Classical Logic

Predicate Logic

Knowledge Representation and Reasoning

October 31, 2005
Outline

Motivation

Syntax

Semantics
 Interpretations
 Variable maps
 Definition of truth
 Terminology
 Free and bound variables
 Open and Closed Formulae

Literature
Why First-Order Logic (FOL)?

- In propositional logic, the only building blocks are atomic propositions.
- We cannot talk about the internal structures of these propositions.
- Example:
 - All CS students know formal logic
 - Peter is a CS student
 - Therefore, Peter knows formal logic
 - Not possible in propositional logic
- Idea: We introduce predicates, functions, object variables and quantifiers.
Syntax

- **variable symbols**: \(x, y, z, \ldots \)
- **\(n \)-ary function symbols**: \(f, g, \ldots \)
- **constant symbols**: \(a, b, c, \ldots \)
- **\(n \)-ary predicate symbols**: \(P, Q, \ldots \)
- **logical symbols**: \(\forall, \exists, =, \neg, \land, \ldots \)

Terms

\[
\begin{align*}
 t & \longrightarrow x & \text{variable} \\
 & \mid f(t_1, \ldots, t_n) & \text{function application} \\
 & \mid a & \text{constant}
\end{align*}
\]

Formulae

\[
\begin{align*}
 \varphi & \longrightarrow P(t_1, \ldots, t_n) & \text{atomic formula} \\
 & \mid t = t' & \text{identity formulae} \\
 & \mid \ldots & \text{propositional connectives} \\
 & \mid \forall x(\varphi') & \text{universal quantification} \\
 & \mid \exists x(\varphi') & \text{existential quantification}
\end{align*}
\]

ground term, etc.: term, etc. without variable occurrences
Semantics: Idea

- In FOL, the universe of discourse consists of objects, functions over these objects, and relations over these objects.
- Function symbols are mapped to functions, predicate symbols are mapped to relations, and terms to objects.
- Notation: Instead of $I(x)$ we write x^I.
- Note: Usually one considers all possible non-empty universes. (However, sometimes the interpretations are restricted to particular domains, e.g. integers or real numbers.)
- Satisfiability and validity is then considered wrt all these universes.
Formal Semantics: Interpretations

Interpretations: \(I = \langle D, \cdot^I \rangle \) with \(D \) being an arbitrary non-empty set and \(I \) being a function which maps

- \(n \)-ary function symbols \(f \) to \(n \)-ary functions \(f^I \in [D^n \rightarrow D] \),
- constant symbols \(a \) to objects \(a^I \in D \), and
- \(n \)-ary predicates \(P \) to \(n \)-ary relations \(P^I \subseteq D^n \).

Interpretation of ground terms:

\[
(f(t_1, \ldots, t_n))^I = f^I(t_1^I, \ldots, t_n^I) \ (\in D)
\]

Truth of ground atoms:

\[
I \models P(t_1, \ldots, t_n) \ \text{iff} \ \langle t_1^I, \ldots, t_n^I \rangle \in P^I
\]
Examples

\[\mathcal{D} = \{d_1, \ldots, d_n\}, n \geq 2 \quad \mathcal{D} = \{1, 2, 3, \ldots\} \]

\[a^I = d_1 \quad 1^I = 1 \]

\[b^I = d_2 \quad 2^I = 2 \]

\[\text{eye}^I = \{d_1\} \quad : \quad \text{even}^I = \{2, 4, 6, \ldots\} \]

\[\text{red}^I = \mathcal{D} \quad \text{succ}^I = \{(1 \mapsto 2), (2 \mapsto 3), \ldots\} \]

\[I \models \text{red}(b) \quad I \not\models \text{even}(3) \]

\[I \not\models \text{eye}(b) \quad I \models \text{even}(\text{succ}(3)) \]
Formal Semantics: Variable Maps

V is the set of variables. Function $\alpha : V \rightarrow D$ is a variable map.
Notation: $\alpha[x/d]$ is identical to α except for x where $\alpha[x/d](x) = d$.

Interpretation of terms under I, α:

$$x^I,\alpha = \alpha(x)$$
$$a^I,\alpha = a^I$$
$$f(t_1, \ldots, t_n)^I,\alpha = f^I(t_1^I,\alpha, \ldots, t_n^I,\alpha)$$

Truth of atomic formulae:

$$I, \alpha \models P(t_1, \ldots, t_n) \text{ iff } \langle t_1^I,\alpha, \ldots, t_n^I,\alpha \rangle \in P^I$$

Example (cont.):

$$\alpha = \{x \mapsto d_1, y \mapsto d_2\} \quad I, \alpha \models \text{red}(x) \quad I, \alpha[y/d_1] \models \text{eye}(y)$$
Formal Semantics: Truth

Truth of φ by I under α ($I, \alpha \models \varphi$) is defined as follows.

