Advanced Artificial Intelligence

Part II. Statistical NLP

Applications of HMMs and PCFGs in NLP

Wolfram Burgard, Luc De Raedt, Bernhard Nebel, Lars Schmidt-Thieme

Most slides taken (or adapted) from Adam Przepiorkowski (Poland)
Figures by Manning and Schuetze
Contents

- Part of Speech Tagging
 - Task
 - Why

- Approaches
 - Naive
 - VMM
 - HMM
 - Transformation Based Learning

- Probabilistic Parsing
 - PCFGs and Tree Banks

Parts of chapters 10, 11, 12 of Statistical NLP, Manning and Schuetze, and Chapter 8 of Jurafsky and Martin, Speech and Language Processing.
Motivations and Applications

- Part-of-speech tagging
 - The representative put chairs on the table
 - AT NN VBD NNS IN AT NN
 - AT JJ NN VBZ IN AT NN

- Some tags:
 - AT: article, NN: singular or mass noun, VBD: verb, past tense, NNS: plural noun, IN: preposition, JJ: adjective
<table>
<thead>
<tr>
<th>Tag</th>
<th>Part Of Speech</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>article</td>
</tr>
<tr>
<td>BEZ</td>
<td>the word is</td>
</tr>
<tr>
<td>IN</td>
<td>preposition</td>
</tr>
<tr>
<td>JJ</td>
<td>adjective</td>
</tr>
<tr>
<td>JJR</td>
<td>comparative adjective</td>
</tr>
<tr>
<td>MD</td>
<td>modal</td>
</tr>
<tr>
<td>NN</td>
<td>singular or mass noun</td>
</tr>
<tr>
<td>NNP</td>
<td>singular proper noun</td>
</tr>
<tr>
<td>NNS</td>
<td>plural noun</td>
</tr>
<tr>
<td>PERIOD</td>
<td>. : ? !</td>
</tr>
<tr>
<td>PN</td>
<td>personal pronoun</td>
</tr>
<tr>
<td>RB</td>
<td>adverb</td>
</tr>
<tr>
<td>RBR</td>
<td>comparative adverb</td>
</tr>
<tr>
<td>TO</td>
<td>the word to</td>
</tr>
<tr>
<td>VB</td>
<td>verb, base form</td>
</tr>
<tr>
<td>VBD</td>
<td>verb, past tense</td>
</tr>
<tr>
<td>VBG</td>
<td>verb, present participle, gerund</td>
</tr>
<tr>
<td>VBN</td>
<td>verb, past participle</td>
</tr>
<tr>
<td>VBP</td>
<td>verb, non-3rd person singular present</td>
</tr>
<tr>
<td>VBZ</td>
<td>verb, 3rd singular present</td>
</tr>
<tr>
<td>WDT</td>
<td>wh- determiner (what, which)</td>
</tr>
</tbody>
</table>

Table 10.1 Some part-of-speech tags frequently used for tagging English.
Why pos-tagging?

- First step in parsing
- More tractable than full parsing, intermediate representation
- Useful as a step for several other, more complex NLP tasks, e.g.
 - Information extraction
 - Word sense disambiguation
 - Speech Synthesis
- Oldest task in Statistical NLP
- Easy to evaluate
- Inherently sequential
Different approaches

- Start from tagged training corpus
 - And learn

- Simplest approach
 - For each word, predict the most frequent tag
 - 0-th order Markov Model
 - Gets 90% accuracy at word level (English)

- Best taggers
 - 96-97% accuracy at word level (English)
 - At sentence level: e.g. 20 words per sentence, on average one tagging error per sentence
 - Unsure how much better one can do (human error)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_i</td>
<td>the word at position i in the corpus</td>
</tr>
<tr>
<td>t_i</td>
<td>the tag of w_i</td>
</tr>
<tr>
<td>$w_{i,i+m}$</td>
<td>the words occurring at positions i through $i + m$</td>
</tr>
<tr>
<td></td>
<td>(alternative notations: $w_i \cdots w_{i+m}$, w_i, \ldots, w_{i+m}, $w_{i(i+m)}$)</td>
</tr>
<tr>
<td>$t_{i,i+m}$</td>
<td>the tags $t_i \cdots t_{i+m}$ for $w_i \cdots w_{i+m}$</td>
</tr>
<tr>
<td>w^l</td>
<td>the l^{th} word in the lexicon</td>
</tr>
<tr>
<td>t^j</td>
<td>the j^{th} tag in the tag set</td>
</tr>
<tr>
<td>$C(w^l)$</td>
<td>the number of occurrences of w^l in the training set</td>
</tr>
<tr>
<td>$C(t^j)$</td>
<td>the number of occurrences of t^j in the training set</td>
</tr>
<tr>
<td>$C(t^j, t^k)$</td>
<td>the number of occurrences of t^j followed by t^k</td>
</tr>
<tr>
<td>$C(w^l : t^j)$</td>
<td>the number of occurrences of w^l that are tagged as t^j</td>
</tr>
<tr>
<td>T</td>
<td>number of tags in tag set</td>
</tr>
<tr>
<td>W</td>
<td>number of words in the lexicon</td>
</tr>
<tr>
<td>n</td>
<td>sentence length</td>
</tr>
</tbody>
</table>

