Principles of AI Planning
Transition systems

Malte Helmert Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

November 3rd, 2006
Transition systems

A
B
C
D
E
F

goal states

initial state

Reachability Algorithm

Succinct TS
A **transition system** is \(\langle S, I, \{a_1, \ldots, a_n\}, G \rangle \) where

- \(S \) is a finite set of **states** (the **state space**),
- \(I \subseteq S \) is a finite set of **initial states**,
- every action \(a_i \subseteq S \times S \) is a binary relation on \(S \),
- \(G \subseteq S \) is a finite set of **goal states**.

Definition

An action \(a \) is **applicable** in a state \(s \) if \(sas' \) for at least one state \(s' \).
A transition system is deterministic if there is only one initial state and all actions are deterministic. Hence all future states of the world are completely predictable.

Definition

A deterministic transition system is $\langle S, I, O, G \rangle$ where

- S is a finite set of states (the state space),
- $I \in S$ is a state,
- actions $a \in O$ (with $a \subseteq S \times S$) are partial functions,
- $G \subseteq S$ is a finite set of goal states.

Successor state wrt. an action

Given a state s and an action A so that a is applicable in s, the successor state of s with respect to a is s' such that sas', denoted by $s' = app_a(s)$.
Blocks world
The rules of the game

Location on the table does not matter.

Location on a block does not matter.
Blocks world
The rules of the game

At most one block may be below a block.

At most one block may be on top of a block.
Blocks world
The transition graph for three blocks
Finding a solution is polynomial time in the number of blocks (move everything onto the table and then construct the goal configuration).

Finding a shortest solution is NP-complete (for a compact description of the problem).
Deterministic planning: plans

Definition

A plan for \(\langle S, I, O, G \rangle \) is a sequence \(\pi = o_1, \ldots, o_n \) of operators such that \(o_1, \ldots, o_n \in O \) and \(s_0, \ldots, s_n \) is a sequence of states (the execution of \(\pi \)) so that

1. \(s_0 = I \),
2. \(s_i = app_{o_i}(s_{i-1}) \) for every \(i \in \{1, \ldots, n\} \), and
3. \(s_n \in G \).

This can be equivalently expressed as

\[
app_{o_n}(app_{o_{n-1}}(\cdots app_{o_1}(I)\cdots)) \in G
\]
Transition relations as matrices

1. If there are n states, each action (a binary relation) corresponds to an $n \times n$ matrix: The element at row i and column j is 1 if the action maps state i to state j, and 0 otherwise. For deterministic actions there is at most one non-zero element in each row.

2. Matrix multiplication corresponds to **sequential composition**: taking action M_1 followed by action M_2 is the product M_1M_2. (This also corresponds to the **join** of the relations.)

3. The unit matrix $I_{n \times n}$ is the NO-OP action: every state is mapped to itself.
Example

Transition systems
Definition
Example
Matrices
Reachability
Algorithm
Succinct TS

\[
\begin{array}{ccccccc}
 & A & B & C & D & E & F \\
A & 0 & 1 & 0 & 0 & 0 & 0 \\
B & 0 & 0 & 0 & 0 & 0 & 1 \\
C & 0 & 0 & 1 & 0 & 0 & 0 \\
D & 0 & 0 & 1 & 0 & 0 & 0 \\
E & 0 & 1 & 0 & 0 & 0 & 0 \\
F & 0 & 1 & 0 & 0 & 0 & 1 \\
\end{array}
\]
Example

Transition Systems

Definition

Example

Matrices

Reachability Algorithm

Succinct TS

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Example

Transition Systems

Definition

Example

Matrices

Reachability Algorithm

Succinct TS

Example

\[
\begin{array}{c|ccccccc}
 & A & B & C & D & E & F \\
\hline
A & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
B & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
C & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
D & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
E & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
F & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

Diagram

\[
\begin{align*}
A & \rightarrow B \\
B & \rightarrow C \\
C & \rightarrow D \\
D & \rightarrow E \\
E & \rightarrow F \\
F & \rightarrow A \\
\end{align*}
\]
Sum matrix $M_R + M_G + M_B$

