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Normal form

Normal form for effects

1. Similarly to normal forms in propositional logic (DNF, CNF, NNF,
. . . ) we can define a normal form for effects.

2. Nesting of conditionals, as in a B (b B c), can be eliminated.

3. Effects e within a conditional effect φ B e can be restricted to atomic
effects (a or ¬a).

4. Only a small polynomial increase in size by transformation to normal
form.
Compare: transformation to CNF or DNF may increase formula size
exponentially.
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Normal form

Equivalences on effects

c B (e1 ∧ · · · ∧ en) ≡ (c B e1) ∧ · · · ∧ (c B en) (1)

c1 B (c2 B e) ≡ (c1 ∧ c2) B e (2)

(c1 B e) ∧ (c2 B e) ≡ (c1 ∨ c2) B e (3)

e ∧ (c B e) ≡ e (4)

e ≡ > B e (5)

e ≡ > ∧ e (6)

e1 ∧ e2 ≡ e2 ∧ e1 (7)

(e1 ∧ e2) ∧ e3 ≡ e1 ∧ (e2 ∧ e3) (8)
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Normal form

Normal form for operators and effects

Definition
An operator 〈c , e〉 is in normal form if for all occurrences of c ′ B e ′ in e
the effect e ′ is either a or ¬a for some a ∈ A, and there is at most one
occurrence of any atomic effect in e.

Theorem
For every operator there is an equivalent one in normal form.

Proof is constructive: we can transform any operator into normal form by
using the equivalences from the previous slide.
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Normal form

Normal form for effects
Example

Example

(a B (b ∧
(c B (¬d ∧ e)))) ∧

(¬b B e)

transformed to normal form is

(a B b) ∧
((a ∧ c) B¬d) ∧

((¬b ∨ (a ∧ c))B e)
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Normal form STRIPS operators

STRIPS operators

Definition
An operator 〈c , e〉 is a STRIPS operator if

1. c is a conjunction of literals, and

2. e is a conjunction of atomic effects.

Hence every STRIPS operator is of the form

〈l1 ∧ · · · ∧ ln, l ′1 ∧ · · · ∧ l ′m〉

where li are literals and l ′j are atomic effects.

STRIPS
STanford Research Institute Planning System, Fikes & Nilsson, 1971.
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State-space search

Planning by state-space search

There are many alternative ways of doing planning by state-space search.

1. different ways of expressing planning as a search problem:

1.1 search direction: forward, backward
1.2 representation of search space: states, sets of states

2. different search algorithms: depth-first, breadth-first, informed
(heuristic) search (systematic: A∗, IDA∗, . . . ; local: hill-climbing,
simulated annealing, . . . ), . . .

3. different ways of controlling search:

3.1 heuristics for heuristic search algorithms
3.2 pruning techniques: invariants, symmetry elimination, . . .
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State-space search Ideas

Planning by forward search
with depth-first search

G

I
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State-space search Ideas

Planning by backward search
with depth-first search, one state at a time

G

I
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State-space search Ideas

Planning by backward search
with depth-first search, for state sets (represented as formulae)

G

I

Gφ1φ1 = regr−→(G ) φ2

φ2 = regr−→(φ1)

φ3

φ3 = regr−→(φ2), I |= φ3
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State-space search Progression

Progression

I Progression means computing the successor state appo(s) of s with
respect to o.

I Used in forward search: from the initial state toward the goal states.

I Very easy and efficient to implement.
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State-space search Regression

Regression

I Regression is computing the possible predecessor states of a set of
states.

I The formula regro(φ) represents the states from which a state
represented by φ is reached by operator o.

I Used in backward search: from the goal states toward the initial state.

I Regression is powerful because it allows handling sets of states
(progression: only one state at a time.)

I Handling state sets (formulae) is more complicated than handling
states: many questions about regression are NP-hard.
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State-space search Regression

Regression for STRIPS operators

I Regression for STRIPS operators is very simple.

I Goals are conjunctions of literals l1 ∧ · · · ∧ ln.

I First step: Choose an operator that makes some of l1, . . . , ln true and
makes none of them false.

