
Part II. Statistical NLP

Advanced Artificial Intelligence

Probabilistic DCGs and SLPs

Wolfram Burgard, Luc De Raedt, Bernhard
Nebel, Lars Schmidt-Thieme

Many slides taken from Kristian Kersting

Overview

! Expressive power of PCFGs, HMMs, BNs still
limited
• First order logic is more expressive

! Why not combine logic with probabilities ?
• Probabilistic logic learning
• Statistical relational learning

! One example in NLP
• Probabilistic DCGs (I.e. PCFGs + Unification)

Context
One of the key open questions of artificial intelligence
concerns

"probabilistic logic learning",

i.e. the integration of
probabilistic reasoning
with

machine learning.

first order logic
representations and

Sometimes called Statistical Relational Learning

So far

! We have largely been looking at probabilistic
representations and ways of learning these
from data
• BNs, HMMs, PCFGs

! Now, we are going to look at their expressive
power, and make traditional probabilistic
representations more expressive using logic
• Probabilistic First Order Logics
• Lift BNs, HMMs, PCFGs to more expressive

frameworks
• Upgrade also the underlying algorithms

Prob. Definite Clause Grammars

! Recall :
• Prob. Regular Grammars
• Prob. Context-Free Grammars

! What about Prob. Turing Machines ? Or Prob.
Grammars ?
• Combine PCFGs with Unification
• A more general language exists : stochastic logic

programs (SLPs)
! Prolog + PCFGs

Probabilistic Context Free Grammars

1.0 : S -> NP, VP
1.0 : NP -> Art, Noun
0.6 : Art -> a
0.4 : Art -> the
0.1 : Noun -> turtle
0.1 : Noun -> turtles
…
0.5 : VP -> Verb
0.5 : VP -> Verb, NP
0.05 : Verb -> sleep
0.05 : Verb -> sleeps
….

The turtle sleeps

Art Noun Verb

NP VP

S

1

1
0.5

0.4 0.1 0.05

P(parse tree) = 1x1x.5x.1x.4x.05

We defined

PCFGs

Observe: all derivation/rewriting steps succeed

i.e. S->T,Q

 T->R,U

always gives

 S-> R,U,Q

Probabilistic Definite Clause
Grammar

1.0 : S -> NP(Num), VP(Num)
1.0 NP(Num) -> Art(Num),

Noun(Num)
0.6 Art(sing) -> a
0.2 Art(sing) -> the
0.2 Art(plur) -> the
0.1 Noun(sing) -> turtle
0.1 Noun(plur) -> turtles
…
0.5 VP(Num) -> Verb(Num)
0.5 VP(Num) -> Verb(Num),

NP(Num)
0.05 Verb(sing) -> sleep
0.05 Verb(plur) -> sleeps
….

The turtle sleeps

Art(s) Noun(s) Verb(s)

NP(s) VP(s)

S

1

1
0.5

0.2 0.1 0.05

P(derivation tree) = 1x1x.5x.1x .2 x.05

In SLP notation

1

1 1

1/3 1/2 1/2

1
1 1

P(s([the,turtles,sleep],[])=1/6

1

1/3

1/2

1

Stochastic Logic Programs

! Correspondence between CFG - SLP
• Symbols - Predicates
• Rules - Clauses
• Derivations - SLD-derivations/Proofs

! So,
• a stochastic logic program is an annotated logic

program.
• Each clause has an associated probability label.

The sum of the probability labels for clauses
defining a particular predicate is equal to 1.

Probabilistic Definite Clause
Grammar

1.0 : S -> NP(Num), VP(Num)
1.0 NP(Num) -> Art(Num),

Noun(Num)
0.6 Art(sing) -> a
0.2 Art(sing) -> the
0.2 Art(sing) -> the
0.1 Noun(sing) -> turtle
0.1 Noun(plur) -> turtles
…
0.5 VP(Num) -> Verb(Num)
0.5 VP(Num) -> Verb(Num), NP(Num)
0.05 Verb(sing) -> sleep
0.05 Verb(plur) -> sleeps
….

The turtle sleeps

Art(s) Noun(s) Verb(s)

NP(s) VP(s)

S

1

1
0.5

0.2 0.1 0.05

P(derivation tree) = 1x1x.5x.1x .2 x.05

What about “A turtles sleeps” ?What about “A turtles sleeps” ?

