Advanced AI Techniques

I. Bayesian Networks / 3. Parameter Learning with Missing Values

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme

Institute of Computer Science
University of Freiburg
http://www.informatik.uni-freiburg.de/

1. Incomplete Data
2. Incomplete Data for Parameter Learning (EM algorithm)
3. An Example
Let V be a set of variables. A **complete case** is a function
\[c : V \to \bigcup_{v \in V} \text{dom}(V) \]
with $c(v) \in \text{dom}(V)$ for all $v \in V$.

A **incomplete case** (or a **case with missing data**) is a complete case c for a subset $W \subseteq V$ of variables. We denote $\text{var}(c) := W$ and say, the values of the variables $V \setminus W$ are **missing** or **not observed**.

A data set $D \in \text{dom}(V)^*$ that contains complete cases only, is called **complete data**; if it contains an incomplete case, it is called **incomplete data**.

Missing value indicators

For each variable v, we can interpret its missing of values as new random variable M_v,
\[
M_v := \begin{cases}
1, & \text{if } v_{\text{obs}} = ., \\
0, & \text{otherwise}
\end{cases}
\]
called **missing value indicator of** v.

Figure 1: Complete data for $V := \{F, L, B, D, H\}$.

Figure 2: Incomplete data for $V := \{F, L, B, D, H\}$, Missing values are marked by a dot.

Figure 3: Incomplete data for $V := \{F, L, B, D, H\}$ and missing value indicators.
A variable \(v \in V \) is called \textbf{missing completely at random} (MCAR), if the probability of a missing value is (unconditionally) independent of the (true, unobserved) value of \(v \), i.e., if
\[
I(M_v, v_{\text{true}})
\]
(MCAR is also called \textbf{missing unconditionally at random}).

Example: think of an apparatus measuring the velocity \(v \) of wind that has a loose contact \(c \). When the contact is closed, the measurement is recorded, otherwise it is skipped. If the contact \(c \) being closed does not depend on the velocity \(v \) of wind, \(v \) is MCAR.

If a variable is MCAR, for each value the probability of missing is the same, and, e.g., the sample mean of \(v_{\text{obs}} \) is an unbiased estimator for the expectation of \(v_{\text{true}} \); here
\[
\hat{\mu}(v_{\text{obs}}) = \frac{1}{10}(2 \cdot 1 + 4 \cdot 3 + 2 \cdot 3 + 2 \cdot 4) = \frac{1}{10}(3 \cdot 1 + 6 \cdot 3 + 3 \cdot 3 + 3 \cdot 4) = \hat{\mu}(v_{\text{true}})
\]

\[
\begin{array}{c|c|c}
\text{case} & v_{\text{true}} & v_{\text{obs}} \\
\hline
1 & 1 & . \\
2 & 2 & 2 \\
3 & 2 & . \\
4 & 4 & 4 \\
5 & 3 & 3 \\
6 & 2 & 2 \\
7 & 1 & 1 \\
8 & 4 & . \\
9 & 3 & 3 \\
10 & 2 & . \\
11 & 1 & 1 \\
12 & 3 & . \\
13 & 4 & 4 \\
14 & 2 & 2 \\
15 & 2 & 2 \\
\end{array}
\]

Figure 4: Data with a variable \(v \) MCAR. Missing values are stroken through.

A variable \(v \in V \) is called \textbf{missing at random} (MAR), if the probability of a missing value is conditionally independent of the (true, unobserved) value of \(v \), i.e., if
\[
I(M_v, v_{\text{true}} | W)
\]
for some set of variables \(W \subseteq V \setminus \{v\} \) (MAR is also called \textbf{missing conditionally at random}).

Example: think of an apparatus measuring the velocity \(v \) of wind. If we measure wind velocities at three different heights \(h = 0, 1, 2 \) and say the apparatus has problems with height not recording
1/3 of cases at height 0,
1/2 of cases at height 1,
2/3 of cases at height 2,

\[
\begin{array}{c|c|c}
\text{case} & h & \text{obs} \\
\hline
1 & 1 & . \\
2 & 2 & 2 \\
3 & 3 & . \\
4 & 4 & 4 \\
5 & 1 & 1 \\
6 & 3 & 3 \\
7 & 1 & 1 \\
8 & 2 & . \\
9 & 2 & 2 \\
10 & 2 & . \\
11 & 3 & 3 \\
12 & 4 & . \\
13 & 3 & 3 \\
14 & 4 & 4 \\
15 & 5 & 5 \\
16 & 3 & 3 \\
17 & 4 & . \\
18 & 3 & 3 \\
19 & 5 & . \\
20 & 3 & 3 \\
21 & 4 & . \\
22 & 5 & 5 \\
\end{array}
\]

Figure 5: Data with a variable \(v \) MAR (conditionally on \(h \)).

then \(v \) is missing at random (conditionally on \(h \)).
Types of missingness / MAR

If \(v \) depends on variables in \(W \), then, e.g., the sample mean is not an unbiased estimator, but the weighted mean w.r.t. \(W \) has to be used; here:

\[
\sum_{h=0}^{2} \mu(v|H = h)p(H = h) = 2 \cdot \frac{9}{22} + 3.5 \cdot \frac{4}{22} + 4 \cdot \frac{9}{22}
\]

\[
\neq \frac{1}{11} \sum_{\substack{i=1\ldots22 \ \text{if} \ v_i \neq \cdot}} v_i
\]

\[
= 2 \cdot \frac{6}{11} + 3.5 \cdot \frac{2}{11} + 4 \cdot \frac{3}{11}
\]

A variable \(v \in V \) is called missing systematically (or not at random), if the probability of a missing value does depend on its (unobserved, true) value.