I Second step: Form a new goal by removing the fulfilled goal literals
and adding the preconditions of the operator.
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State-space search Regression

Regression for STRIPS operators
Definition

Definition
The STRIPS-regression regrstro (φ) of φ = l ′′1 ∧ · · · ∧ l ′′k with respect to

o = 〈l1 ∧ · · · ∧ ln, l ′1 ∧ · · · ∧ l ′m〉

is the conjunction of literals∧ (
({l ′′1 , . . . , l ′′k } \ {l ′1, . . . , l ′m}) ∪ {l1, . . . , ln}

)
provided that {l ′1, . . . , l ′m} ∩ {l ′′1 , . . . , l ′′k } = ∅.
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State-space search Regression

Regression for STRIPS operators
Example

NOTE: Predecessor states are in general not unique.

This picture is just for illustration purposes.

o3o2o1

o1 = 〈�on� ∧�clr,¬�on� ∧�onT ∧�clr〉
o2 = 〈�on� ∧�clr ∧�clr,¬�clr ∧ ¬�on� ∧�on� ∧�clr〉
o3 = 〈�onT ∧�clr ∧�clr,¬�clr ∧ ¬�onT ∧�on�〉

G =�on� ∧�on�
φ1 = regrstro3

(G ) = �on� ∧�onT ∧�clr ∧�clr
φ2 = regrstro2

(φ1) = �onT ∧�clr ∧�on� ∧�clr
φ3 = regrstro1

(φ2) = �onT ∧�on� ∧�clr ∧�on�
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State-space search Regression

Regression for general operators

I With disjunction and conditional effects, things become more tricky.
How to regress A ∨ (B ∧ C ) with respect to 〈Q,D B B〉?

I The story about goals and subgoals and fulfilling subgoals, as in the
STRIPS case, is no longer useful.

I We present a general method for doing regression for any formula and
any operator.

I Now we extensively use the idea of representing sets of states as
formulae.
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State-space search Regression

Precondition for effect l to take place: EPCl(e)
Definition

Definition
The condition EPCl(e) for literal l to become true under effect e is defined
as follows.

EPCl(l) = >
EPCl(l

′) = ⊥ when l 6= l ′ (for literals l ′)
EPCl(>) = ⊥

EPCl(e1 ∧ · · · ∧ en) = EPCl(e1) ∨ · · · ∨ EPCl(en)
EPCl(c B e) = EPCl(e) ∧ c
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State-space search Regression

Precondition for effect l to take place: EPCl(e)
Example

Example

EPCa(b ∧ c) = ⊥ ∨⊥ ≡ ⊥
EPCa(a ∧ (b B a)) = > ∨ (> ∧ b) ≡ >

EPCa((c B a) ∧ (b B a)) = (> ∧ c) ∨ (> ∧ b) ≡ c ∨ b

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 19 / 39

State-space search Regression

Precondition for effect l to take place: EPCl(e)
Connection to [e]s

Lemma (A)

Let s be a state, l a literal and e an effect. Then l ∈ [e]s if and only if
s |= EPCl(e).

Proof.
Induction on the structure of the effect e.
Base case 1, e = >: By definition of [>]s we have l 6∈ [>]s = ∅ and by
definition of EPCl(>) we have s 6|= EPCl(>) = ⊥: Both sides of the
equivalence are false.
Base case 2, e = l : l ∈ [l ]s = {l} by definition, and s |= EPCl(l) = > by
definition. Both sides are true.
Base case 3, e = l ′ for some literal l ′ 6= l : l 6∈ [l ′]s = {l ′} by definition,
and s 6|= EPCl(l

′) = ⊥ by definition. Both sides are false.
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State-space search Regression

Precondition for effect l to take place: EPCl(e)
Connection to [e]s

proof continues. . .

Inductive case 1, e = e1 ∧ · · · ∧ en:
l ∈ [e]s iff l ∈ [e1]s ∪ · · · ∪ [en]s (Def [e1 ∧ · · · ∧ en]s)

iff l ∈ [e ′]s for some e ′ ∈ {e1, . . . , en}
iff s |= EPCl(e

′) for some e ′ ∈ {e1, . . . , en} (IH)
iff s |= EPCl(e1) ∨ · · · ∨ EPCl(en)
iff s |= EPCl(e1 ∧ · · · ∧ en). (Def EPC )

Inductive case 2, e = c B e ′:
l ∈ [c B e ′]s iff l ∈ [e ′]s and s |= c (Def [c B e ′]s)

iff s |= EPCl(e
′) and s |= c (IH)

iff s |= EPCl(e
′) ∧ c

iff s |= EPCl(c B e ′). (Def EPC )
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State-space search Regression

Precondition for effect l to take place: EPCl(e)
Connection to the normal form

Remark
Notice that in terms of EPCa(e) any operator 〈c , e〉 can be expressed in
normal form as〈

c ,
∧
a∈A

(EPCa(e) B a) ∧ (EPC¬a(e) B ¬a)

