
Principles of AI Planning
November 8th, 2006 — Planning by state-space search

Normal form for effects
STRIPS operators

Planning by state-space search
Ideas
Progression
Regression
Complexity
Branching

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 1 / 39

Principles of AI Planning
Planning by state-space search

Malte Helmert Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

November 8th, 2006

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 2 / 39

Normal form

Normal form for effects

1. Similarly to normal forms in propositional logic (DNF, CNF, NNF,
. . .) we can define a normal form for effects.

2. Nesting of conditionals, as in a B (b B c), can be eliminated.

3. Effects e within a conditional effect φ B e can be restricted to atomic
effects (a or ¬a).

4. Only a small polynomial increase in size by transformation to normal
form.
Compare: transformation to CNF or DNF may increase formula size
exponentially.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 3 / 39

Normal form

Equivalences on effects

c B (e1 ∧ · · · ∧ en) ≡ (c B e1) ∧ · · · ∧ (c B en) (1)

c1 B (c2 B e) ≡ (c1 ∧ c2) B e (2)

(c1 B e) ∧ (c2 B e) ≡ (c1 ∨ c2) B e (3)

e ∧ (c B e) ≡ e (4)

e ≡ > B e (5)

e ≡ > ∧ e (6)

e1 ∧ e2 ≡ e2 ∧ e1 (7)

(e1 ∧ e2) ∧ e3 ≡ e1 ∧ (e2 ∧ e3) (8)

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 4 / 39

Normal form

Normal form for operators and effects

Definition
An operator 〈c , e〉 is in normal form if for all occurrences of c ′ B e ′ in e
the effect e ′ is either a or ¬a for some a ∈ A, and there is at most one
occurrence of any atomic effect in e.

Theorem
For every operator there is an equivalent one in normal form.

Proof is constructive: we can transform any operator into normal form by
using the equivalences from the previous slide.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 5 / 39

Normal form

Normal form for effects
Example

Example

(a B (b ∧
(c B (¬d ∧ e)))) ∧

(¬b B e)

transformed to normal form is

(a B b) ∧
((a ∧ c) B¬d) ∧

((¬b ∨ (a ∧ c))B e)

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 6 / 39

Normal form STRIPS operators

STRIPS operators

Definition
An operator 〈c , e〉 is a STRIPS operator if

1. c is a conjunction of literals, and

2. e is a conjunction of atomic effects.

Hence every STRIPS operator is of the form

〈l1 ∧ · · · ∧ ln, l ′1 ∧ · · · ∧ l ′m〉

where li are literals and l ′j are atomic effects.

STRIPS
STanford Research Institute Planning System, Fikes & Nilsson, 1971.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 7 / 39

State-space search

Planning by state-space search

There are many alternative ways of doing planning by state-space search.

1. different ways of expressing planning as a search problem:

1.1 search direction: forward, backward
1.2 representation of search space: states, sets of states

2. different search algorithms: depth-first, breadth-first, informed
(heuristic) search (systematic: A∗, IDA∗, . . . ; local: hill-climbing,
simulated annealing, . . .), . . .

3. different ways of controlling search:

3.1 heuristics for heuristic search algorithms
3.2 pruning techniques: invariants, symmetry elimination, . . .

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 8 / 39

State-space search Ideas

Planning by forward search
with depth-first search

G

I

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 9 / 39

State-space search Ideas

Planning by backward search
with depth-first search, one state at a time

G

I

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 10 / 39

State-space search Ideas

Planning by backward search
with depth-first search, for state sets (represented as formulae)

G

I

Gφ1φ1 = regr−→(G) φ2

φ2 = regr−→(φ1)

φ3

φ3 = regr−→(φ2), I |= φ3

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 11 / 39

State-space search Progression

Progression

I Progression means computing the successor state appo(s) of s with
respect to o.

I Used in forward search: from the initial state toward the goal states.