Representing one-step reachability by any of the component actions

We use addition $0 + 0 = 0$ and $b + b' = 1$ if $b = 1$ or $b' = 1$.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Sequential composition as matrix multiplication

\[
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0
\end{pmatrix}
\times
\begin{pmatrix}
0 & 1 & 0 & 0 & | & 0 & 0 \\
0 & 0 & 0 & 0 & | & 1 & 1 \\
0 & 1 & 1 & 0 & | & 1 & 1 \\
1 & 0 & 1 & 0 & | & 1 & 0 \\
0 & 1 & 0 & 1 & | & 0 & 0 \\
1 & 0 & 0 & 1 & | & 0 & 0
\end{pmatrix}
= \begin{pmatrix}
0 & 0 & 0 & 0 & | & 0 & 1 \\
1 & 0 & 0 & 0 & | & 1 & 0 \\
1 & 1 & 1 & 0 & | & 1 & 1 \\
0 & 1 & 1 & 1 & | & 0 & 0 \\
0 & 0 & 1 & 0 & | & 1 & 1 \\
0 & 1 & 0 & 1 & | & 0 & 0
\end{pmatrix}
\]

E is reachable from B by two actions because F is reachable from B by one action and E is reachable from F by one action.
Reachability

Let M be the $n \times n$ matrix that is the (Boolean) sum of the matrices of the individual actions. Define

\[
\begin{align*}
R_0 &= I_{n \times n} \\
R_1 &= I_{n \times n} + M \\
R_2 &= I_{n \times n} + M + M^2 \\
R_3 &= I_{n \times n} + M + M^2 + M^3 \\
&\vdots
\end{align*}
\]

R_i represents reachability by i actions or less. If s' is reachable from s, then it is reachable with $\leq n - 1$ actions: $R_{n-1} = R_n$.
Reachability: example, M_R
Reachability: example, $M_R + M_R^2$
Reachability: example, $M_R + M^2_R + M^3_R$
Reachability: example, $M_R + M_R^2 + M_R^3 + I_{6 \times 6}$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Relations and sets as matrices
Row vectors as sets of states

Row vectors S represent sets.
SM is the set of states reachable from S by M.

\[
\begin{pmatrix}
1 \\
0 \\
1 \\
0 \\
0 \\
0
\end{pmatrix}^T \times
\begin{pmatrix}
1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
\end{pmatrix} =
\begin{pmatrix}
1 \\
1 \\
1 \\
0 \\
1 \\
1
\end{pmatrix}^T
\]
A simple planning algorithm

- We next present a simple planning algorithm based on computing **distances** in the transition graph.
- The algorithm finds shortest paths less efficiently than Dijkstra’s algorithm; we present the algorithm because we later will use it as a basis of an algorithm that is applicable to much bigger state spaces than Dijkstra’s algorithm directly.
A simple planning algorithm

Idea

distance from the initial state

0 1 2 3
A simple planning algorithm

Idea

distance from the initial state

0 1 2 3
A simple planning algorithm

Idea

distance from the initial state

0 1 2 3
A simple planning algorithm

Idea

distance from the initial state

0 1 2 3
A simple planning algorithm

Idea

distance from the initial state

0 1 2 3

- Diagram showing transitions from states 0 to 3 with arrows indicating movement and distance from the initial state.
A simple planning algorithm

Idea

distance from the initial state

0 1 2 3
A simple planning algorithm

Idea

distance from **the initial state**

0 1 2 3

[Diagram showing transitions and distances from the initial state]
A simple planning algorithm

1. Compute the matrices $R_0, R_1, R_2, \ldots, R_n$ representing reachability with $0, 1, 2, \ldots, n$ steps with all actions.

2. Find the smallest i such that a goal state s_g is reachable from the initial state according to R_i.

3. Find an action (the last action of the plan) by which s_g is reached with one step from a state $s_{g'}$ that is reachable from the initial state according to R_{i-1}.

