Description Logics – Algorithms

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method
Reasoning Problems & Algorithms

- Satisfiability or subsumption of concept descriptions
- Satisfiability or instance relation in ABoxes
- Structural subsumption algorithms
 - Normalization of concept descriptions and structural comparison
 - very fast, but can only be used for small DLs
- Tableau algorithms
 - Similar to modal tableau methods
 - Meanwhile the method of choice
Structural Subsumption Algorithms

- **Small Logic** \mathcal{FL}^-
 - $C \sqcap D$
 - $\forall r.C$
 - $\exists r$ (simple existential quantification)

- **Idea**
 1. In the conjunction, collect all *universally quantified expressions* (also called *value restrictions*) with the same role and build *complex value restriction*:

$$\forall r.C \sqcap \forall r.D \rightarrow \forall r.(C \sqcap D).$$

 2. Compare all conjuncts with each other. For each conjunct in the subsuming concept there should be a *corresponding one* in the subsumed one.
Example

\[D = \text{Human} \sqcap \exists \text{has-child} \sqcap \forall \text{has-child.} \text{Human} \sqcap \forall \text{has-child.} \exists \text{has-child} \]

\[C = \text{Human} \sqcap \text{Female} \sqcap \exists \text{has-child} \sqcap \forall \text{has-child.} (\text{Human} \sqcap \text{Female} \sqcap \exists \text{has-child}) \]

Check: \(C \subseteq D \)

1. Collect value restrictions in \(D \): \(\ldots \forall \text{has-child.} (\text{Human} \sqcap \exists \text{has-child}) \)

2. Compare:
 2.1 For \text{Human} in \(D \), we have \text{Human} in \(C \)
 2.2 For \(\exists \text{has-child} \) in \(D \), we have \(\ldots \)
 2.3 For \(\forall \text{has-child.} (\ldots) \) in \(D \), we have \(\ldots \)
 2.3.1 For \text{Human} \ldots
 2.3.2 For \(\exists \text{has-child} \ldots \)

\(\Rightarrow C \) is subsumed by \(D \)!
Subsumption Algorithm

SUB(*C*, *D*) algorithm:

1. Reorder terms (*commutativity*, *associativity* and *value restriction law*):

 \[C = \bigcap A_i \bigcap \exists r_j \bigcap \forall r_k : C_k \]
 \[D = \bigcap B_l \bigcap \exists s_m \bigcap \forall s_n : D_n \]

2. For each *B_l* in *D*, is there an *A_i* in *C* with *A_i* = *B_l*?
3. For each *∃s_m* in *D*, is there an *∃r_j* in *C* with *s_m* = *r_j*?
4. For each *∀s_n : D_n* in *D*, is there a *∀r_k : C_k* in *C* such that *C_k* ⊑ *D_n* and *s_n* = *r_k*?

\[\rightsquigarrow C \sqsubseteq D \] iff all questions are answered positively
Soundness

Theorem (Soundness)

\[\text{SUB}(C, D) \Rightarrow C \sqsubseteq D \]

Proof sketch.

Reordering of terms (1):

a) Commutativity and associativity are trivial

b) Value restriction law. We show: \((\forall r. (C \cap D))^I = (\forall r.C \cap \forall r.D)^I \)

Assumption: \(d \in (\forall r. (C \cap D))^I \)

Case 1: \(\not\exists e : (d, e) \in r^I \) \(\sqrt{\} \)

Case 2: \(\exists e : (d, e) \in r^I \Rightarrow e \in (C \cap D)^I \Rightarrow e \in C^I, e \in D^I \)

Since \(e \) is arbitrary: \(d \in (\forall r.C)^I, d \in (\forall r.D)^I \) then \(d \) must also be conjunction, i.e., \((\forall r. (C \cap D))^I \subseteq (\forall r.C \cap \forall r.D)^I \)

Other direction is similar

\((2+3+4)\): Induction on the nesting depth of \(\forall \)-expressions \(\square \)
Completeness

Theorem (Completeness)
\(C \sqsubseteq D \Rightarrow SUB(C, D) \)

Proof idea.
One shows the contrapositive:
\[\neg SUB(C, D) \Rightarrow C \not\sqsubseteq D \]

Idea: If one of the rules leads to a negative answer, we use this to construct an interpretation with a special element \(d \) such that
\[d \in C^I, \text{ but } d \notin D^I \]
Generalizing the Algorithm

Extensions of \mathcal{FL}^- by

- $\neg A$ (*atomic negation*),
- $(\leq n \ r)$, $(\geq n \ r)$ (*cardinality restrictions*),
- $r \circ s$ (*role composition*)

does not lead to any problems.

