
Part II. Statistical NLP

Advanced Artificial Intelligence

Applications of HMMs and PCFGs in NLP

Wolfram Burgard, Luc De Raedt, Bernhard
Nebel, Lars Schmidt-Thieme

Most slides taken (or adapted) from Adam Przepiorkowski (Poland)
Figures by Manning and Schuetze

Contents

! Part of Speech Tagging
• Task
• Why

! Approaches
• Naive
• VMM
• HMM
• Transformation Based Learning

! Probabilistic Parsing
• PCFGs and Tree Banks

Parts of chapters 10, 11, 12 of Statistical NLP, Manning and Schuetze,
and Chapter 8 of Jurafsky and Martin, Speech and Language
Processing.

Motivations and Applications

! Part-of-speech tagging
• The representative put chairs on the table

• AT NN VBD NNS IN AT NN
• AT JJ NN VBZ IN AT NN

! Some tags :
• AT: article, NN: singular or mass noun,

VBD: verb, past tense, NNS: plural noun,
IN: preposition, JJ: adjective

Table 10.1

Why pos-tagging ?

! First step in parsing
! More tractable than full parsing, intermediate

representation
! Useful as a step for several other, more complex NLP

tasks, e.g.
• Information extraction
• Word sense disambiguation
• Speech Synthesis

! Oldest task in Statistical NLP
! Easy to evaluate
! Inherently sequential

Different approaches

! Start from tagged training corpus
• And learn

! Simplest approach
• For each word, predict the most frequent tag

! 0-th order Markov Model
! Gets 90% accuracy at word level (English)

! Best taggers
• 96-97% accuracy at word level (English)
• At sentence level : e.g. 20 words per sentence, on average

one tagging error per sentence
• Unsure how much better one can do (human error)

Notation / Table 10.2

Visual Markov Model

! Assume the VMM of last week
! We are representing

! Lexical (word) information implicit

Table 10.3

Hidden Markov Model

! Make the lexical information explicit and use
HMMs

! State values correspond to possible tags

! Observations to possible words
! So, we have

Estimating the parameters

! From a tagged corpus, maximum likelihood
estimation

! So, even though a hidden markov model is
learning, everything is visible during learning !

! Possibly apply smoothing (cf. N-gramms)

Table 10.4

Tagging with HMM

! For an unknown sentence, employ now
the Viterbi algorithm to tag

! Similar techniques employed for protein
secondary structure prediction

! Problems
• The need for a large corpus
• Unknown words (cf. Zipf’s law)

Unknown words

Two classes of part of speech :
open and closed (e.g.
articles)
for closed classes all words
are known

Z: normalization constant

What if no corpus available ?

! Use traditional HMM (Baum-Welch) but
• Assume dictionary (lexicon) that lists the possible tags for

each word

! One possibility : initialize the word generation
(symbol emmision) probabilities

bjl
* =

0 if t j is not a part of speech for wl

1 / T (wl) otherwise





Assume bjl
* = P(t j | wl) = 1 / T (wl), i.e. uniform

We want P(wl | t j) = P(t j | wl)P(wl)

P(t j)

= P(t j | wl)P(wl)

wm
∑ P(t j | wm).P(wm)

=

1.C(wl)
T (wl). C(wk)

wk
∑

wm
∑ 1.C(wm)

T (wm). C(wk)
wk
∑

=

C(wl)
T (wl)

wm
∑ C(wm)

T (wm)

Transformation Based Learning
(Eric Brill)

! Observation :
• Predicting the most frequent tag already results in

excellent behaviour

! Why not try to correct the mistakes that are
made ?
• Apply transformation rules

! IF conditions THEN replace tag_j by tag_I

! Which transformations / corrections
admissible ?

! How to learn these ?

Table 10.7/10.8

The learning algorithm

Remarks

! Other machine learning methods could
be applied as well (e.g. decision trees,
rule learning …)

Rule-based tagging

! Oldest method, hand-crafted rules
! Start by assigning all potential tags to each

word
! Disambiguate using manually created rules
! E.g. for the word that

• If
! The next word is an adjective, an adverb or a quantifier,
! And the further symbol is a sentence boundary
! And the previous word is not a consider-type verb

• Then erase all tags apart from the adverbial tag
• Else erase the adverbial tag

Learning PCFGs for parsing

! Learning from complete data
• Everything is “observed” “visible”, examples are parse trees
• Cf. POS-tagging from tagged corpora
• PCFGs : learning from tree banks,
• Easy : just counting

! Learning from incomplete data
• Harder : The EM approach
• The inside-outside algorithm
• Learning from the sentences (no parse trees given)

How does it work ?

! R := {r| r is a rule that occurs in one of
the parse trees in the corpus}

! For all rules r in R do
• Estimate probability label rule
• P(N -> S) = Count(N -> S) / Count(N)

Conclusions

! Pos-tagging as an application of SNLP

! VMM, HMMs, TBL
! Statistical tagggers

• Good results for positional languages (English)
• Relatively cheap to build
• Overfitting avoidance needed
• Difficult to interpret (black box)
• Linguistically naive

Conclusions

! Rule-based taggers
• Very good results
• Expensive to build
• Presumably better for free word order languages
• Interpretable

! Transformation based learning
• A good compromise ?

! Tree bank grammars
• Pretty effective (and easy to learn)
• But hard to get the corpus.