4. Repeat the last step, now viewing $s_{g'}$ as the goal state with distance $i - 1$.
Example

A transition system is a directed graph where nodes represent states and edges represent transitions between states. The example below illustrates a transition system with four states: A, B, C, and D, with directed edges representing possible transitions:

![Transition System Diagram]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The matrices represent the transition relations:

\[
\begin{pmatrix}
A & B & C & D \\
A & 0 & 1 & 0 & 0 \\
B & 0 & 0 & 0 & 0 \\
C & 0 & 0 & 0 & 1 \\
D & 0 & 0 & 0 & 0
\end{pmatrix}
\]

Adding matrices:

\[
\begin{pmatrix}
A & B \\
A & 0 & 1 & 0 & 0 \\
B & 0 & 0 & 1 & 0 \\
C & 1 & 0 & 0 & 0
\end{pmatrix}
\]

Resulting matrix:

\[
\begin{pmatrix}
A & B & C & D \\
A & 0 & 1 & 0 & 0 \\
B & 0 & 0 & 1 & 0 \\
C & 1 & 0 & 0 & 1 \\
D & 0 & 0 & 0 & 0
\end{pmatrix}
\]
Example

Transition systems

Definition

Example

\[
R_0 =
\begin{array}{c|cccc}
 & A & B & C & D \\
\hline
A & 1 & 0 & 0 & 0 \\
B & 0 & 1 & 0 & 0 \\
C & 0 & 0 & 1 & 0 \\
D & 0 & 0 & 0 & 1 \\
\end{array}
\]

\[
R_1 =
\begin{array}{c|cccc}
 & A & B & C & D \\
\hline
A & 1 & 1 & 0 & 0 \\
B & 0 & 1 & 1 & 0 \\
C & 1 & 0 & 1 & 1 \\
D & 0 & 0 & 0 & 1 \\
\end{array}
\]

\[
R_2 =
\begin{array}{c|cccc}
 & A & B & C & D \\
\hline
A & 1 & 1 & 1 & 0 \\
B & 1 & 1 & 1 & 1 \\
C & 1 & 1 & 1 & 1 \\
D & 0 & 0 & 0 & 1 \\
\end{array}
\]

\[
R_3 =
\begin{array}{c|cccc}
 & A & B & C & D \\
\hline
A & 1 & 1 & 1 & 1 \\
B & 1 & 1 & 1 & 1 \\
C & 1 & 1 & 1 & 1 \\
D & 0 & 0 & 0 & 1 \\
\end{array}
\]
Succinct representation of transition systems

- More **compact** representation of actions than as relations is often
 1. **possible** because of symmetries and other regularities,
 2. **unavoidable** because the relations are too big.

- Represent different aspects of the world in terms of different **state variables**.
 \(\Rightarrow \) A state is a **valuation of state variables**.

- Represent actions in terms of changes to the state variables.
State variables

- The state of the world is described in terms of a finite set of finite-valued state variables.

Example

<table>
<thead>
<tr>
<th>Variable</th>
<th>Values</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOUR</td>
<td>{0, \ldots, 23}</td>
<td>13</td>
</tr>
<tr>
<td>MINUTE</td>
<td>{0, \ldots, 59}</td>
<td>55</td>
</tr>
<tr>
<td>LOCATION</td>
<td>{51, 52, 82, 101, 102}</td>
<td>101</td>
</tr>
<tr>
<td>WEATHER</td>
<td>{sunny, cloudy, rainy}</td>
<td>cloudy</td>
</tr>
<tr>
<td>HOLIDAY</td>
<td>{T, F}</td>
<td>F</td>
</tr>
</tbody>
</table>

- Any \(n\)-valued state variable can be replaced by \(\lceil \log_2 n \rceil\) Boolean (2-valued) state variables.
- Actions change the values of the state variables.
Blocks world with state variables