\[
I, \alpha \models P(t_1, \ldots, t_n) \quad \text{iff} \quad \langle t_1^{I,\alpha}, \ldots, t_n^{I,\alpha} \rangle \in P^I
\]

\[
I, \alpha \models t_1 = t_2 \quad \text{iff} \quad t_1^{I,\alpha} = t_2^{I,\alpha}
\]

\[
I, \alpha \models \neg \varphi \quad \text{iff} \quad I, \alpha \not\models \varphi
\]

\[
I, \alpha \models \varphi \land \psi \quad \text{iff} \quad I, \alpha \models \varphi \text{ and } I, \alpha \models \psi
\]

\[
I, \alpha \models \varphi \lor \psi \quad \text{iff} \quad I, \alpha \models \varphi \text{ or } I, \alpha \models \psi
\]

\[
I, \alpha \models \varphi \rightarrow \psi \quad \text{iff} \quad \text{if } I, \alpha \models \varphi, \text{ then } I, \alpha \models \psi
\]

\[
I, \alpha \models \varphi \leftrightarrow \psi \quad \text{iff} \quad I, \alpha \models \varphi, \text{ iff } I, \alpha \models \psi
\]

\[
I, \alpha \models \forall x \varphi \quad \text{iff} \quad I, \alpha[x/d] \models \varphi \text{ for all } d \in D
\]

\[
I, \alpha \models \exists x \varphi \quad \text{iff} \quad I, \alpha[x/d] \models \varphi \text{ for some } d \in D
\]
Examples

Ω = \{ \text{eye}(a), \text{eye}(b) \}
\{ \forall x (\text{eye}(x) \rightarrow \text{red}(x)) \}.

\mathcal{D} = \{d_1, \ldots, d_n,\} \quad n > 1

a^I = d_1

b^I = d_1

eye^I = \{d_1\}

\text{red}^I = \mathcal{D}

\alpha = \{(x \mapsto d_1), (y \mapsto d_2)\}

Questions:

\begin{align*}
I, \alpha &\models \text{eye}(b) \lor \neg \text{eye}(b) \quad \text{Yes} \\
I, \alpha &\models \text{eye}(x) \rightarrow \\
&\text{eye}(x) \lor \text{eye}(y) \quad \text{Yes} \\
I, \alpha &\models \text{eye}(x) \rightarrow \text{eye}(y) \quad \text{No} \\
I, \alpha &\models \text{eye}(a) \land \text{eye}(b) \quad \text{Yes} \\
I, \alpha &\models \forall x (\text{eye}(x) \rightarrow \text{red}(x)) \quad \text{Yes} \\
I, \alpha &\models \Theta \quad \text{Yes}
\end{align*}
Terminology

I, α is a **model** of φ iff

$$I, \alpha \models \varphi.$$

A formula can be satisfiable, unsatisfiable, falsifiable, valid.
Two formulae φ and ψ are **logically equivalent** ($\varphi \equiv \psi$) iff for all I, α:

$$I, \alpha \models \varphi \text{ iff } I, \alpha \models \psi.$$

Note: $P(x) \neq P(y)$!
Logical Implication is also similar to propositional logic:

$$\Theta \models \varphi \text{ iff for all } I, \alpha \text{ s.t. } I, \alpha \models \Theta \text{ also } I, \alpha \models \varphi.$$
Free and Bound Variables

Variables can be free or bound (by a quantifier) in a formula:

\[
\begin{align*}
\text{free}(x) &= \{x\} \\
\text{free}(f(t_1, \ldots, t_n)) &= \text{free}(t_1) \cup \ldots \cup \text{free}(t_n) \\
\text{free}(t_1 = t_2) &= \text{free}(t_1) \cup \text{free}(t_2) \\
\text{free}(P(t_1, \ldots, t_n)) &= \text{free}(t_1) \cup \ldots \cup \text{free}(t_n) \\
\text{free}(\neg \varphi) &= \text{free}(\varphi) \\
\text{free}(\varphi \ast \psi) &= \text{free}(\varphi) \cup \text{free}(\psi) \\
\text{free}(\exists x \varphi) &= \text{free}(\varphi) - \{x\} \quad \exists = \forall, \exists
\end{align*}
\]

Example: \(\forall x \ (R(\framebox{y}, \framebox{z}) \land \exists y \ (\neg P(y,x) \lor R(y,\framebox{z})))\)

Framed occurrences are free, all others are bound.
Open & Closed Formulae

- Formulae without free variables are called closed formulae or sentences. Formulae with free variables are called open formulae.

- Closed formulae are all we need when we want to state something about the world. Open formulae (and variable maps) are only necessary for technical reasons (semantics of \forall and \exists).

- Note that logical equivalence, satisfiability, and entailment are independent from variable maps if we consider only closed formulae.

- For closed formulae, we omit α in connection with \models:

 \[I \models \varphi. \]
Important Theorems

Theorem (Compactness)

Let $\Phi \cup \{\psi\}$ be a set of closed formulae.

(a) $\Phi \models \psi$ iff there exists a finite subset $\Phi' \subset \Phi$ s.t. $\Phi' \models \psi$.

(b) Φ is satisfiable iff each finite subset $\Phi' \subset \Phi$ is satisfiable.

Theorem (Löwenheim-Skolem)

Each countable set of closed formulae that is satisfiable is satisfiable on a countable domain.
Literature

Harry R. Lewis and Christos H. Papadimitriou.
Elements of the Theory of Computation.

Volker Sperchneider and Grigorios Antoniou.
Logic – A Foundation for Computer Science.
Addison-Wesley, Reading, MA, 1991 (Chapters 1–3).

Einführung in die mathematische Logik.

U. Schöning.
Logik für Informatiker.
Spektrum-Verlag.