I Very easy and efficient to implement.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 12 / 39

State-space search Regression

Regression

I Regression is computing the possible predecessor states of a set of
states.

I The formula regro(φ) represents the states from which a state
represented by φ is reached by operator o.

I Used in backward search: from the goal states toward the initial state.

I Regression is powerful because it allows handling sets of states
(progression: only one state at a time.)

I Handling state sets (formulae) is more complicated than handling
states: many questions about regression are NP-hard.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 13 / 39

State-space search Regression

Regression for STRIPS operators

I Regression for STRIPS operators is very simple.

I Goals are conjunctions of literals l1 ∧ · · · ∧ ln.

I First step: Choose an operator that makes some of l1, . . . , ln true and
makes none of them false.

I Second step: Form a new goal by removing the fulfilled goal literals
and adding the preconditions of the operator.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 14 / 39

State-space search Regression

Regression for STRIPS operators
Definition

Definition
The STRIPS-regression regrstro (φ) of φ = l ′′1 ∧ · · · ∧ l ′′k with respect to

o = 〈l1 ∧ · · · ∧ ln, l ′1 ∧ · · · ∧ l ′m〉

is the conjunction of literals∧ (
({l ′′1 , . . . , l ′′k } \ {l ′1, . . . , l ′m}) ∪ {l1, . . . , ln}

)
provided that {l ′1, . . . , l ′m} ∩ {l ′′1 , . . . , l ′′k } = ∅.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 15 / 39

State-space search Regression

Regression for STRIPS operators
Example

NOTE: Predecessor states are in general not unique.

This picture is just for illustration purposes.

o3o2o1

o1 = 〈�on� ∧�clr,¬�on� ∧�onT ∧�clr〉
o2 = 〈�on� ∧�clr ∧�clr,¬�clr ∧ ¬�on� ∧�on� ∧�clr〉
o3 = 〈�onT ∧�clr ∧�clr,¬�clr ∧ ¬�onT ∧�on�〉

G =�on� ∧�on�
φ1 = regrstro3

(G) = �on� ∧�onT ∧�clr ∧�clr
φ2 = regrstro2

(φ1) = �onT ∧�clr ∧�on� ∧�clr
φ3 = regrstro1

(φ2) = �onT ∧�on� ∧�clr ∧�on�

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 16 / 39

State-space search Regression

Regression for general operators

I With disjunction and conditional effects, things become more tricky.
How to regress A ∨ (B ∧ C) with respect to 〈Q,D B B〉?

I The story about goals and subgoals and fulfilling subgoals, as in the
STRIPS case, is no longer useful.

I We present a general method for doing regression for any formula and
any operator.

I Now we extensively use the idea of representing sets of states as
formulae.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 17 / 39

State-space search Regression

Precondition for effect l to take place: EPCl(e)
Definition

Definition
The condition EPCl(e) for literal l to become true under effect e is defined
as follows.

EPCl(l) = >
EPCl(l

′) = ⊥ when l 6= l ′ (for literals l ′)
EPCl(>) = ⊥

EPCl(e1 ∧ · · · ∧ en) = EPCl(e1) ∨ · · · ∨ EPCl(en)
EPCl(c B e) = EPCl(e) ∧ c

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 18 / 39

State-space search Regression

Precondition for effect l to take place: EPCl(e)
Example

Example

EPCa(b ∧ c) = ⊥ ∨⊥ ≡ ⊥
EPCa(a ∧ (b B a)) = > ∨ (> ∧ b) ≡ >

EPCa((c B a) ∧ (b B a)) = (> ∧ c) ∨ (> ∧ b) ≡ c ∨ b

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 19 / 39

State-space search Regression

Precondition for effect l to take place: EPCl(e)
Connection to [e]s

Lemma (A)

Let s be a state, l a literal and e an effect. Then l ∈ [e]s if and only if
s |= EPCl(e).