State variables:
- LOCATIONofA : \{B, C, TABLE\}
- LOCATIONofB : \{A, C, TABLE\}
- LOCATIONofC : \{A, B, TABLE\}

Example

- $s(LOCATIONofA) = \text{TABLE}$
- $s(LOCATIONofB) = A$
- $s(LOCATIONofC) = \text{TABLE}$

Not all valuations correspond to an intended blocks world state, e.g. s such that $s(LOCATIONofA) = B$ and $s(LOCATIONofB) = A$.
Blocks world with Boolean state variables

Example

\[
\begin{align*}
 s(A\text{on}B) &= 0 & s(A\text{on}C) &= 0 & s(A\text{on}T\text{ABLE}) &= 1 \\
 s(B\text{on}A) &= 1 & s(B\text{on}C) &= 0 & s(B\text{on}T\text{ABLE}) &= 0 \\
 s(C\text{on}A) &= 0 & s(C\text{on}B) &= 0 & s(C\text{on}T\text{ABLE}) &= 1
\end{align*}
\]
Logical representations of state sets

- \(n \) state variables with \(m \) values induce a state space consisting of \(m^n \) states (\(2^n \) states for \(n \) Boolean state variables).
- A language for talking about sets of states (valuations of state variables) is **propositional logic**.
- Logical connectives correspond to set-theoretical operations.
- Logical relations correspond to set-theoretical relations.
Propositional logic

Let A be a set of atomic propositions (\sim state variables.)

1. For all $a \in A$, a is a propositional formula.
2. If ϕ is a propositional formula, then so is $\neg \phi$.
3. If ϕ and ϕ' are propositional formulae, then so is $\phi \lor \phi'$.
4. If ϕ and ϕ' are propositional formulae, then so is $\phi \land \phi'$.
5. The symbols \bot and \top are propositional formulae.

The implication $\phi \rightarrow \phi'$ is an abbreviation for $\neg \phi \lor \phi'$.

The equivalence $\phi \leftrightarrow \phi'$ is an abbreviation for $(\phi \rightarrow \phi') \land (\phi' \rightarrow \phi)$.
A valuation of A is a function $v : A \rightarrow \{0, 1\}$. Define the notation $v \models \phi$ for valuations v and formulae ϕ by

1. $v \models a$ if and only if $v(a) = 1$, for $a \in A$.
2. $v \models \neg \phi$ if and only if $v \not\models \phi$
3. $v \models \phi \lor \phi'$ if and only if $v \models \phi$ or $v \models \phi'$
4. $v \models \phi \land \phi'$ if and only if $v \models \phi$ and $v \models \phi'$
5. $v \models \top$
6. $v \not\models \bot$
A propositional formula ϕ is **satisfiable** if there is at least one valuation v so that $v \models \phi$. Otherwise it is **unsatisfiable**.

A propositional formula ϕ is **valid** or a **tautology** if $v \models \phi$ for all valuations v. We write this as $\models \phi$.

A propositional formula ϕ is a **logical consequence** of a propositional formula ϕ', written $\phi' \models \phi$, if $v \models \phi$ for all valuations v such that $v \models \phi'$.

A propositional formula that is a proposition a or a negated proposition $\neg a$ for some $a \in A$ is a **literal**.

A formula that is a disjunction of literals is a **clause**.
Formulae vs. sets

<table>
<thead>
<tr>
<th>Sets</th>
<th>Formulae</th>
</tr>
</thead>
<tbody>
<tr>
<td>those $\frac{2^n}{2}$ states in which a is true</td>
<td>$a \in A$</td>
</tr>
<tr>
<td>$E \cup F$</td>
<td>$E \lor F$</td>
</tr>
<tr>
<td>$E \cap F$</td>
<td>$E \land F$</td>
</tr>
<tr>
<td>$E \setminus F$</td>
<td>$E \land \neg F$</td>
</tr>
<tr>
<td>\overline{E}</td>
<td>$\neg E$</td>
</tr>
<tr>
<td>the empty set \emptyset</td>
<td>\bot</td>
</tr>
<tr>
<td>the universal set</td>
<td>\top</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question about sets</th>
<th>Question about formulae</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E \subseteq F?$</td>
<td>$E \models F$</td>
</tr>
<tr>
<td>$E \subset F?$</td>
<td>$E \models F$ \land $F \not\models E$?</td>
</tr>
<tr>
<td>$E = F?$</td>
<td>$E \models F$ \land $F \models E$?</td>
</tr>
</tbody>
</table>
Actions are represented as operators \(\langle c, e \rangle \) where