However: If we use full existential restrictions, then it is very unlikely that we can come up with a *simple* structural subsumption algorithm – having the same flavor as the one above.

More precisely: There is (most probably) no algorithm that uses polynomially many reorderings and simplifications and allows for a simple structural comparison.

Reason: Subsumption for $\mathcal{FL}^- + \exists r.C$ is NP-hard (Nutt).
ABox Reasoning

Idea: *abstraction* + *classification*

- *Complete* ABox by propagating value restrictions to role fillers
- Compute for each object its *most specialized concepts*
- These can then be handled using the ordinary subsumption algorithm
Tableau Subsumption Method

Tableau Method

- **Logic** \(\mathcal{ALC}\)
 - \(C \sqcap D\)
 - \(C \sqcup D\)
 - \(\neg C\)
 - \(\forall r.C\)
 - \(\exists r.C\)

- **Idea:** Decide (un-)satisfiability of a concept description \(C\) by trying to *systematically construct* a model for \(C\). If that is successful, \(C\) is satisfiable. Otherwise \(C\) is unsatisfiable.
Example: Subsumption in a TBox

TBox

Hermaphrodite = Male \(\sqcap\) Female
Parents-of-sons-and-daughters = \(\exists\) has-child.Male \(\sqcap\) \(\exists\) has-child.Female
Parents-of-hermaphrodite = \(\exists\) has-child.Hermaphrodite

Query

Parents-of-sons-and-daughters \(\sqsubseteq_T\) Parents-of-hermaphrodites
Reductions

1. **Unfolding**
 \[\exists \text{has-child. Male} \sqcap \exists \text{has-child. Female} \sqsubseteq \exists \text{has-child. (Male} \sqcap \text{Female) \]

2. **Reduction to unsatisfiability**

 Is
 \[\exists \text{has-child. Male} \sqcap \exists \text{has-child. Female} \sqcap \neg (\exists \text{has-child. (Male} \sqcap \text{Female)}) \]
 unsatisfiable?

3. **Negation normal form** (move negations inside):
 \[\exists \text{has-child. Male} \sqcap \exists \text{has-child. Female} \sqcap \forall \text{has-child. (\neg Male} \sqcup \neg \text{Female) \]

4. **Try to construct a model**
Model Construction (1)

1. **Assumption**: There exists an object \(x \) in the interpretation of our concept:

 \[x \in (\exists \ldots)^I \]

2. This implies that \(x \) is in the interpretation of all conjuncts:

 \[
 \begin{align*}
 x &\in (\exists \text{has-child}.\text{Male})^I \\
 x &\in (\exists \text{has-child}.\text{Female})^I \\
 x &\in (\forall \text{has-child}.(\neg \text{Male} \sqcup \neg \text{Female}))^I
 \end{align*}
 \]

3. This implies that there should be objects \(y \) and \(z \) such that

 \((x,y) \in \text{has-child}^I, (x,z) \in \text{has-child}^I, y \in \text{Male}^I \) and \(z \in \text{Female}^I \) and ...
Model Construction (2)

\[x : \exists \text{has-child}. \text{Male} \]
\[x : \exists \text{has-child}. \text{Female} \]
Model Construction (3)

\[x : \exists \text{has-child}. \text{Male} \]
\[x : \exists \text{has-child}. \text{Female} \]
\[x : \forall \text{hat-child}. (\neg \text{Male} \sqcup \neg \text{Female}) \]
Model Construction (4)

\[x : \exists \text{has-child}. \text{Male} \]
\[x : \exists \text{has-child}. \text{Female} \]
\[x : \forall \text{hat-child}. (\neg \text{Male} \sqcup \neg \text{Female}) \]
\[y : \neg \text{Male} \]

(Contradiction)
Model Construction (5)

\[x : \exists \text{has-child}. \text{Male} \]
\[x : \exists \text{has-child}. \text{Female} \]
\[x : \forall \text{hat-child}. (\neg \text{Male} \sqcup \neg \text{Female}) \]
\[y : \neg \text{Female} \]
\[z : \neg \text{Male} \]

\[\text{Model constructed!} \]
Tableau Method (1): NNF

\(C \equiv D \) iff \(C \sqsubseteq D \) and \(D \sqsubseteq C \).