PDCGs

Observe: some derivations/resolution steps fail

e.g. NP(Num)−>Art(Num), Noun(Num)

 and Art(sing)-> a and Noun(plur)->turtles

Interest in successful derivations/proofs/refutations

-> normalization necessary

PDCGs : distributions

PCFGs : distributions

Sampling

! PRGs, PCFGs, PDCGs, and SLPs can also
be used for sampling sentences, ground
atoms that follow from the program

! Rather straightforward. Consider PDCGs:
• Probabilistically explore parse-tree
• At each step, select possible resolvents using the

probability labels attached to clauses
• If derivation succeeds, return corresponding

sentence
• If derivation fails, then restart.

Questions we can ask (and answer)
about PDCGs and SLPs

Answers

! The algorithmic answers to these questions,
again extend those of PCFGs and HMMs, in
particular,
• Tabling is used (to record probabilities of partial

proofs/parse trees and intermediate results)
• Failure Adjusted EM (FAM) is used to solve

parameter re-estimation problem
! Only sentences observed
! Unobserved: Possible refutations and derivations for

observed sentences
! Therefore EM, e.g., Failure Adjusted Maximisation (Cussens)

and more recently (Sato) for PRISM
! Topic of recent research

Answers

! There is a decent implementation of
these ideas in the system PRISM by
Taisuke Sato for a variant of
SLPs/PDCGs

! http://sato-www.cs.titech.ac.jp/prism/

Structure Learning

! From proof trees : De Raedt et al AAAI 05
• Learn from proof-trees (parse trees) instead of from

sentences
• Proof-trees carry much more information
• Upgrade idea of tree bank grammars and PCFGs

! Given
• A set of proof trees

! Find
• A PDCG that maximizes the likelihood

Initial Rule Set DCG

S -> NP(s), VP(s)
NP(s) -> Art(s), Noun(s)
VP(s) -> Verb(s)
Art(s) -> the
Noun(s) -> turtle
Verb(s) -> sleeps The turtle sleeps

Art(s) Noun(s) Verb(s)

NP(s) VP(s)

S

1

1 0.5

0.2 0.1 0.05

P(derivation tree) = 1x1x.5x.1x.4x.05

How to get the variables back ?How to get the variables back ?

Learning PDCGs from Proof Trees
! Based on Tree-Bank Grammar idea, e.g. Penn

Tree Bank

! Key algorithm
• Let S be the set of all (instantiated) rules that occur

in an example proof tree
• Initialize parameters
• repeat as long as the score of S improves

! Generalize S
! Estimate the parameters of S using Cussens’ FAM

• (which can be simplified - proofs are now observed)

• Output S

Generalizing Rules in SLPs

! Generalization in logic
• Take two rules for same predicate and replace

them by the lgg under -subsumption (Plotkin)
• Example

department(cs,nebel) ->
prof(nebel), in(cs), course(ai), lect(nebel,ai).

department(cs,burgard) ->
prof(burgard), in(cs),course(ai), lect(burgard,ai)

• Induce
department(cs,P) ->

prof(P), in(cs),course(ai), lect(P,ai)

Strong logical constraints

! Replacing the rules r1 and r2 by the lgg should
preserve the proofs/parse trees !

! So, two rules r1 and r2 should only be generalized
when
• There is a one to one mapping (with corresponding

substitutions) between literals in r1, r2 and lgg(r1,r2)

! Exclude
father(j,a) -> m(j),f(a),parent(j,a)
father(j,t) -> m(j),m(t), parent(j,t)

! Gives
father(j,P) -> m(j),m(X),parent(j,P)

Experiment

Experiment

In all experiments : correct structure induced !

Conclusions

! SLPs and PDCGs extend PCFGs as a representation
! Proof-trees for PDCGs and PCFGs correspond to parse-

trees in PCFGs
! Also : a lot of related work in Statistical Relational Learning

and Probabilistic Inductive Logic Programming
• Combining Graphical Models and Prob. Grammars with ideas (such

as unification and relations) from first order logic
• Many approaches -

! Bayesian Nets (and Bayesian Logic Programms)
! Markov Networks (and Markov Logic Networks)
! …

• Current research topic
! EU project APRIL II