- \(c \) (the precondition) is a propositional formula over \(A \) describing the set of states in which the action can be taken. (States in which an arrow starts.)

- \(e \) (the effect) describes the successor states of states in which the action can be taken. (Where do the arrows go.)

The description is procedural: how do the values of the state variable change?
Effects
For deterministic operators

Definition

Effects are recursively defined as follows.

1. a and $\neg a$ for state variables $a \in A$ are effects.
2. $e_1 \land \cdots \land e_n$ is an effect if e_1, \ldots, e_n are effects (the special case with $n = 0$ is the empty conjunction \top.)
3. $c \triangleright e$ is an effect if c is a formula and e is an effect.

Atomic effects a and $\neg a$ are best understood respectively as assignments $a := 1$ and $a := 0$.
\(c \triangleright e \) means that change \(e \) takes place if \(c \) is true in the current state.

Example

Increment 4-bit numbers \(b_3 b_2 b_1 b_0 \).

\[
(\neg b_0 \triangleright b_0) \land \\
((\neg b_1 \land b_0) \triangleright (b_1 \land \neg b_0)) \land \\
((\neg b_2 \land b_1 \land b_0) \triangleright (b_2 \land \neg b_1 \land \neg b_0)) \land \\
((\neg b_3 \land b_2 \land b_1 \land b_0) \triangleright (b_3 \land \neg b_2 \land \neg b_1 \land \neg b_0))
\]
Example: operators for blocks world

In addition to state variables likes $AonT$ and $BonC$, for convenience we also use state variables $Aclear$, $Bclear$, and $Cclear$ to denote that there is nothing on the block in question.

\[
\langle Aclear \land AonT \land Bclear, \ AonB \land \neg AonT \land \neg Bclear \rangle
\]
\[
\langle Aclear \land AonT \land Cclear, \ AonC \land \neg AonT \land \neg Cclear \rangle
\]

\vdots

\[
\langle Aclear \land AonB, \ AonT \land \neg AonB \land Bclear \rangle
\]
\[
\langle Aclear \land AonC, \ AonT \land \neg AonC \land Cclear \rangle
\]
\[
\langle Bclear \land BonA, \ BonT \land \neg BonA \land Aclear \rangle
\]
\[
\langle Bclear \land BonC, \ BonT \land \neg BonC \land Cclear \rangle
\]

\vdots
Operators: meaning

Changes caused by an operator

Assign to each effect \(e \) and state \(s \) a set \([e]_s\) of literals as follows.

1. \([a]_s = \{a\}\) and \([\lnot a]_s = \{\lnot a\}\) for \(a \in A \).
2. \([e_1 \land \cdots \land e_n]_s = [e_1]_s \cup \cdots \cup [e_n]_s\).
3. \([c \triangleright e]_s = [e]_s\) if \(s \models c \) and \([c \triangleright e]_s = \emptyset\) otherwise.

Applicability of an operator

Operator \(\langle c, e \rangle \) is **applicable in a state** \(s \) iff \(s \models c \) and \([e]_s\) is consistent.
Operators: the successor state of a state

Definition (Successor state)

The successor state $app_o(s)$ of s with respect to operator $o = \langle c, e \rangle$ is obtained from s by making literals in $[e]_s$ true. This is defined only if o is applicable in s.

Example

Consider the operator $\langle a, \neg a \land (\neg c \triangleright \neg b) \rangle$ and a state s such that $s \models a \land b \land c$.

