Motivation

- So far, we assumed that all players have perfect knowledge about the preferences (the payoff function) of the other players.
- Often unrealistic.
- For example, in auctions people are not sure about the valuations of the others. – what to do in a sealed bid auction?
Example

• Let’s assume the BoS game, where player 1 is not sure, whether player 2 wants to meet her or to avoid her,
• She assumes a probability of 0.5 for each case.
• Player 2 knows the preferences of player 1
Example (cont.)

<table>
<thead>
<tr>
<th></th>
<th>Bach</th>
<th>Stravinsky</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bach</td>
<td>2,1</td>
<td>0,0</td>
</tr>
<tr>
<td>Stravinsky</td>
<td>0,0</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Prob. 0.5

<table>
<thead>
<tr>
<th></th>
<th>Bach</th>
<th>Stravinsky</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bach</td>
<td>2,0</td>
<td>0,2</td>
</tr>
<tr>
<td>Stravinsky</td>
<td>0,1</td>
<td>1,0</td>
</tr>
</tbody>
</table>

Prob. 0.5
What is the Payoff?

- Player 1 views player 2 as being one of two possible *types*
- Each of these types may make an independent decision
- So, the friendly player 2 may choose B and the unfriendly one S: (B,S)
- **Expected payoff** when player 1 plays B:
 \[0.5 \times 2 + 0.5 \times 0 = 1 \]
A **Nash equilibrium** in pure strategies is a triple \((x,(y,z))\) of actions such that:

- the action \(x\) of player 1 is optimal given the actions \((y,z)\) of both types of player 2 and the belief about the state
- the actions \(y\) and \(z\) of each type of player 2 are optimal given the action \(x\) of player 1

<table>
<thead>
<tr>
<th></th>
<th>(B,B)</th>
<th>(B,S)</th>
<th>(S,B)</th>
<th>(S,S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>2 (1,0)</td>
<td>1 (1,2)</td>
<td>1 (0,0)</td>
<td>0 (0,2)</td>
</tr>
<tr>
<td>S</td>
<td>0 (0,1)</td>
<td>0.5 (0,0)</td>
<td>0.5 (2,1)</td>
<td>1 (2,0)</td>
</tr>
</tbody>
</table>
Nash Equilibria?

<table>
<thead>
<tr>
<th></th>
<th>(B,B)</th>
<th>(B,S)</th>
<th>(S,B)</th>
<th>(S,S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>2 (1,0)</td>
<td>1 (1,2)</td>
<td>1 (0,0)</td>
<td>0 (0,2)</td>
</tr>
<tr>
<td>S</td>
<td>0 (0,1)</td>
<td>0.5 (0,0)</td>
<td>0.5 (2,1)</td>
<td>1 (2,0)</td>
</tr>
</tbody>
</table>

- Is there a Nash equilibrium?
 - Yes: B, (B,S)

- Is there a NE where player 1 plays S?
 - No
Formalization: States and Signals

- There are **states**, which completely determine the preferences / payoff functions
 - In our example: *friendly* and *unfriendly*

- Before the game starts, each player receives a **signal** that tells her something about the state
 - In our example:
 - Player 2 receives a state, which type she is
 - Player 1 gets no information about the state and has only her beliefs about probabilities.

- Although, the actions for non-realized types of player 2 are irrelevant for player 2, they are necessary for player 1 (and therefore also for player 2) when deliberating about possible action profiles and their payoffs.
General Bayesian Games

- A Bayesian game consists of
 - a set of players $N = \{1, \ldots, n\}$
 - a set of states $\Omega = \{\omega_1, \ldots, \omega_k\}$

- and for each player i
 - a set of actions A_i
 - a set of signals T_i and a signal function $\tau_i: \Omega \to T_i$
 - for each signal a belief about the possible states (a probability distribution over the states associated with the signal) $Pr(\omega \mid t_i)$
 - a payoff function $u_i(a, \omega)$ over pairs of action profiles and states, where the expected value for a_i represents the preferences:
 $\sum_{\omega \in \Omega} Pr(\omega \mid t_i) u_i((a_i, \hat{a}_i(\omega)), \omega)$
 with $\hat{a}_i(\omega)$ denoting the choice by i when she has received the signal $\tau_i(\omega)$
Example: BoS with Uncertainty

