Advanced Artificial Intelligence

Part II. Statistical NLP

Applications of HMMs and PCFGs in NLP

Wolfram Burgard, Luc De Raedt, Bernhard Nebel, Lars Schmidt-Thieme

Most slides taken (or adapted) from Adam Przepiorkowski (Poland) Figures by Manning and Schuetze

Contents

- Part of Speech Tagging
 - Task
 - Why
- Approaches
 - Naive
 - VMM
 - HMM
 - Transformation Based Learning
- Probabilistic Parsing
 - PCFGs and Tree Banks

Parts of chapters 10, 11, 12 of Statistical NLP, Manning and Schuetze, and Chapter 8 of Jurafsky and Martin, Speech and Language Processing.

Motivations and Applications

- Part-of-speech tagging
 - The representative put chairs on the table
 - AT NN VBD NNS IN AT NN
 - AT JJ NN VBZ IN AT NN
- Some tags :
 - AT: article, NN: singular or mass noun, VBD: verb, past tense, NNS: plural noun, IN: preposition, JJ: adjective

Tag	Part Of Speech	
AT	article	
BEZ	the word is	
IN	preposition	
JJ	adjective	
JJR	comparative adjective	
MD	modal	
NN	singular or mass noun	
NNP	singular proper noun	
NNS	plural noun	
PERIOD	.:?!	
PN	personal pronoun	
RB	adverb	
RBR	comparative adverb	
TO	the word to	
VB	verb, base form	
VBD	verb, past tense	
VBG	verb, present participle, gerund	
VBN	verb, past participle	
VBP	verb, non-3rd person singular present	
VBZ	verb, 3rd singular present	
WDT	wh- determiner (what, which)	

Table 10.1 Some part-of-speech tags frequently used for tagging English.

Why pos-tagging?

- First step in parsing
- More tractable than full parsing, intermediate representation
- Useful as a step for several other, more complex NLP tasks, e.g.
 - Information extraction
 - Word sense disambiguation
 - Speech Synthesis
- Oldest task in Statistical NLP
- Easy to evaluate
- Inherently sequential

Different approaches

- Start from tagged training corpus
 - And learn
- Simplest approach
 - For each word, predict the most frequent tag
 - 0-th order Markov Model
 - Gets 90% accuracy at word level (English)
- Best taggers
 - 96-97% accuracy at word level (English)
 - At sentence level : e.g. 20 words per sentence, on average one tagging error per sentence
 - Unsure how much better one can do (human error)

```
the word at position i in the corpus
Wi
              the tag of w_i
ti
              the words occurring at positions i through i + m
W_{i,i+m}
              (alternative notations: w_i \cdot \cdot \cdot w_{i+m}, w_i, \dots, w_{i+m}, w_{i(i+m)})
              the tags t_i \cdot \cdot \cdot t_{i+m} for w_i \cdot \cdot \cdot w_{i+m}
t_{i,i+m}
              the l^{\text{th}} word in the lexicon
w^l
              the j^{th} tag in the tag set
              the number of occurrences of w^l in the training set
C(w^l)
              the number of occurrences of t^j in the training set
C(t^j)
              the number of occurrences of t^j followed by t^k
C(t^j,t^k)
              the number of occurrences of w^l that are tagged as t^j
C(w^l:t^j)
              number of tags in tag set
              number of words in the lexicon
W
              sentence length
n
```

Table 10.2 Notational conventions for tagging.

Visual Markov Model

- Assume the VMM of last week
- We are representing

$$P(t^k|t^j) = \frac{C(t^j, t^k)}{C(t^j)}$$

Lexical (word) information implicit

Table 10.3

	Second tag						
First tag	AT	BEZ	IN	NN	VB	PERIOD	
AT	0	0	0	48636	0	19	
BEZ	1973	0	426	187	0	38	
IN	43322	0	1325	17314	0	185	
NN	1067	3720	42470	11773	614	21392	
VB	6072	42	4758	1476	129	1522	
PERIOD	8016	75	4656	1329	954	0	

Table 10.3 Idealized counts of some tag transitions in the Brown Corpus. For example, NN occurs 48636 times after AT.

Hidden Markov Model

- Make the lexical information explicit and use HMMs
- State values correspond to possible tags
- Observations to possible words
- So, we have

$$a_{ij} = P(t^j | t^i)$$

$$b_{ik} = P(w^k | t^i)$$

Estimating the parameters

From a tagged corpus, maximum likelihood estimation

$$a_{ij} = P(t^j | t^i) = \frac{C(t^i, t^j)}{C(t^i)}$$

$$b_{ik} = P(w^k|t^j) = \frac{C(w^k:t^j)}{C(t^j)}$$

- So, even though a hidden markov model is learning, everything is visible during learning!
- Possibly apply smoothing (cf. N-gramms)

Table 10.4

10.2 Markov Model Taggers

-		-	٠	d	٠
-	ъ.	л		r	1
п		ш	ь.	٠.	4

	AT	BEZ	IN	NN	VB	PERIOD
bear	0	0	10	0	43	0
is	0	10065	0	0	0	0
move	0	0	0	36	133	0
on	0	0	5484	0	0	0
president	0	0	0	382	0	0
progress	0	0	0	108	4	0
the	69016	0	0	0	0	0
	0	0	0	0	0	48809

Table 10.4 Idealized counts of tags that some words occur within the Brown Corpus. For example, 36 occurrences of *move* are with the tag NN.