The operator is applicable because $s \models a$ and $[\neg a \land (\neg c \triangleright \neg b)]_s = \{\neg a\}$ is consistent.

Hence $app_{\langle a, \neg a \land (\neg c \triangleright \neg b) \rangle}(s) \models \neg a \land b \land c$.
State variables: \(A = \{a, b, c\} \).

An operator is
\[
\langle (b \land c) \lor (\neg a \land b \land \neg c) \lor (\neg a \land c),
\quad ((b \land c) \triangleright \neg c)
\quad \land (\neg b \triangleright (a \land b))
\quad \land (\neg c \triangleright a) \rangle
\]
The corresponding matrix is

<table>
<thead>
<tr>
<th></th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>011</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>101</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Succinct transition systems
Deterministic case

Definition

A **succinct deterministic transition system** is

\[\langle A, I, \{o_1, \ldots, o_n\}, G \rangle \]

where

- \(A \) is a finite set of **state variables**,
- \(I \) is an **initial state**,
- every \(o_i \) is an **operator**,
- \(G \) is a formula describing the **goal states**.
Mapping from succinct TS to TS

From every succinct transition system \(\langle A, I, O, G \rangle \) we can produce a corresponding transition system \(\langle S, I, O', G' \rangle \).

1. \(S \) is the set of all valuations of \(A \),
2. \(O' = \{ R(o) | o \in O \} \) where \(R(o) = \{(s, s') \in S \times S | s' = \text{app}_o(s)\} \), and
3. \(G' = \{ s \in S | s \models G \} \).
Schematic operators

- Description of state variables and operators in terms of a given finite set of objects.
- Analogy: propositional logic vs. predicate logic
- Planners take input as schematic operators, and translate them into (ground) operators. This is called grounding.
Schematic operators: example

Schematic operator

\[x \in \{\text{car1, car2}\} \]
\[y_1 \in \{\text{Freiburg, Strassburg}\}, \]
\[y_2 \in \{\text{Freiburg, Strassburg}\}, y_1 \neq y_2 \]

\[\langle \text{in}(x, y_1), \text{in}(x, y_2) \land \neg \text{in}(x, y_1) \rangle \]

corresponds to the operators

\[\langle \text{in}(\text{car1, Freiburg}), \text{in}(\text{car1, Strassburg}) \land \neg \text{in}(\text{car1, Freiburg}) \rangle, \]
\[\langle \text{in}(\text{car1, Strassburg}), \text{in}(\text{car1, Freiburg}) \land \neg \text{in}(\text{car1, Strassburg}) \rangle, \]
\[\langle \text{in}(\text{car2, Freiburg}), \text{in}(\text{car2, Strassburg}) \land \neg \text{in}(\text{car2, Freiburg}) \rangle, \]
\[\langle \text{in}(\text{car2, Strassburg}), \text{in}(\text{car2, Freiburg}) \land \neg \text{in}(\text{car2, Strassburg}) \rangle \]
Schematic operators: quantification

Existential quantification (for formulae only)

Finite disjunctions $\phi(a_1) \lor \cdots \lor \phi(a_n)$ represented as
$\exists x \in \{a_1, \ldots, a_n\} \phi(x)$.

Universal quantification (for formulae and effects)

Finite conjunctions $\phi(a_1) \land \cdots \land \phi(a_n)$ represented as
$\forall x \in \{a_1, \ldots, a_n\} \phi(x)$.

Example

$\exists x \in \{A, B, C\} \text{in}(x, \text{Freiburg})$ is a short-hand for
$\text{in}(A, \text{Freiburg}) \lor \text{in}(B, \text{Freiburg}) \lor \text{in}(C, \text{Freiburg})$.
PDDL: the Planning Domain Description Language

- Used by almost all implemented systems for deterministic planning.
- Supports a language comparable to what we have defined above (including schematic operators and quantification).
- Syntax inspired by the Lisp programming language: e.g. prefix notation for formulae.