- **Players**: \{1, 2\}
- **States**: \{friendly, unfriendly\}
- **Actions**: \{B, S\}
- **Signals**: \(T=\{a,b,c\}\)
 - \(\tau_1(\omega_i) = a\) for \(i=1,2\)
 - \(\tau_2(\text{friendly}) = b, \tau_2(\text{unfriendly}) = c\),
- **Beliefs**:
 - \(Pr(\text{friendly} | a) = 0.5, Pr(\text{unfriendly} | a) = 0.5\)
 - \(Pr(\text{friendly} | b) = 1, Pr(\text{friendly} | b) = 0\)
 - \(Pr(\text{friendly} | c) = 0, Pr(\text{friendly} | c) = 1\)
- **Payoffs**: As in the left and right tables *on the slide*
Example: Information can hurt

- In single-person games, knowledge can never hurt, but here it can!
- Two players, both don’t know which state und consider both states ω_1 and ω_2 as equally probable (0.5)
- Note: Preferences of player 1 are known, while the preferences of player 2 are unknown (to both!)

<table>
<thead>
<tr>
<th>ω_1</th>
<th>L</th>
<th>M</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>3,2</td>
<td>3,0</td>
<td>3,3</td>
</tr>
<tr>
<td>B</td>
<td>6,6</td>
<td>0,0</td>
<td>0,9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ω_2</th>
<th>L</th>
<th>M</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>3,2</td>
<td>3,3</td>
<td>3,0</td>
</tr>
<tr>
<td>B</td>
<td>6,6</td>
<td>0,9</td>
<td>0,0</td>
</tr>
</tbody>
</table>
Example (cont.)

- Player 2’s unique best response is: L
- For this reason, player 1 will play B
- Payoff: 6,6 – only NE, even when mixed strategies!
- When player 2 can distinguish the states, R and M are dominating actions
- \((T,(R,M))\) is the unique NE

<table>
<thead>
<tr>
<th></th>
<th>(\omega 1)</th>
<th>(\omega 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Incentives and Uncertain Knowledge May Lead to Suboptimal Solutions

- $\tau_1(\alpha) = a, \tau_1(\beta) = b, \tau_1(\gamma) = b$
 - $Pr(\alpha | a) = 1$
 - $Pr(\beta | b) = 0.75, Pr(\gamma | b) = 0.25$
- $\tau_2(\alpha) = c, \tau_2(\beta) = c, \tau_2(\gamma) = d$
 - $Pr(\alpha | c) = 0.75, Pr(\beta | c) = 0.25$
 - $Pr(\gamma | d) = 1$

- In state γ, there are 2 NEs
- In state γ, player 2 knows her preferences, but player 1 does not know that!
- The incentive for player 1 to play R in state α "infects" the game and only (R,R),(R,R) is an NE

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>2,2</td>
<td>0,0</td>
</tr>
<tr>
<td>R</td>
<td>3,0</td>
<td>1,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta & \gamma$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>2,2</td>
<td>0,0</td>
</tr>
<tr>
<td>R</td>
<td>0,0</td>
<td>1,1</td>
</tr>
</tbody>
</table>
The Infection

- Player 1 must play R when receiving signal a (= state α)!
- Player 2 will therefore never play L when receiving c (= α or β)
- For this reason, player 1 will never play L when receiving b (= β or γ)
- Therefore player 2 will also play R when receiving d (= γ)
- Therefore the unique NE is ((R,R),(R,R))!

