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Motivations and Applications

! Part-of-speech tagging
• The representative put chairs on the table

• AT   NN              VBD NNS  IN AT NN
• AT JJ                NN   VBZ   IN AT NN

! Some tags :
• AT: article, NN: singular or mass noun, 

VBD: verb, past tense, NNS: plural noun, 
IN: preposition, JJ: adjective



Table 10.1



Why pos-tagging ?

! First step in parsing
! More tractable than full parsing, intermediate 

representation
! Useful as a step for several other, more complex NLP 

tasks, e.g.
• Information extraction
• Word sense disambiguation
• Speech Synthesis

! Oldest task in Statistical NLP 
! Easy to evaluate
! Inherently sequential



Different approaches

! Start from tagged training corpus
• And learn

! Simplest approach
• For each word, predict the most frequent tag

! 0-th order Markov Model
! Gets 90% accuracy at word level (English)

! Best taggers
• 96-97% accuracy at word level (English)
• At sentence level : e.g. 20 words per sentence, on average 

one tagging error per sentence 
• Unsure how much better one can do (human error)



Notation / Table 10.2



Visual Markov Model

! Assume the VMM of last week
! We are representing

! Lexical (word) information implicit



Table 10.3



Hidden Markov Model

! Make the lexical information explicit and use 
HMMs

! State values correspond to possible tags

! Observations to possible words
! So, we have 



Estimating the parameters

! From a tagged corpus, maximum likelihood 
estimation

! So, even though a hidden markov model is 
learning, everything is visible during learning !

! Possibly apply smoothing (cf. N-gramms)



Table 10.4



Tagging with HMM

! For an unknown sentence, employ now 
the Viterbi algorithm to tag

! Similar techniques employed for protein 
secondary structure prediction

! Problems
• The need for a large corpus 
• Unknown words (cf. Zipf’s law) 



Unknown words

Two classes of part of speech : 
open and closed (e.g. 
articles)
for closed classes all words 
are known

Z: normalization constant



What if no corpus available ?

! Use traditional HMM (Baum-Welch) but
• Assume dictionary (lexicon) that lists the possible tags for 

each word

! One possibility : initialize the word generation 
(symbol emmision) probabilities 

bjl
* =

0 if t j  is not a part of speech for wl

1 / T (wl )    otherwise







Assume bjl
* = P(t j | wl ) = 1 / T (wl ), i.e. uniform

We want  P(wl | t j ) = P(t j | wl )P(wl )

P(t j )

= P(t j | wl )P(wl )

wm
∑ P(t j | wm ).P(wm )

=

1.C(wl )
T (wl ). C(wk )

wk
∑

wm
∑ 1.C(wm )
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Transformation Based Learning 
(Eric Brill)

! Observation :
• Predicting the most frequent tag already results in 

excellent behaviour

! Why not try to correct the mistakes that are 
made ? 
• Apply transformation rules 

! IF conditions THEN replace tag_j by tag_I

! Which transformations / corrections 
admissible ?

! How to learn these ?



Table 10.7/10.8





The learning algorithm



Remarks

! Other machine learning methods could 
be applied as well (e.g. decision trees, 
rule learning …)



Rule-based tagging

! Oldest method, hand-crafted rules
! Start by assigning all potential tags to each 

word
! Disambiguate using manually created rules
! E.g. for the word that 

• If
! The next word is an adjective, an adverb or a quantifier,
! And the further symbol is a sentence boundary
! And the previous word is not a consider-type verb

• Then erase all tags apart from the adverbial tag
• Else erase the adverbial tag



Learning PCFGs for parsing

! Learning from complete data 
• Everything is “observed” “visible”, examples are parse trees
• Cf. POS-tagging from tagged corpora
• PCFGs : learning from tree banks, 
• Easy : just counting

! Learning from incomplete data
• Harder : The EM approach
• The inside-outside algorithm
• Learning from the sentences (no parse trees given)





How does it work ?

! R := {r| r is a rule that occurs in one of 
the parse trees in the corpus}

! For all rules r in R do
• Estimate probability label rule
• P( N -> S) = Count(N -> S) / Count(N)



Conclusions

! Pos-tagging as an application of SNLP

! VMM, HMMs, TBL
! Statistical tagggers

• Good results for positional languages (English)
• Relatively cheap to build 
• Overfitting avoidance needed
• Difficult to interpret (black box) 
• Linguistically naive



Conclusions

! Rule-based taggers 
• Very good results
• Expensive to build
• Presumably better for free word order languages
• Interpretable

! Transformation based learning
• A good compromise ?

! Tree bank grammars 
• Pretty effective (and easy to learn)
• But hard to get the corpus.