Proof.
Induction on the structure of the effect e.
Base case 1, e = >: By definition of [>]s we have l 6∈ [>]s = ∅ and by
definition of EPCl(>) we have s 6|= EPCl(>) = ⊥: Both sides of the
equivalence are false.
Base case 2, e = l : l ∈ [l]s = {l} by definition, and s |= EPCl(l) = > by
definition. Both sides are true.
Base case 3, e = l ′ for some literal l ′ 6= l : l 6∈ [l ′]s = {l ′} by definition,
and s 6|= EPCl(l

′) = ⊥ by definition. Both sides are false.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 20 / 39

State-space search Regression

Precondition for effect l to take place: EPCl(e)
Connection to [e]s

proof continues. . .

Inductive case 1, e = e1 ∧ · · · ∧ en:
l ∈ [e]s iff l ∈ [e1]s ∪ · · · ∪ [en]s (Def [e1 ∧ · · · ∧ en]s)

iff l ∈ [e ′]s for some e ′ ∈ {e1, . . . , en}
iff s |= EPCl(e

′) for some e ′ ∈ {e1, . . . , en} (IH)
iff s |= EPCl(e1) ∨ · · · ∨ EPCl(en)
iff s |= EPCl(e1 ∧ · · · ∧ en). (Def EPC)

Inductive case 2, e = c B e ′:
l ∈ [c B e ′]s iff l ∈ [e ′]s and s |= c (Def [c B e ′]s)

iff s |= EPCl(e
′) and s |= c (IH)

iff s |= EPCl(e
′) ∧ c

iff s |= EPCl(c B e ′). (Def EPC)

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 21 / 39

State-space search Regression

Precondition for effect l to take place: EPCl(e)
Connection to the normal form

Remark
Notice that in terms of EPCa(e) any operator 〈c , e〉 can be expressed in
normal form as〈

c ,
∧
a∈A

(EPCa(e) B a) ∧ (EPC¬a(e) B ¬a)

〉
.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 22 / 39

State-space search Regression

Regression: definition for state variables

Regressing a state variable

The formula EPCa(e)∨ (a∧¬EPC¬a(e)) expresses the value of a ∈ A after
applying o in terms of values of state variables before applying o: Either

I a became true, or

I a was true before and it did not become false.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 23 / 39

State-space search Regression

Regression: definition for state variables

Example

Let e = (b B a) ∧ (c B ¬a) ∧ b ∧ ¬d .

variable EPC...(e) ∨ (· · · ∧ ¬EPC¬...(e))

a b ∨ (a ∧ ¬c)
b > ∨ (b ∧ ¬⊥) ≡ >
c ⊥ ∨ (c ∧ ¬⊥) ≡ c
d ⊥ ∨ (d ∧ ¬>) ≡ ⊥

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 24 / 39

State-space search Regression

Regression: definition for state variables

Lemma (B)

Let a be a state variable, o = 〈c , e〉 ∈ O an operator, s a state and
s ′ = appo(s). Then s |= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)) if and only if s ′ |= a.

Proof.
First prove the implication from left to right.
Assume s |= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)). Do a case analysis on the two
disjuncts.

1. Assume that s |= EPCa(e). By Lemma A a ∈ [e]s and hence s ′ |= a.

2. Assume that s |= a ∧ ¬EPC¬a(e). By Lemma A ¬a 6∈ [e]s . Hence a
remains true in s ′.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 25 / 39

State-space search Regression

Regression: definition for state variables

proof continues. . .

We showed that if the formula is true in s, then a is true in s ′.
For the second part we show that if the formula is false in s, then a is false
in s ′.

1. So assume s 6|= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).

2. Hence s |= ¬EPCa(e) ∧ (¬a ∨ EPC¬a(e)) (de Morgan).

3. Analyze the two cases: a is true or it is false in s.

3.1 Assume that s |= a. Now s |= EPC¬a(e) because s |= ¬a ∨ EPC¬a(e).
Hence by Lemma A ¬a ∈ [e]s and we get s ′ 6|= a.

3.2 Assume that s 6|= a. Because s |= ¬EPCa(e), by Lemma A a 6∈ [e]s
and hence s ′ 6|= a.

Therefore in both cases s ′ 6|= a.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 26 / 39

State-space search Regression

Regression: general definition

We base the definition of regression on formulae EPCl(e).