〉
.
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State-space search Regression

Regression: definition for state variables

Regressing a state variable

The formula EPCa(e)∨ (a∧¬EPC¬a(e)) expresses the value of a ∈ A after
applying o in terms of values of state variables before applying o: Either

I a became true, or

I a was true before and it did not become false.
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State-space search Regression

Regression: definition for state variables

Example

Let e = (b B a) ∧ (c B ¬a) ∧ b ∧ ¬d .

variable EPC...(e) ∨ (· · · ∧ ¬EPC¬...(e))

a b ∨ (a ∧ ¬c)
b > ∨ (b ∧ ¬⊥) ≡ >
c ⊥ ∨ (c ∧ ¬⊥) ≡ c
d ⊥ ∨ (d ∧ ¬>) ≡ ⊥
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State-space search Regression

Regression: definition for state variables

Lemma (B)

Let a be a state variable, o = 〈c , e〉 ∈ O an operator, s a state and
s ′ = appo(s). Then s |= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)) if and only if s ′ |= a.

Proof.
First prove the implication from left to right.
Assume s |= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)). Do a case analysis on the two
disjuncts.

1. Assume that s |= EPCa(e). By Lemma A a ∈ [e]s and hence s ′ |= a.

2. Assume that s |= a ∧ ¬EPC¬a(e). By Lemma A ¬a 6∈ [e]s . Hence a
remains true in s ′.
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State-space search Regression

Regression: definition for state variables

proof continues. . .

We showed that if the formula is true in s, then a is true in s ′.
For the second part we show that if the formula is false in s, then a is false
in s ′.

1. So assume s 6|= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).

2. Hence s |= ¬EPCa(e) ∧ (¬a ∨ EPC¬a(e)) (de Morgan).

3. Analyze the two cases: a is true or it is false in s.

3.1 Assume that s |= a. Now s |= EPC¬a(e) because s |= ¬a ∨ EPC¬a(e).
Hence by Lemma A ¬a ∈ [e]s and we get s ′ 6|= a.

3.2 Assume that s 6|= a. Because s |= ¬EPCa(e), by Lemma A a 6∈ [e]s
and hence s ′ 6|= a.

Therefore in both cases s ′ 6|= a.
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State-space search Regression

Regression: general definition

We base the definition of regression on formulae EPCl(e).

Definition
Let φ be a propositional formula and o = 〈c , e〉 an operator.
The regression of φ with respect to o is

regro(φ) = c ∧ φr ∧ f

where

1. φr is obtained from φ by replacing each a ∈ A by
EPCa(e) ∨ (a ∧ ¬EPC¬a(e)), and

2. f =
∧

a∈A ¬(EPCa(e) ∧ EPC¬a(e)).

The formula f says that no state variable may become simultaneously true
and false.
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State-space search Regression

Regression: examples

1. regr〈a,b〉(b) ≡ a ∧ (> ∨ (b ∧ ¬⊥)) ∧ > ≡ a

2. regr〈a,b〉(b ∧ c ∧ d) ≡
a∧ (>∨ (b∧¬⊥))∧ (⊥∨ (c ∧¬⊥))∧ (⊥∨ (d ∧¬⊥))∧> ≡ a∧ c ∧ d

3. regr〈a,cBb〉(b) ≡ a ∧ (c ∨ (b ∧ ¬⊥)) ∧ > ≡ a ∧ (c ∨ b)

4. regr〈a,(cBb)∧(bB¬b)〉(b) ≡ a ∧ (c ∨ (b ∧ ¬b)) ∧ ¬(c ∧ b) ≡ a ∧ c ∧ ¬b

5. regr〈a,(cBb)∧(dB¬b)〉(b) ≡ a ∧ (c ∨ (b ∧ ¬d)) ∧ ¬(c ∧ d) ≡
a ∧ (c ∨ b) ∧ (c ∨ ¬d) ∧ (¬c ∨ ¬d)

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 28 / 39



State-space search Regression

Regression: examples
Blocks World with conditional effects

Operators to move blocks A and B onto the table from the other block if
they are clear:

o1 = 〈>, (AonB ∧ Aclear) B (AonT ∧ Bclear ∧ ¬AonB)〉
o2 = 〈>, (BonA ∧ Bclear) B (BonT ∧ Aclear ∧ ¬BonA)〉