Table 10.2 Notational conventions for tagging.
Visual Markov Model

- Assume the VMM of last week
- We are representing

\[P(t^k|t^j) = \frac{C(t^j, t^k)}{C(t^j)} \]

- Lexical (word) information implicit
Table 10.3

<table>
<thead>
<tr>
<th>First tag</th>
<th>AT</th>
<th>BEZ</th>
<th>IN</th>
<th>NN</th>
<th>VB</th>
<th>PERIOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>48636</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>BEZ</td>
<td>1973</td>
<td>0</td>
<td>426</td>
<td>187</td>
<td>0</td>
<td>38</td>
</tr>
<tr>
<td>IN</td>
<td>43322</td>
<td>0</td>
<td>1325</td>
<td>17314</td>
<td>0</td>
<td>185</td>
</tr>
<tr>
<td>NN</td>
<td>1067</td>
<td>3720</td>
<td>42470</td>
<td>11773</td>
<td>614</td>
<td>21392</td>
</tr>
<tr>
<td>VB</td>
<td>6072</td>
<td>42</td>
<td>4758</td>
<td>1476</td>
<td>129</td>
<td>1522</td>
</tr>
<tr>
<td>PERIOD</td>
<td>8016</td>
<td>75</td>
<td>4656</td>
<td>1329</td>
<td>954</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 10.3 Idealized counts of some tag transitions in the Brown Corpus. For example, NN occurs 48636 times after AT.
Hidden Markov Model

- Make the lexical information explicit and use HMMs
- State values correspond to possible tags
- Observations to possible words
- So, we have

\[
a_{ij} = P(t^j | t^i) \\
b_{ik} = P(w^k | t^i)
\]
Estimating the parameters

- From a **tagged** corpus, maximum likelihood estimation

 \[
 a_{ij} = P(t^j | t^i) = \frac{C(t^i, t^j)}{C(t^i)}
 \]

 \[
 b_{ik} = P(w^k | t^j) = \frac{C(w^k : t^j)}{C(t^j)}
 \]

- So, even though a hidden markov model is learning, everything is visible during learning!
- Possibly apply smoothing (cf. N-gramms)
Table 10.4

<table>
<thead>
<tr>
<th></th>
<th>AT</th>
<th>BEZ</th>
<th>IN</th>
<th>NN</th>
<th>VB</th>
<th>PERIOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>bear</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>43</td>
<td>0</td>
</tr>
<tr>
<td>is</td>
<td>0</td>
<td>10065</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>move</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>36</td>
<td>133</td>
<td>0</td>
</tr>
<tr>
<td>on</td>
<td>0</td>
<td>0</td>
<td>5484</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>president</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>382</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>progress</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>108</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>the</td>
<td>69016</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>48809</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Table 10.4 Idealized counts of tags that some words occur within the Brown Corpus. For example, 36 occurrences of *move* are with the tag NN.
Tagging with HMM

- For an unknown sentence, employ now the Viterbi algorithm to tag
- Similar techniques employed for protein secondary structure prediction

Problems
- The need for a large corpus
- Unknown words (cf. Zipf’s law)
Unknown words

Two classes of part of speech:
open and closed (e.g. articles)
for closed classes all words are known
Z: normalization constant

\[P(w^i|t^j) = \frac{1}{Z} P(\text{unknown}|t^j) \times P(\text{capitalized}|t^j) \times P(\text{endings}|t^j) \]
What if no corpus available?

