o is applicable in s.

Base cases $1 \& 2 \ \phi' = \top$ or $\phi' = \bot$: Trivial as $\phi'_r = \phi$.

Base cases $3 \ \phi' = a$ for some $a \in A$: Now $\phi'_r = EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e)).$ By Lemma B $s \models \phi'_r$ iff $s' \models \phi'$.

Al Planning

M. Helmert, B. Nebel

Normal form

Lemma (C)

Let ϕ be a formula, o an operator, s any state and $s' = \mathsf{app}_o(s)$. Then $s \models \mathsf{regr}_o(\phi)$ if and only if $s' \models \phi$.

Proof.

Let e be the effect of o. We show by structural induction over subformulae ϕ' of ϕ that $s \models \phi'_r$ iff $s' \models \phi'$, where ϕ'_r is ϕ' with every $a \in A$ replaced by $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. Rest of $regr_o(\phi)$ just states that o is applicable in s.

Induction hypothesis $s \models \phi'_r$ if and only if $s' \models \phi'$.

Base cases 1 & 2 $\phi' = \top$ or $\phi' = \bot$: Trivial as $\phi'_r = \phi'$. Base case 3 $\phi' = a$ for some $a \in A$: Now

> $\phi_r' = EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e)).$ By Lemma B $s \models \phi_r'$ iff $s' \models \phi'.$

Al Planning

M. Helmert, B. Nebel

Normal form

Lemma (C)

Let ϕ be a formula, o an operator, s any state and $s' = \mathsf{app}_o(s)$. Then $s \models \mathsf{regr}_o(\phi)$ if and only if $s' \models \phi$.

Proof.

Let e be the effect of o. We show by structural induction over subformulae ϕ' of ϕ that $s \models \phi'_r$ iff $s' \models \phi'$, where ϕ'_r is ϕ' with every $a \in A$ replaced by $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. Rest of $regr_o(\phi)$ just states that o is applicable in s.

Induction hypothesis $s \models \phi'_r$ if and only if $s' \models \phi'$.

Base cases 1 & 2 $\phi' = \top$ or $\phi' = \bot$: Trivial as $\phi'_r = \phi'$.

Base case 3 $\phi'=a$ for some $a\in A$: Now $\phi'_r=EPC_a(e)\vee(a\wedge\neg EPC_{\neg a}(e)).$ By Lemma B $s\models\phi'_r$ iff $s'\models\phi'.$

Al Planning

M. Helmert, B. Nebel

Normal form

Lemma (C)

Let ϕ be a formula, o an operator, s any state and $s' = \mathsf{app}_o(s)$. Then $s \models \mathsf{regr}_o(\phi)$ if and only if $s' \models \phi$.

Proof.

Let e be the effect of o. We show by structural induction over subformulae ϕ' of ϕ that $s \models \phi'_r$ iff $s' \models \phi'$, where ϕ'_r is ϕ' with every $a \in A$ replaced by $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. Rest of $regr_o(\phi)$ just states that o is applicable in s.

Induction hypothesis $s \models \phi'_r$ if and only if $s' \models \phi'$.

Base cases 1 & 2 $\,\phi' = \top$ or $\,\phi' = \bot$: Trivial as $\,\phi'_r = \phi'.$

Base case 3 $\phi'=a$ for some $a\in A$: Now $\phi'_r=EPC_a(e)\vee(a\wedge\neg EPC_{\neg a}(e)).$

Al Planning

M. Helmert, B. Nebel

Normal form

Lemma (C)

Let ϕ be a formula, o an operator, s any state and $s' = \mathsf{app}_o(s)$. Then $s \models \mathsf{regr}_o(\phi)$ if and only if $s' \models \phi$.

Proof.

Let e be the effect of o. We show by structural induction over subformulae ϕ' of ϕ that $s \models \phi'_r$ iff $s' \models \phi'$, where ϕ'_r is ϕ' with every $a \in A$ replaced by $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. Rest of $regr_o(\phi)$ just states that o is applicable in s.

Induction hypothesis $s \models \phi'_r$ if and only if $s' \models \phi'$.

Base cases 1 & 2 $\phi' = \top$ or $\phi' = \bot$: Trivial as $\phi'_r = \phi'$.

Base case 3 $\phi'=a$ for some $a\in A$: Now $\phi'_r= EPC_a(e)\vee (a\wedge \neg EPC_{\neg a}(e)).$ By Lemma B $s\models \phi'_r$ iff $s'\models \phi'.$

Al Planning

M. Helmert, B. Nebel

Normal form

proof continues...

- Inductive case 1 $\phi' = \neg \psi$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the truth-definition of \neg .
- Inductive case 2 $\phi' = \psi \lor \psi'$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$, and $s \models \psi'_r$ iff $s' \models \psi'$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the truth-definition of \lor .
- Inductive case 3 $\phi' = \psi \wedge \psi'$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$, and $s \models \psi'_r$ iff $s' \models \psi'$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the truth-definition of \wedge .

Al Planning

M. Helmert, B. Nebel

Normal form

proof continues...

- Inductive case 1 $\phi' = \neg \psi$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the truth-definition of \neg .
- Inductive case 2 $\phi' = \psi \lor \psi'$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$, and $s \models \psi'_r$ iff $s' \models \psi'$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the truth-definition of \lor .
- Inductive case 3 $\phi'=\psi\wedge\psi'$: By the induction hypothesis $s\models\psi_r$ iff $s'\models\psi$, and $s\models\psi_r'$ iff $s'\models\psi'$. Hence $s\models\phi_r'$ iff $s'\models\phi'$ by the truth-definition of \wedge .

Al Planning

M. Helmert, B. Nebel

Normal form

proof continues...