Definition
Let φ be a propositional formula and o = 〈c , e〉 an operator.
The regression of φ with respect to o is

regro(φ) = c ∧ φr ∧ f

where

1. φr is obtained from φ by replacing each a ∈ A by
EPCa(e) ∨ (a ∧ ¬EPC¬a(e)), and

2. f =
∧

a∈A ¬(EPCa(e) ∧ EPC¬a(e)).

The formula f says that no state variable may become simultaneously true
and false.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 27 / 39

State-space search Regression

Regression: examples

1. regr〈a,b〉(b) ≡ a ∧ (> ∨ (b ∧ ¬⊥)) ∧ > ≡ a

2. regr〈a,b〉(b ∧ c ∧ d) ≡
a∧ (>∨ (b∧¬⊥))∧ (⊥∨ (c ∧¬⊥))∧ (⊥∨ (d ∧¬⊥))∧> ≡ a∧ c ∧ d

3. regr〈a,cBb〉(b) ≡ a ∧ (c ∨ (b ∧ ¬⊥)) ∧ > ≡ a ∧ (c ∨ b)

4. regr〈a,(cBb)∧(bB¬b)〉(b) ≡ a ∧ (c ∨ (b ∧ ¬b)) ∧ ¬(c ∧ b) ≡ a ∧ c ∧ ¬b

5. regr〈a,(cBb)∧(dB¬b)〉(b) ≡ a ∧ (c ∨ (b ∧ ¬d)) ∧ ¬(c ∧ d) ≡
a ∧ (c ∨ b) ∧ (c ∨ ¬d) ∧ (¬c ∨ ¬d)

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 28 / 39

State-space search Regression

Regression: examples
Blocks World with conditional effects

Operators to move blocks A and B onto the table from the other block if
they are clear:

o1 = 〈>, (AonB ∧ Aclear) B (AonT ∧ Bclear ∧ ¬AonB)〉
o2 = 〈>, (BonA ∧ Bclear) B (BonT ∧ Aclear ∧ ¬BonA)〉

Plan for putting both blocks onto the table from any blocks world state
with two blocks is o2, o1. Proof by regression:

G = AonT ∧ BonT
φ1 = regro1(G) ≡ ((AonB ∧ Aclear) ∨ AonT) ∧ BonT
φ2 = regro2(φ1)

≡ ((AonB ∧ ((BonA ∧ Bclear) ∨ Aclear)) ∨ AonT)
∧ ((BonA ∧ Bclear) ∨ BonT)

All three 2-block states satisfy φ2. Similar plans exist for any number of
blocks.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 29 / 39

State-space search Regression

Regression: examples
Incrementing a binary number

(¬b0 B b0) ∧
((¬b1 ∧ b0) B (b1 ∧ ¬b0)) ∧

((¬b2 ∧ b1 ∧ b0) B (b2 ∧ ¬b1 ∧ ¬b0))

EPCb2(e) =¬b2 ∧ b1 ∧ b0

EPCb1(e) =¬b1 ∧ b0

EPCb0(e) =¬b0

EPC¬b2(e) =⊥
EPC¬b1(e) =¬b2 ∧ b1 ∧ b0

EPC¬b0(e) = (¬b1 ∧ b0) ∨ (¬b2 ∧ b1 ∧ b0) ≡ (¬b1 ∨ ¬b2) ∧ b0

Regression replaces state variables as follows:

b2 by (¬b2 ∧ b1 ∧ b0) ∨ (b2 ∧ ¬⊥) ≡ (b1 ∧ b0) ∨ b2

b1 by (¬b1 ∧ b0) ∨ (b1 ∧ ¬(¬b2 ∧ b1 ∧ b0))
≡ (¬b1 ∧ b0) ∨ (b1 ∧ (b2 ∨ ¬b0))

b0 by ¬b0 ∨ (b0 ∧ ¬((¬b1 ∨ ¬b2) ∧ b0)) ≡ ¬b0 ∨ (b1 ∧ b2)