- Use traditional HMM (Baum-Welch) but
 - Assume dictionary (lexicon) that lists the possible tags for each word
- One possibility: initialize the word generation (symbol emission) probabilities

\[b_{jl} = \frac{b^*_j C(w^l)}{\sum_{wm} b^*_j C(w^m)} \]

\[b^*_j = \begin{cases} 0 & \text{if } t^j \text{ is not a part of speech for } w^l \\ 1 / T(w^l) & \text{otherwise} \end{cases} \]
Assume $b_{jl}^* = P(t^j \mid w^l) = 1 / T(w^l)$, i.e. uniform

We want

$$P(w^l \mid t^j) = \frac{P(t^j \mid w^l)P(w^l)}{P(t^j)}$$

$$= \frac{P(t^j \mid w^l)P(w^l)}{\sum_{w^m} P(t^j \mid w^m)P(w^m)}$$

$$= \frac{1.C(w^l)}{T(w^l) \sum_{w^k} C(w^k)}$$

$$= \frac{\sum_{w^m} 1.C(w^m)}{T(w^m) \sum_{w^k} C(w^k)}$$

$$= \frac{C(w^l)}{T(w^l)} \frac{1}{\sum_{w^m} C(w^m)}$$
Transformation Based Learning
(Eric Brill)

- **Observation:**
 - Predicting the most frequent tag already results in excellent behaviour

- **Why not try to correct the mistakes that are made?**
 - Apply transformation rules
 - IF conditions THEN replace tag_j by tag_l

- **Which transformations / corrections admissible?**

- **How to learn these?**
Table 10.7 Triggering environments in Brill's transformation-based tagger. Examples: Line 5 refers to the triggering environment “Tag t^j occurs in one of the three previous positions”; Line 9 refers to the triggering environment “Tag t^j occurs two positions earlier and tag t^k occurs in the following position.”
<table>
<thead>
<tr>
<th>Source tag</th>
<th>Target tag</th>
<th>Triggering environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN</td>
<td>VB</td>
<td>previous tag is TO</td>
</tr>
<tr>
<td>VBP</td>
<td>VB</td>
<td>one of the previous three tags is MD</td>
</tr>
<tr>
<td>JJR</td>
<td>RBR</td>
<td>next tag is JJ</td>
</tr>
<tr>
<td>VBP</td>
<td>VB</td>
<td>one of the previous two words is n't</td>
</tr>
</tbody>
</table>

Table 10.8 Examples of some transformations learned in transformation-based tagging.
The learning algorithm

1. $C_0 :=$ corpus with each word tagged with its most frequent tag
2. for $k := 0$ step 1 do
3. $\nu :=$ the transformation u_i that minimizes $E(u_i(C_k))$
4. if $(E(C_k) - E(\nu(C_k))) < \epsilon$ then break fi
5. $C_{k+1} := \nu(C_k)$
6. $\tau_{k+1} := \nu$
7. end
8. Output sequence: τ_1, \ldots, τ_k

Figure 10.3 The learning algorithm for transformation-based tagging. C_i refers to the tagging of the corpus in iteration i. E is the error rate.
Remarks

- Other machine learning methods could be applied as well (e.g. decision trees, rule learning ...)
Rule-based tagging

- Oldest method, hand-crafted rules
- Start by assigning all potential tags to each word
- Disambiguate using manually created rules
- E.g. for the word that
 - If
 - The next word is an adjective, an adverb or a quantifier,
 - And the further symbol is a sentence boundary
 - And the previous word is not a consider-type verb
 - Then erase all tags apart from the adverbial tag
 - Else erase the adverbial tag
Learning PCFGs for parsing

- **Learning from complete data**
 - Everything is “observed” “visible”, examples are parse trees
 - Cf. POS-tagging from tagged corpora
 - PCFGs : learning from tree banks,
 - Easy : just counting

- **Learning from incomplete data**
 - Harder : The EM approach
 - The inside-outside algorithm
 - Learning from the sentences (no parse trees given)
A Penn Treebank tree (POS tags not shown)

(S (NP-SBJ The move)
 (VP followed)
 (NP (NP a round)
 (PP of)
 (NP (NP similar increases)
 (PP by)
 (NP other lenders))
 (PP against)
 (NP Arizona real estate loans)))
)

(S-ADV (NP-SBJ *)
 (VP reflecting)
 (NP (NP a continuing decline)
 (PP-LOC in)
 (NP that market))))
How does it work?

- \(R := \{r \mid r \text{ is a rule that occurs in one of the parse trees in the corpus} \} \)

- For all rules \(r \) in \(R \) do
 - Estimate probability label rule
 - \(P(N \rightarrow S) = \frac{\text{Count}(N \rightarrow S)}{\text{Count}(N)} \)
Conclusions

- Pos-tagging as an application of SNLP
- VMM, HMMs, TBL
- Statistical taggers
 - Good results for positional languages (English)
 - Relatively cheap to build
 - Overfitting avoidance needed
 - Difficult to interpret (black box)
 - Linguistically naive
Conclusions

- **Rule-based taggers**
 - Very good results
 - Expensive to build
 - Presumably better for free word order languages
 - Interpretable

- **Transformation based learning**
 - A good compromise?

- **Tree bank grammars**
 - Pretty effective (and easy to learn)
 - But hard to get the corpus.