Plan for putting both blocks onto the table from any blocks world state
with two blocks is o2, o1. Proof by regression:

G = AonT ∧ BonT
φ1 = regro1(G ) ≡ ((AonB ∧ Aclear) ∨ AonT) ∧ BonT
φ2 = regro2(φ1)

≡ ((AonB ∧ ((BonA ∧ Bclear) ∨ Aclear)) ∨ AonT)
∧ ((BonA ∧ Bclear) ∨ BonT)

All three 2-block states satisfy φ2. Similar plans exist for any number of
blocks.
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State-space search Regression

Regression: examples
Incrementing a binary number

(¬b0 B b0) ∧
((¬b1 ∧ b0) B (b1 ∧ ¬b0)) ∧

((¬b2 ∧ b1 ∧ b0) B (b2 ∧ ¬b1 ∧ ¬b0))

EPCb2(e) =¬b2 ∧ b1 ∧ b0

EPCb1(e) =¬b1 ∧ b0

EPCb0(e) =¬b0

EPC¬b2(e) =⊥
EPC¬b1(e) =¬b2 ∧ b1 ∧ b0

EPC¬b0(e) = (¬b1 ∧ b0) ∨ (¬b2 ∧ b1 ∧ b0) ≡ (¬b1 ∨ ¬b2) ∧ b0

Regression replaces state variables as follows:

b2 by (¬b2 ∧ b1 ∧ b0) ∨ (b2 ∧ ¬⊥) ≡ (b1 ∧ b0) ∨ b2

b1 by (¬b1 ∧ b0) ∨ (b1 ∧ ¬(¬b2 ∧ b1 ∧ b0))
≡ (¬b1 ∧ b0) ∨ (b1 ∧ (b2 ∨ ¬b0))

b0 by ¬b0 ∨ (b0 ∧ ¬((¬b1 ∨ ¬b2) ∧ b0)) ≡ ¬b0 ∨ (b1 ∧ b2)

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 30 / 39

State-space search Regression

Regression: properties

Lemma (C)

Let φ be a formula, o an operator, s any state and s ′ = appo(s). Then
s |= regro(φ) if and only if s ′ |= φ.

Proof.
Let e be the effect of o. We show by structural induction over
subformulae φ′ of φ that s |= φ′r iff s ′ |= φ′, where φ′r is φ′ with every
a ∈ A replaced by EPCa(e) ∨ (a ∧ ¬EPC¬a(e)). Rest of regro(φ) just
states that o is applicable in s.

Induction hypothesis s |= φ′r if and only if s ′ |= φ′.

Base cases 1 & 2 φ′ = > or φ′ = ⊥: Trivial as φ′r = φ′.

Base case 3 φ′ = a for some a ∈ A: Now
φ′r = EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).
By Lemma B s |= φ′r iff s ′ |= φ′.
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State-space search Regression

Regression: properties

proof continues. . .

Inductive case 1 φ′ = ¬ψ: By the induction hypothesis s |= ψr iff s ′ |= ψ.
Hence s |= φ′r iff s ′ |= φ′ by the truth-definition of ¬.

Inductive case 2 φ′ = ψ ∨ ψ′: By the induction hypothesis s |= ψr iff
s ′ |= ψ, and s |= ψ′r iff s ′ |= ψ′. Hence s |= φ′r iff s ′ |= φ′

by the truth-definition of ∨.

Inductive case 3 φ′ = ψ ∧ ψ′: By the induction hypothesis s |= ψr iff
s ′ |= ψ, and s |= ψ′r iff s ′ |= ψ′. Hence s |= φ′r iff s ′ |= φ′

by the truth-definition of ∧.
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State-space search Complexity

Regression: complexity issues

The following two tests are useful when generating a search tree with
regression.

1. Testing that a formula regro(φ) does not represent the empty set (=
search is in a blind alley).
For example, regr〈a,¬p〉(p) ≡ a ∧ ⊥ ≡ ⊥.

2. Testing that a regression step does not make the set of states smaller
(= more difficult to reach).
For example, regr〈b,c〉(a) ≡ a ∧ b.

Both of these problems are NP-hard.
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State-space search Complexity

Regression: complexity issues

The formula regro1(regro2(. . . regron−1(regron(φ)))) may have size
O(|φ||o1||o2| . . . |on−1||on|), i.e. the product of the sizes of φ and the
operators.
The size in the worst case O(mn) is hence exponential in n.