(and (or (on A B) (on A C))
 (or (on B A) (on B C))
 (or (on C A) (on A B)))
A domain file consists of

- `(define (domain DOMAINNAME))`
- a :requirements definition (use :adl :typing by default)
- definitions of types (each parameter has a type)
- definitions of predicates
- definitions of operators
Example: blocks world in PDDL

(define (domain BLOCKS)
 (:requirements :adl :typing)
 (:types block - object
 blueblock smallblock - block)
 (:predicates (on ?x - smallblock ?y - block)
 (ontable ?x - block)
 (clear ?x - block)
)
PDDL: operator definition

- (:action OPERATORNAME)
- list of parameters: (?x - type1 ?y - type2 ?z - type3)
- precondition: a formula

 <schematic-state-var>
 (and <formula> ... <formula>)
 (or <formula> ... <formula>)
 (not <formula>)
 (forall (?x1 - type1 ... ?xn - typen) <formula>)
 (exists (?x1 - type1 ... ?xn - typen) <formula>)
effect:

<schematic-state-var>
(not <schematic-state-var>)
(and <effect> ... <effect>)
(when <formula> <effect>)
(forall (?x1 - type1 ... ?xn - typen) <effect>)
(:action fromtable
 :parameters (?x - smallblock ?y - block)
 :precondition (and (not (= ?x ?y))
 (clear ?x)
 (ontable ?x)
 (clear ?y))
 :effect
 (and (not (ontable ?x))
 (not (clear ?y))
 (on ?x ?y)))
A problem file consists of

- `(define (problem PROBLEMNAME))`
- declaration of which domain is needed for this problem
- definitions of objects belonging to each type
- definition of the initial state (list of state variables initially true)
- definition of goal states (a formula like operator precondition)
(define (problem example)
 (:domain BLOCKS)
 (:objects a b c - smallblock)
 d e - block
 f - blueblock)
 (:init (clear a) (clear b) (clear c)
 (clear d) (clear e) (clear f)
 (ontable a) (ontable b) (ontable c)
 (ontable d) (ontable e) (ontable f))

 (:goal (and (on a d) (on b e) (on c f)))
)
Example run on the FF planner

edu/PS04> ./ff -o blocks-dom.pddl -f blocks-ex.pddl
ff: parsing domain file, domain 'BLOCKS' defined
ff: parsing problem file, problem 'EXAMPLE' defined
ff: found legal plan as follows
step 0: FROMTABLE A D
 1: FROMTABLE B E
 2: FROMTABLE C F
0.01 seconds total time
Example: blocks world in PDDL

(define (domain BLOCKS)
 (:requirements :adl :typing)
 (:types block)
 (:predicates (on ?x - block ?y - block)
 (ontable ?x - block)
 (clear ?x - block))
)
(:action fromtable
 :parameters (?x - block ?y - block)
 :precondition (and (not (= ?x ?y))
 (clear ?x)
 (ontable ?x)
 (clear ?y))
 :effect
 (and (not (ontable ?x))
 (not (clear ?y))
 (on ?x ?y)))
(:action totable
 :parameters (?x - block ?y - block)
 :precondition (and (clear ?x) (on ?x ?y))
 :effect
 (and (not (on ?x ?y))
 (clear ?y)
 (ontable ?x)))
(:action move
 :parameters (?x - block
 ?y - block
 ?z - block)
 :precondition (and (clear ?x) (clear ?z)
 (on ?x ?y) (not (= ?x ?z)))
 :effect
 (and (not (clear ?z))
 (clear ?y)
 (not (on ?x ?y))
 (on ?x ?z)))
(define (problem blocks-10-0)
 (:domain BLOCKS)
 (:objects d a h g b j e i f c - block)
 (:init (clear c) (clear f)
 (ontable i) (ontable f)
 (on c e) (on e j) (on j b) (on b g)
 (on g h) (on h a) (on a d) (on d i))
 (:goal (and (on d c) (on c f) (on f j)
 (on j e) (on e h) (on h b)
 (on b a) (on a g) (on g i)))
)