- Inductive case 1 $\phi' = \neg \psi$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the truth-definition of \neg .
- Inductive case 2 $\phi' = \psi \lor \psi'$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$, and $s \models \psi'_r$ iff $s' \models \psi'$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the truth-definition of \lor .
- Inductive case 3 $\phi' = \psi \wedge \psi'$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$, and $s \models \psi'_r$ iff $s' \models \psi'$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the truth-definition of \wedge .

Al Planning

M. Helmert, B. Nebel

Normal form

Regression: complexity issues

The following two tests are useful when generating a search tree with regression.

- Testing that a formula $regr_o(\phi)$ does not represent the empty set (= search is in a blind alley). For example, $regr_{(a,\neg p)}(p) \equiv a \land \bot \equiv \bot$.
- ② Testing that a regression step does not make the set of states smaller (= more difficult to reach). For example, $regr_{(b,c)}(a) \equiv a \wedge b$.

Both of these problems are NP-hard.

Al Planning

M. Helmert, B. Nebel

Normal form

Regression: complexity issues

The formula $regr_{o_1}(regr_{o_2}(\dots regr_{o_{n-1}}(regr_{o_n}(\phi))))$ may have size $\mathcal{O}(|\phi||o_1||o_2|\dots |o_{n-1}||o_n|)$, i.e. the product of the sizes of ϕ and the operators.

The size in the worst case $\mathcal{O}(m^n)$ is hence exponential in n.

Logical simplifications

- ② $a \lor \phi \equiv a \lor \phi[\bot/a]$, $\neg a \lor \phi \equiv \neg a \lor \phi[\top/a]$, $a \land \phi \equiv a \land \phi[\top/a]$, $\neg a \land \phi \equiv \neg a \land \phi[\bot/a]$

To obtain the maximum benefit from the last equivalences, e.g. for $(a \wedge b) \wedge \phi(a)$, the equivalences for associativity and commutativity are useful: $(\phi_1 \vee \phi_2) \vee \phi_3 \equiv \phi_1 \vee (\phi_2 \vee \phi_3)$, $\phi_1 \vee \phi_2 \equiv \phi_2 \vee \phi_1$, $(\phi_1 \wedge \phi_2) \wedge \phi_3 \equiv \phi_1 \wedge (\phi_2 \wedge \phi_3)$, $\phi_1 \wedge \phi_2 \equiv \phi_2 \wedge \phi_1$.

Al Planning

M. Helmert, B. Nebel

Normal form

Regression: generation of search trees

Problem Formulae obtained with regression may become very big.

Cause Disjunctivity in the formulae. Formulae without disjunctions easily convertible to small formulae $l_1 \wedge \cdots \wedge l_n$ where l_i are literals and n is at most the number of state variables.

Solution Handle disjunctivity when generating search trees. Alternatives:

- O Do nothing. (May lead to very big formulae!!!)
- Always eliminate all disjunctivity.
- Reduce disjunctivity if formula becomes too big.

Al Planning

M. Helmert, B. Nebel

Normal form

Regression: generation of search trees Unrestricted regression (= do nothing about formula size)

Reach goal $a \wedge b$ from state I such that $I \models \neg a \wedge \neg b \wedge \neg c$.

Al Planning

M. Helmert, B. Nebel

Normal form

Regression: generation of search trees

Full splitting (= eliminate all disjunctivity)

- Planners for STRIPS operators only need to use formulae $l_1 \wedge \cdots \wedge l_n$ where l_i are literals.
- Some PDDL planners also restrict to this class of formulae. This is done as follows.
 - $regr_o(\phi)$ is transformed to disjunctive normal form (DNF): $(l_1^1 \wedge \cdots \wedge l_{n_1}^1) \vee \cdots \vee (l_1^m \wedge \cdots \wedge l_{n_m}^m)$.
 - ② Each disjunct $l_1^i \wedge \cdots \wedge l_{n_i}^i$ is handled in its own subtree of the search tree.
 - The DNF formulae need not exist in its entirety explicitly: generate one disjunct at a time.
- Hence branching is both on the choice of operator and on the choice of the disjunct of the DNF formula.
- This leads to an increased branching factor and bigger search trees, but avoids big formulae.

Al Planning

M. Helmert, B. Nebel

Normal form

Regression: generation of search trees Full splitting

Reach goal $a \wedge b$ from state I such that $I \models \neg a \wedge \neg b \wedge \neg c$. $(\neg c \vee a) \wedge b$ in DNF is $(\neg c \wedge b) \vee (a \wedge b)$. It is split to $\neg c \wedge b$ and $a \wedge b$.

Al Planning

M. Helmert, B. Nebel

Normal form

Regression: generation of search trees Restricted splitting

- With full splitting search tree can be exponentially bigger than without splitting. (But it is not necessary to construct the DNF formulae explicitly!)
- Without splitting the formulae may have size that is exponential in the number of state variables.
- A compromise is to split formulae only when necessary: combine benefits of the two extremes.
- There are several ways to split a formula ϕ to ϕ_1, \ldots, ϕ_n such that $\phi \equiv \phi_1 \vee \cdots \vee \phi_n$. For example:
 - **1** Transform ϕ to $\phi_1 \lor \cdots \lor \phi_n$ by equivalences like distributivity $(\phi_1 \lor \phi_2) \land \phi_3 \equiv (\phi_1 \land \phi_3) \lor (\phi_2 \land \phi_3)$.
 - 2 Choose state variable a, set $\phi_1 = a \wedge \phi$ and $\phi_2 = \neg a \wedge \phi$, and simplify with equivalences like $a \wedge \psi \equiv a \wedge \psi[\top/a]$.

Al Planning

M. Helmert, B. Nebel

Normal form