Logical simplifications

1. ⊥ ∧ φ ≡ ⊥, > ∧ φ ≡ φ, ⊥ ∨ φ ≡ φ, > ∨ φ ≡ >
2. a ∨ φ ≡ a ∨ φ[⊥/a], ¬a ∨ φ ≡ ¬a ∨ φ[>/a], a ∧ φ ≡ a ∧ φ[>/a],

¬a ∧ φ ≡ ¬a ∧ φ[⊥/a]

To obtain the maximum benefit from the last equivalences, e.g. for
(a ∧ b) ∧ φ(a), the equivalences for associativity and commutativity are
useful: (φ1 ∨ φ2) ∨ φ3 ≡ φ1 ∨ (φ2 ∨ φ3), φ1 ∨ φ2 ≡ φ2 ∨ φ1,
(φ1 ∧ φ2) ∧ φ3 ≡ φ1 ∧ (φ2 ∧ φ3), φ1 ∧ φ2 ≡ φ2 ∧ φ1.
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State-space search Branching

Regression: generation of search trees

Problem Formulae obtained with regression may become very big.

Cause Disjunctivity in the formulae. Formulae without disjunctions
easily convertible to small formulae l1 ∧ · · · ∧ ln where li are
literals and n is at most the number of state variables.

Solution Handle disjunctivity when generating search trees. Alternatives:

1. Do nothing. (May lead to very big formulae!!!)
2. Always eliminate all disjunctivity.
3. Reduce disjunctivity if formula becomes too big.
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State-space search Branching

Regression: generation of search trees
Unrestricted regression (= do nothing about formula size)

Reach goal a ∧ b from state I such that I |= ¬a ∧ ¬b ∧ ¬c .

G = a ∧ b

¬a ∧ a

(¬c ∨ a) ∧ b

(¬c ∨ a) ∧ ¬a

(¬c ∨ a) ∧ b

〈¬a, b〉

〈b,¬
c B a〉

〈¬a, b〉

〈b,¬c B a〉
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State-space search Branching

Regression: generation of search trees
Full splitting (= eliminate all disjunctivity)

I Planners for STRIPS operators only need to use formulae l1 ∧ · · · ∧ ln
where li are literals.

I Some PDDL planners also restrict to this class of formulae. This is
done as follows.

1. regro(φ) is transformed to disjunctive normal form (DNF):
(l11 ∧ · · · ∧ l1n1

) ∨ · · · ∨ (lm1 ∧ · · · ∧ lmnm
).

2. Each disjunct l i1 ∧ · · · ∧ l ini
is handled in its own subtree of the search

tree.
3. The DNF formulae need not exist in its entirety explicitly: generate one

disjunct at a time.

I Hence branching is both on the choice of operator and on the choice
of the disjunct of the DNF formula.

I This leads to an increased branching factor and bigger search trees,
but avoids big formulae.
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State-space search Branching

Regression: generation of search trees
Full splitting

Reach goal a ∧ b from state I such that I |= ¬a ∧ ¬b ∧ ¬c .
(¬c ∨ a) ∧ b in DNF is (¬c ∧ b) ∨ (a ∧ b).
It is split to ¬c ∧ b and a ∧ b.

G = a ∧ b

¬a ∧ a

¬c ∧ b

a ∧ b

¬c ∧ ¬a

¬c ∧ b

a ∧ ¬a

a ∧ b

¬c ∧ b 〈¬a, b〉

〈b,¬
c B a〉

〈b,¬c B a〉

〈¬a, b〉

〈¬a, b〉

〈b,¬c B a〉

〈b,¬c B a〉

〈b,¬c B a〉
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State-space search Branching

Regression: generation of search trees
Restricted splitting

I With full splitting search tree can be exponentially bigger than
without splitting. (But it is not necessary to construct the DNF
formulae explicitly!)

I Without splitting the formulae may have size that is exponential in
the number of state variables.

I A compromise is to split formulae only when necessary: combine
benefits of the two extremes.

I There are several ways to split a formula φ to φ1, . . . , φn such that
φ ≡ φ1 ∨ · · · ∨ φn. For example:

1. Transform φ to φ1 ∨ · · · ∨ φn by equivalences like distributivity
(φ1 ∨ φ2) ∧ φ3 ≡ (φ1 ∧ φ3) ∨ (φ2 ∧ φ3).

2. Choose state variable a, set φ1 = a ∧ φ and φ2 = ¬a ∧ φ, and simplify
with equivalences like a ∧ ψ ≡ a ∧ ψ[>/a].
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