Now we have the following equivalences:

\[
\begin{align*}
\neg(C \sqcap D) & \equiv \neg C \sqcup \neg D \\
\neg(C \sqcup D) & \equiv \neg C \sqcap \neg D \\
\neg\neg C & \equiv C \\
\neg(\forall r. C) & \equiv \exists r. \neg C \\
\neg(\exists r. C) & \equiv \forall r. \neg C
\end{align*}
\]

These equivalences can be used to move all negations signs to the inside, resulting in concept description where only concept names are negated:

negation normal form (NNF)

Theorem (NNF)

The negation normal form of an ALC concept can be computed in polynomial time.
A **constraint** is a syntactical object of the form: $x : C$ or $x r y$, where C is a concept description in NNF, r is a role name and x and y are *variable names*. Let I be an interpretation. An **I-assignment** α is a function that maps each variable symbol to an object of the universe \mathcal{D}.

A constraint $x : C (x r y)$ is **satisfied** by an I-assignment α, if $\alpha(x) \in C^I$ and $((\alpha(x), \alpha(y)) \in r^I)$.

A **constraint system** S is a finite, non-empty set of constraints. An I-assignment α satisfies S if α satisfies each constraint in S. S is **satisfiable** if there exists I and α such that α satisfies S.

Theorem

An \mathcal{ALC} concept C in NNF is satisfiable iff the system $\{x : C\}$ is satisfiable.
Tableau Method (3): Transforming Constraint Systems

Transformation rules:

1. \(S \rightarrow \sqcap \{ x : C_1, x : C_2 \} \cup S \)
 if \((x : C_1 \cap C_2) \in S\) and either \((x : C_1)\) or \((x : C_2)\) or both are not in \(S\).

2. \(S \rightarrow \sqcup \{ x : D \} \cup S \)
 if \((x : C_1 \cup C_2) \in S\) and neither \((x : C_1) \in S\) nor \((x : C_2) \in S\) and \(D = C_1\) or \(D = C_2\).

3. \(S \rightarrow \exists \{ xry, y : C \} \cup S \)
 if \((x : \exists r. C) \in S\), \(y\) is a fresh variable, and there is no \(z\) s.t. \((xrz) \in S\) and \((z : C) \in S\).

4. \(S \rightarrow \forall \{ y : C \} \cup S \)
 if \((x : \forall r. C), (xry) \in S\) and \((y : C) \notin S\).

Deterministic rules (1,3,4) vs. non-deterministic (2).
Generating rules (3) vs. non-generating (1,2,4).
Tableau Method (4): Invariances

Theorem (Invariance)

Let S and T be constraint systems:

1. If T has been generated by applying a deterministic rule to S, then S is satisfiable iff T is satisfiable.

2. If T has been generated by applying a non-deterministic rule to S, then S is satisfiable if T is satisfiable. Furthermore, if a non-deterministic rule can be applied to S, then it can be applied such that S is satisfiable iff the resulting system T is satisfiable.

Theorem (Termination)

Let C be an \mathcal{ALC} concept description in NNF. Then there exists no infinite chain of transformations starting from the constraint system $\{x : C\}$.
A constraint system is called **closed** if no transformation rule can be applied.

A **clash** is a pair of constraints of the form \(x: A \) and \(x: \neg A \), where \(A \) is a concept name.

Theorem (Soundness and Completeness)

A *closed constraint system* is satisfiable iff it does not contain a clash.

Proof idea.

\[\Rightarrow: \text{obvious.} \quad \Leftarrow: \text{Construct a model by using the concept labels.} \]
Space Requirements

Because the tableau method is non-deterministic ($\rightarrow\square$ rule) ... there could be exponentially many closed constraint systems in the end. Interestingly, even one constraint system can have exponential size.

Example:

$$\exists r. A \sqcap \exists r. B$$

$$\forall r. \left(\exists r. A \sqcap \exists r. B \right)$$

$$\forall r. (\exists r. A \sqcap \exists r. B \sqcap$$

$$\forall r. (...))$$

However: One can modify the algorithm so that it needs only poly. space.

Idea: Generating a y only for one $\exists r. C$ and then proceeding into the depth.
ABox Reasoning

ABox satisfiability can also be decided using the tableau method if we can add constraints of the form $x \neq y$ (for UNA):

- **Normalize** and **unfold** and add inequalities for all pairs of objects mentioned in the ABox.

- Strictly speaking, in \mathcal{ALC} we do not need this because we are never forced to identify two objects.
Literature

