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Overview

! Expressive power of PCFGs, HMMs, BNs still 
limited
• First order logic is more expressive

! Why not combine logic with probabilities ?
• Probabilistic logic learning
• Statistical relational learning

! One example in NLP
• Probabilistic DCGs (I.e. PCFGs + Unification)



Context
One of the key open questions of artificial intelligence 
concerns 

"probabilistic logic learning", 

i.e. the integration of 
probabilistic reasoning 
with

machine learning. 

first order logic 
representations and

Sometimes called Statistical Relational Learning



So far

! We have largely been looking at probabilistic 
representations and ways of learning these 
from data
• BNs, HMMs, PCFGs

! Now, we are going to look at their expressive 
power, and make traditional probabilistic 
representations more expressive using logic 
• Probabilistic First Order Logics
• Lift BNs, HMMs, PCFGs to more expressive 

frameworks
• Upgrade also the underlying algorithms



Prob. Definite Clause Grammars

! Recall :
• Prob. Regular Grammars
• Prob. Context-Free Grammars

! What about Prob. Turing Machines ? Or Prob. 
Grammars ?
• Combine PCFGs with Unification 
• A more general language exists : stochastic logic 

programs (SLPs) 
! Prolog + PCFGs



Probabilistic Context Free Grammars

1.0 : S -> NP, VP
1.0 : NP -> Art, Noun
0.6 : Art -> a
0.4 : Art -> the
0.1 : Noun -> turtle
0.1 : Noun -> turtles
…
0.5 : VP -> Verb
0.5 : VP -> Verb, NP
0.05 : Verb -> sleep
0.05 : Verb -> sleeps
….

The                turtle               sleeps

Art          Noun           Verb

NP                   VP

S

1

1
0.5

0.4 0.1 0.05

P(parse tree) = 1x1x.5x.1x.4x.05



We defined



PCFGs

Observe:  all derivation/rewriting steps succeed

i.e.     S->T,Q

          T->R,U

always gives 

          S-> R,U,Q



Probabilistic Definite Clause 
Grammar

1.0 : S -> NP(Num), VP(Num)
1.0 NP(Num) -> Art(Num), 

Noun(Num)
0.6 Art(sing) -> a
0.2 Art(sing) -> the
0.2 Art(plur) -> the
0.1 Noun(sing) -> turtle
0.1 Noun(plur) -> turtles
…
0.5 VP(Num) -> Verb(Num)
0.5 VP(Num) -> Verb(Num), 

NP(Num)
0.05 Verb(sing) -> sleep
0.05 Verb(plur) -> sleeps
….

The          turtle         sleeps

Art(s)      Noun(s)       Verb(s)

NP(s)              VP(s)

S

1

1
0.5

0.2 0.1 0.05

P(derivation tree) = 1x1x.5x.1x .2 x.05



In SLP notation
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Stochastic Logic Programs

! Correspondence between CFG - SLP
• Symbols   - Predicates
• Rules   - Clauses
• Derivations - SLD-derivations/Proofs

! So, 
• a stochastic logic program is an annotated logic 

program. 
• Each clause has an associated probability label. 

The sum of the probability labels for clauses 
defining a particular predicate is equal to 1.



Probabilistic Definite Clause 
Grammar

1.0 : S -> NP(Num), VP(Num)
1.0 NP(Num) -> Art(Num), 

Noun(Num)
0.6 Art(sing) -> a
0.2 Art(sing) -> the
0.2 Art(sing) -> the
0.1 Noun(sing) -> turtle
0.1 Noun(plur) -> turtles
…
0.5 VP(Num) -> Verb(Num)
0.5 VP(Num) -> Verb(Num), NP(Num)
0.05 Verb(sing) -> sleep
0.05 Verb(plur) -> sleeps
….

The          turtle         sleeps

Art(s)      Noun(s)       Verb(s)

NP(s)              VP(s)

S

1

1
0.5

0.2 0.1 0.05

P(derivation tree) = 1x1x.5x.1x .2 x.05

What about “A turtles sleeps”  ?What about “A turtles sleeps”  ?