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2,2</td>
<td>0,0</td>
</tr>
<tr>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
<td>3,0</td>
<td>1,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>β</th>
<th>β</th>
<th>γ</th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>β</td>
<td>0,0</td>
<td>1,1</td>
</tr>
</tbody>
</table>

$\tau_1(a) = a$, $\tau_1(b) = b$, $\tau_1(\gamma) = b$
$Pr(a|a) = 1$
$Pr(\beta|b) = 0.75$, $Pr(\gamma|b) = 0.25$

$\tau_2(\alpha) = c$, $\tau_2(\beta) = c$, $\tau_2(\gamma) = d$
$Pr(a|c) = 0.75$, $Pr(\beta|c) = 0.25$
$Pr(\gamma|d) = 1$
Auctions with Imperfect Information

- Players: \(N = \{1, \ldots, n\} \)
- States: the set of all profiles of valuations \((v_1, \ldots, v_n)\), where \(0 \leq v_i \leq v_{\text{max}}\)
- Actions: Set of possible bids
- Signals: The set of the player \(i\)'s valuation \(\tau_i(v_1, \ldots, v_n) = v_i\)
- Beliefs: \(F(v)\) is the probability that the other bidder values of the object is at most \(v\), i.e., \(F(v_1) \times \cdots \times F(v_{i-1}) \times F(v_{i+1}) \times \cdots \times F(v_n)\) is the probability, that all other players \(j \neq i\) value the object at most \(v_j\)
- Payoff: \(u_i(b,(v_1, \ldots, v_n)) = (v_i - P(b))/m\) if \(b_j \leq b\) for all \(i \neq j\) and \(b_j = b\) for \(m\) players and \(P(b)\) being the price function:
 - \(P(b)\) the highest bid = first price auction
 - \(P(b)\) the second highest bid = second price auction
Private and Common Values

- If the valuations are *private*, that is each one cares only about the his one appreciation (e.g., in art),
 - valuations are completely independent
 - one does not gain information when people submit public bids
- In an auction with *common valuations*, which means that the players share the value system but may be unsure about the real value (antiques, technical devices, exploration rights),
 - valuations are not independent
 - one might gain information from other players bids
- Here we consider private values
Second Price Sealed Bid Auction

- \(P(b) \) is what the second highest bid was
- As in the perfect information case
 - It is a weakly dominating action to bid one's own valuation \(v_i \)
 - There exist other, non-efficient, equilibria
First Price Sealed Bid Auction

- A bid of v_i weakly dominates any bid higher than v_i
- A bid of v_i does not weakly dominate a bid lower than v_i
- A bid lower than v_i weakly dominates v_i
- NE probably at a point below v_i
- General analysis is quite involved
- Simplifications:
 - only 2 players
 - $v_{\text{max}} = 1$
 - uniform distribution of valuations, i.e., $F(v) = v$
First Price Sealed Bid Auction (2)

- Let $B_i(v)$ the bid of type v for player i.
- **Claim**: Under the mentioned conditions, the game has a NE for $B_i(v) = v/2$.
- Assume that player 2 bids this way, then as far as player 1 is concerned, player 2’s bids are uniformly distributed between 0 and 0.5.
- Thus, if player 1 bids $b_1 > 0.5$, she wins. Otherwise, the probability that she wins is $F(2b_1)$.
- The payoff is
 - $v_1 - b_1$ if $b_1 > 0.5$
 - $2b_1 (v_1 - b_1) = 2b_1 v_1 - 2b_1^2$ if $0 \leq b_1 \leq 0.5$
In other words, \(0.5v_1 \) is the best response to \(B_2(v) = v/2 \) for player 1.

Since the players are symmetric, this also holds for player 2.

Hence, this is a NE.

In general, for \(m \) players, the NE is \(B_i(v) = v/m \) for \(m \) players.

Can also be shown for general distributions.
Conclusion

- If the players are not fully informed about their own and others' utilities, we have imperfect information.
- The technical tool to model this situation are Bayesian games.
- New concepts are states, signals, beliefs and expected utilities over the believed distributions over states.
- Being informed can hurt!
- Auctions are more complicated in the imperfect information case, but can still be solved.