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 30 / 39

State-space search Regression

Regression: properties

Lemma (C)

Let φ be a formula, o an operator, s any state and s ′ = appo(s). Then
s |= regro(φ) if and only if s ′ |= φ.

Proof.
Let e be the effect of o. We show by structural induction over
subformulae φ′ of φ that s |= φ′r iff s ′ |= φ′, where φ′r is φ′ with every
a ∈ A replaced by EPCa(e) ∨ (a ∧ ¬EPC¬a(e)). Rest of regro(φ) just
states that o is applicable in s.

Induction hypothesis s |= φ′r if and only if s ′ |= φ′.

Base cases 1 & 2 φ′ = > or φ′ = ⊥: Trivial as φ′r = φ′.

Base case 3 φ′ = a for some a ∈ A: Now
φ′r = EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).
By Lemma B s |= φ′r iff s ′ |= φ′.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 31 / 39

State-space search Regression

Regression: properties

proof continues. . .

Inductive case 1 φ′ = ¬ψ: By the induction hypothesis s |= ψr iff s ′ |= ψ.
Hence s |= φ′r iff s ′ |= φ′ by the truth-definition of ¬.

Inductive case 2 φ′ = ψ ∨ ψ′: By the induction hypothesis s |= ψr iff
s ′ |= ψ, and s |= ψ′r iff s ′ |= ψ′. Hence s |= φ′r iff s ′ |= φ′

by the truth-definition of ∨.

Inductive case 3 φ′ = ψ ∧ ψ′: By the induction hypothesis s |= ψr iff
s ′ |= ψ, and s |= ψ′r iff s ′ |= ψ′. Hence s |= φ′r iff s ′ |= φ′

by the truth-definition of ∧.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 32 / 39

State-space search Complexity

Regression: complexity issues

The following two tests are useful when generating a search tree with
regression.

1. Testing that a formula regro(φ) does not represent the empty set (=
search is in a blind alley).
For example, regr〈a,¬p〉(p) ≡ a ∧ ⊥ ≡ ⊥.

2. Testing that a regression step does not make the set of states smaller
(= more difficult to reach).
For example, regr〈b,c〉(a) ≡ a ∧ b.

Both of these problems are NP-hard.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 33 / 39

State-space search Complexity

Regression: complexity issues

The formula regro1(regro2(. . . regron−1(regron(φ)))) may have size
O(|φ||o1||o2| . . . |on−1||on|), i.e. the product of the sizes of φ and the
operators.
The size in the worst case O(mn) is hence exponential in n.

Logical simplifications

1. ⊥ ∧ φ ≡ ⊥, > ∧ φ ≡ φ, ⊥ ∨ φ ≡ φ, > ∨ φ ≡ >
2. a ∨ φ ≡ a ∨ φ[⊥/a], ¬a ∨ φ ≡ ¬a ∨ φ[>/a], a ∧ φ ≡ a ∧ φ[>/a],

¬a ∧ φ ≡ ¬a ∧ φ[⊥/a]

To obtain the maximum benefit from the last equivalences, e.g. for
(a ∧ b) ∧ φ(a), the equivalences for associativity and commutativity are
useful: (φ1 ∨ φ2) ∨ φ3 ≡ φ1 ∨ (φ2 ∨ φ3), φ1 ∨ φ2 ≡ φ2 ∨ φ1,
(φ1 ∧ φ2) ∧ φ3 ≡ φ1 ∧ (φ2 ∧ φ3), φ1 ∧ φ2 ≡ φ2 ∧ φ1.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 34 / 39

State-space search Branching

Regression: generation of search trees

Problem Formulae obtained with regression may become very big.