PDCGs

Observe:  some derivations/resolution steps fail 

e.g.     NP(Num)−>Art(Num), Noun(Num)  

             and  Art(sing)-> a and Noun(plur)->turtles

         

Interest in successful derivations/proofs/refutations 

-> normalization necessary



PDCGs : distributions



PCFGs : distributions



Sampling

! PRGs, PCFGs, PDCGs, and  SLPs can also 
be used for sampling sentences, ground 
atoms that follow from the program

! Rather straightforward. Consider PDCGs:
• Probabilistically explore parse-tree
• At each step, select possible resolvents using the 

probability labels attached to clauses 
• If derivation succeeds, return corresponding 

sentence
• If derivation fails, then restart.



Questions we can ask (and answer)
about PDCGs and SLPs



Answers

! The algorithmic answers to these questions, 
again extend those of PCFGs and HMMs, in 
particular,
• Tabling is used (to record probabilities of partial 

proofs/parse trees and intermediate results)
• Failure Adjusted EM (FAM) is used to solve 

parameter re-estimation problem
! Only sentences observed
! Unobserved: Possible refutations and derivations for 

observed sentences
! Therefore EM, e.g.,  Failure Adjusted Maximisation (Cussens) 

and more recently (Sato) for PRISM
! Topic of recent research



Answers

! There is a decent implementation of 
these ideas in the system PRISM by 
Taisuke Sato for a variant of 
SLPs/PDCGs

! http://sato-www.cs.titech.ac.jp/prism/



Structure Learning

! From proof trees : De Raedt et al AAAI 05
• Learn from proof-trees (parse trees) instead of from 

sentences
• Proof-trees carry much more information
• Upgrade idea of tree bank grammars and PCFGs

! Given 
• A set of proof trees

! Find
• A PDCG that maximizes the likelihood



Initial Rule Set DCG

S -> NP(s), VP(s)
NP(s) -> Art(s), Noun(s)
VP(s) -> Verb(s) 
Art(s) -> the
Noun(s) -> turtle
Verb(s) -> sleeps The          turtle         sleeps

Art(s)      Noun(s)       Verb(s)

NP(s)              VP(s)

S

1

1 0.5

0.2 0.1 0.05

P(derivation tree) = 1x1x.5x.1x.4x.05

How to get the variables back ?How to get the variables back ?



Learning PDCGs from Proof Trees
! Based on Tree-Bank Grammar idea, e.g. Penn 

Tree Bank

! Key algorithm
• Let S be the set of all (instantiated) rules that occur 

in an example proof tree
• Initialize parameters
• repeat as long as the score of S improves

! Generalize S
! Estimate the parameters of S using Cussens’ FAM

• (which can be simplified - proofs are now observed)

• Output S  



Generalizing Rules in SLPs

! Generalization in logic
• Take two rules for same predicate and replace 

them by the lgg under    -subsumption (Plotkin)
• Example

department(cs,nebel) ->
prof(nebel), in(cs), course(ai), lect(nebel,ai).

department(cs,burgard) ->
prof(burgard), in(cs),course(ai), lect(burgard,ai)

• Induce
department(cs,P) ->

prof(P), in(cs),course(ai), lect(P,ai)



Strong logical constraints

! Replacing the rules r1 and r2 by the lgg should 
preserve the proofs/parse trees !

! So, two rules r1 and r2 should only be generalized 
when
• There is a one to one mapping (with corresponding 

substitutions) between literals in r1, r2 and lgg(r1,r2)

! Exclude 
father(j,a) -> m(j),f(a),parent(j,a)
father(j,t)  -> m(j),m(t), parent(j,t)

! Gives 
father(j,P) -> m(j),m(X),parent(j,P)



Experiment



Experiment

In all experiments : correct structure induced !



Conclusions

! SLPs and PDCGs extend PCFGs as a representation
! Proof-trees for PDCGs and PCFGs correspond to parse-

trees in PCFGs
! Also : a lot of related work in Statistical Relational Learning 

and Probabilistic Inductive Logic Programming
• Combining Graphical Models and Prob. Grammars with ideas (such 

as unification and relations) from first order logic
• Many approaches -

! Bayesian Nets (and Bayesian Logic Programms)
! Markov Networks (and Markov Logic Networks)
! …

• Current research topic
! EU project APRIL II