Tagging with HMM

- For an unknown sentence, employ now the Viterbi algorithm to tag
- Similar techniques employed for protein secondary structure prediction
- Problems
 - The need for a large corpus
 - Unknown words (cf. Zipf's law)

Unknown words

Two classes of part of speech:

open and closed (e.g. articles)

for closed classes all words are known

Z: normalization constant

Feature	Value	NNP	NN	NNS	VBG	VBZ
unknown word	yes	0.05	0.02	0.02	0.005	0.005
	no	0.95	0.98	0.98	0.995	0.995
capitalized	yes	0.95	0.10	0.10	0.005	0.005
	no	0.05	0.90	0.90	0.995	0.995
ending	-S	0.05	0.01	0.98	0.00	0.99
-	-ing	0.01	0.01	0.00	1.00	0.00
	-tion	0.05	0.10	0.00	0.00	0.00
	other	0.89	0.88	0.02	0.00	0.01

Table 10.5 Table of probabilities for dealing with unknown words in tagging. For example, P(unknown word = yes|NNP) = 0.05 and P(ending = -ing|VBG) = 1.0.

$$P(w^l|t^j) = \frac{1}{Z}P(unknown|t^j) \times P(capitalized|t^j) \times P(endings|t^j)$$

What if no corpus available?

- Use traditional HMM (Baum-Welch) but
 - Assume dictionary (lexicon) that lists the possible tags for each word
- One possibility: initialize the word generation (symbol emmision) probabilities

$$b_{jl} = \frac{b_{jl}^* C(w^l)}{\sum_{w^m} b_{jm}^* C(w^m)}$$

$$b_{jl}^* = \begin{cases} 0 \text{ if } t^j \text{ is not a part of speech for } w^l \\ 1/T(w^l) \text{ otherwise} \end{cases}$$

Assume
$$b_{jl}^* = P(t^j | w^l) = 1/T(w^l)$$
, i.e. uniform

We want
$$P(w^{l} | t^{j}) = \frac{P(t^{j} | w^{l})P(w^{l})}{P(t^{j})}$$

$$= \frac{P(t^{j} \mid w^{l})P(w^{l})}{\sum_{m} P(t^{j} \mid w^{m}).P(w^{m})}$$

$$= \frac{\frac{1.C(w^{l})}{T(w^{l}).\sum_{w^{k}}C(w^{k})}}{\sum_{w^{m}} \frac{1.C(w^{m})}{T(w^{m}).\sum_{w^{k}}C(w^{k})}}$$

$$=\frac{\frac{C(w^l)}{T(w^l)}}{\sum_{w^m} \frac{C(w^m)}{T(w^m)}}$$

Transformation Based Learning (Eric Brill)

- Observation :
 - Predicting the most frequent tag already results in excellent behaviour
- Why not try to correct the mistakes that are made?
 - Apply transformation rules
 - IF conditions THEN replace tag_j by tag_I
- Which transformations / corrections admissible ?
- How to learn these ?

Table 10.7/10.8

Table 10.7 Triggering environments in Brill's transformation-based tagger. Examples: Line 5 refers to the triggering environment "Tag t^j occurs in one of the three previous positions"; Line 9 refers to the triggering environment "Tag t^j occurs two positions earlier and tag t^k occurs in the following position."

Source ta	g Target tag	Triggering environment
NN	VB	previous tag is TO
VBP	VB	one of the previous three tags is MD
JJR	RBR	next tag is JJ
VBP	VB	one of the previous two words is n't

Table 10.8 Examples of some transformations learned in transformation-based tagging.

The learning algorithm

```
1 C_0 := corpus with each word tagged with its most frequent tag

3 for k := 0 step 1 do

4 v := the transformation u_i that minimizes E(u_i(C_k))

6 if (E(C_k) - E(v(C_k))) < \epsilon then break fi

7 C_{k+1} := v(C_k)

8 \tau_{k+1} := v

9 end

10 Output sequence: \tau_1, \dots, \tau_k
```

Figure 10.3 The learning algorithm for transformation-based tagging. C_i refers to the tagging of the corpus in iteration i. E is the error rate.

Remarks

 Other machine learning methods could be applied as well (e.g. decision trees, rule learning ...)

Rule-based tagging

- Oldest method, hand-crafted rules
- Start by assigning all potential tags to each word
- Disambiguate using manually created rules
- E.g. for the word that
 - If
 - The next word is an adjective, an adverb or a quantifier,
 - And the further symbol is a sentence boundary
 - And the previous word is not a consider-type verb
 - Then erase all tags apart from the adverbial tag
 - Else erase the adverbial tag

Learning PCFGs for parsing

- Learning from complete data
 - Everything is "observed" "visible", examples are parse trees
 - Cf. POS-tagging from tagged corpora
 - PCFGs: learning from tree banks,
 - Easy: just counting
- Learning from incomplete data
 - Harder: The EM approach
 - The inside-outside algorithm
 - Learning from the sentences (no parse trees given)

A Penn Treebank tree (POS tags not shown)

How does it work?

- R := {r| r is a rule that occurs in one of the parse trees in the corpus}
- For all rules r in R do
 - Estimate probability label rule
 - P(N -> S) = Count(N -> S) / Count(N)

Conclusions

- Pos-tagging as an application of SNLP
- VMM, HMMs, TBL
- Statistical tagggers
 - Good results for positional languages (English)
 - Relatively cheap to build
 - Overfitting avoidance needed
 - Difficult to interpret (black box)
 - Linguistically naive

Conclusions

- Rule-based taggers
 - Very good results
 - Expensive to build
 - Presumably better for free word order languages
 - Interpretable
- Transformation based learning
 - A good compromise ?
- Tree bank grammars
 - Pretty effective (and easy to learn)
 - But hard to get the corpus.