Cause Disjunctivity in the formulae. Formulae without disjunctions
easily convertible to small formulae l1 ∧ · · · ∧ ln where li are
literals and n is at most the number of state variables.

Solution Handle disjunctivity when generating search trees. Alternatives:

1. Do nothing. (May lead to very big formulae!!!)
2. Always eliminate all disjunctivity.
3. Reduce disjunctivity if formula becomes too big.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 35 / 39

State-space search Branching

Regression: generation of search trees
Unrestricted regression (= do nothing about formula size)

Reach goal a ∧ b from state I such that I |= ¬a ∧ ¬b ∧ ¬c .

G = a ∧ b

¬a ∧ a

(¬c ∨ a) ∧ b

(¬c ∨ a) ∧ ¬a

(¬c ∨ a) ∧ b

〈¬a, b〉

〈b,¬
c B a〉

〈¬a, b〉

〈b,¬c B a〉

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 36 / 39

State-space search Branching

Regression: generation of search trees
Full splitting (= eliminate all disjunctivity)

I Planners for STRIPS operators only need to use formulae l1 ∧ · · · ∧ ln
where li are literals.

I Some PDDL planners also restrict to this class of formulae. This is
done as follows.

1. regro(φ) is transformed to disjunctive normal form (DNF):
(l11 ∧ · · · ∧ l1n1

) ∨ · · · ∨ (lm1 ∧ · · · ∧ lmnm
).

2. Each disjunct l i1 ∧ · · · ∧ l ini
is handled in its own subtree of the search

tree.
3. The DNF formulae need not exist in its entirety explicitly: generate one

disjunct at a time.

I Hence branching is both on the choice of operator and on the choice
of the disjunct of the DNF formula.

I This leads to an increased branching factor and bigger search trees,
but avoids big formulae.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 37 / 39

State-space search Branching

Regression: generation of search trees
Full splitting

Reach goal a ∧ b from state I such that I |= ¬a ∧ ¬b ∧ ¬c .
(¬c ∨ a) ∧ b in DNF is (¬c ∧ b) ∨ (a ∧ b).
It is split to ¬c ∧ b and a ∧ b.

G = a ∧ b

¬a ∧ a

¬c ∧ b

a ∧ b

¬c ∧ ¬a

¬c ∧ b

a ∧ ¬a

a ∧ b

¬c ∧ b 〈¬a, b〉

〈b,¬
c B a〉

〈b,¬c B a〉

〈¬a, b〉

〈¬a, b〉

〈b,¬c B a〉

〈b,¬c B a〉

〈b,¬c B a〉

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 38 / 39

State-space search Branching

Regression: generation of search trees
Restricted splitting

I With full splitting search tree can be exponentially bigger than
without splitting. (But it is not necessary to construct the DNF
formulae explicitly!)

I Without splitting the formulae may have size that is exponential in
the number of state variables.

I A compromise is to split formulae only when necessary: combine
benefits of the two extremes.

I There are several ways to split a formula φ to φ1, . . . , φn such that
φ ≡ φ1 ∨ · · · ∨ φn. For example:

1. Transform φ to φ1 ∨ · · · ∨ φn by equivalences like distributivity
(φ1 ∨ φ2) ∧ φ3 ≡ (φ1 ∧ φ3) ∨ (φ2 ∧ φ3).

2. Choose state variable a, set φ1 = a ∧ φ and φ2 = ¬a ∧ φ, and simplify
with equivalences like a ∧ ψ ≡ a ∧ ψ[>/a].

M. Helmert, B. Nebel (Universität Freiburg) AI Planning November 8th, 2006 39 / 39

	Normal form for effects
	STRIPS operators

	Planning by state-space search
	Ideas
	Progression
	Regression
	Complexity
	Branching