Example: if the apparatus has problems measuring high velocities and say, e.g., misses

- 1/3 of all measurements of \(v = 1 \),
- 1/2 of all measurements of \(v = 2 \),
- 2/3 of all measurements of \(v = 3 \),

i.e., the probability of a missing value does depend on the velocity, \(v \) is missing systematically.
A variable \(v \in V \) is called **hidden**, if the probability of a missing value is 1, i.e., it is missing in all cases.

Example: say we want to measure intelligence \(I \) of probands but cannot do this directly. We measure their level of education \(E \) and their income \(C \) instead. Then \(I \) is hidden.

<table>
<thead>
<tr>
<th>case</th>
<th>(I_{\text{true}})</th>
<th>(I_{\text{obs}})</th>
<th>(E)</th>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 7: Data with a hidden variable \(I \).

![Diagram](intelligence/education/income)

- **intelligence**
- education
- income

Figure 8: Suggested dependency of variables \(I, E, \) and \(C \).

![Diagram](types_of_missingness)

- **variable X**
 - missing at random (MAR)
 \(I(M_X, X \mid Z) \)
 - missing completely at random (MCAR)
 \(I(M_X, X) \)
 - hidden
 \(p(M_X = 1) = 1 \)

Figure 9: Types of missingness.

MAR/MCAR terminology stems from [LR87].
The simplest scheme to learn from incomplete data D, e.g., the vertex potentials $(p_v)_{v \in V}$ of a Bayesian network, is **complete case analysis** (also called **casewise deletion**): use only complete cases

$$D_{\text{compl}} := \{ d \in D \mid d \text{ is complete} \}$$

<table>
<thead>
<tr>
<th>case</th>
<th>F</th>
<th>L</th>
<th>B</th>
<th>D</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>.</td>
<td>0</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>.</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 10: Incomplete data and data used in complete case analysis (highlighted).

If D is MCAR, estimations based on the subsample D_{compl} are unbiased for D_{true}.

But for higher-dimensional data (i.e., with a larger number of variables), complete cases might become rare.

Let each variable have a probability for missing values of 0.05, then for 20 variables the probability of a case to be complete is

$$(1 - 0.05)^{20} \approx 0.36$$

for 50 variables it is ≈ 0.08, i.e., most cases are deleted.
A higher case rate can be achieved by **available case analysis**. If a quantity has to be estimated based on a subset $W \subseteq V$ of variables, e.g., the vertex potential p_v of a specific vertex $v \in V$ of a Bayesian network ($W = \text{fam}(v)$), use only complete cases of $D|_W$

$$(D|_W)_{\text{compl}} = \{ d \in D|_W \mid d \text{ is complete} \}$$

If D is MCAR, estimations based on the subsample $(D_W)_{\text{compl}}$ are unbiased for $(D_W)_{\text{true}}$.

<table>
<thead>
<tr>
<th>case</th>
<th>F</th>
<th>L</th>
<th>B</th>
<th>D</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>.</td>
<td>0</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>.</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 11: Incomplete data and data used in available case analysis for estimating the potential $p_L(L \mid F)$ (highlighted).
Let V be a set of variables and d be an incomplete case. A (complete) case \bar{d} with

$$\bar{d}(v) = d(v), \quad \forall v \in \text{var}(d)$$

is called a **completion of** d.

A probability distribution

$$\bar{d} : \text{dom}(V) \to [0,1]$$

with

$$\bar{d}^{\text{var}(d)} = \text{epd}_d$$

is called a **distribution of completions** of d (or a **fuzzy completion of** d).

Example If $V := \{F, L, B, D, H\}$ and $d := (2,.,0,1,.)$ an incomplete case, then

$$\bar{d}_1 := (2,1,0,1,1)$$

$$\bar{d}_2 := (2,2,0,1,0)$$

etc. are possible completions, but $e := (1,1,0,1,1)$ is not.

Assume $\text{dom}(v) := \{0,1,2\}$ for all $v \in V$. The potential

$$\bar{d} : \text{dom}(V) \to [0,1]$$

\[(x_v)_{v \in V} \mapsto \begin{cases} \frac{1}{5}, & \text{if } x_F = 2, x_B = 0, \text{ and } x_D = 1 \\ 0, & \text{otherwise} \end{cases} \]

is the uniform distribution of completions of d.

Given a bayesian network structure $G := (V, E)$ on a set of variables V and a "fuzzy data set" $D \in \text{pdf}(V)^*$ of "fuzzy cases" (pdfs q on V). **Learning the parameters of the bayesian network from "fuzzy cases"** D means to find vertex potentials $(p_v)_{v \in V}$ s.t. the **maximum likelihood criterion**, i.e., the probability of the data given the bayesian network is maximal:

$$\text{find } (p_v)_{v \in V} \text{ s.t. } p(D) \text{ is maximal,}$$

where p denotes the JPD build from $(p_v)_{v \in V}$. Here,

$$p(D) := \prod_{q \in D} \prod_{v \in V} \prod_{x \in \text{dom}(\text{fam}(v))} (p_v(x)) q^{\text{fam}(v)}(x) q^{\text{pa}(v)}(y)$$

\[(x_v)_{v \in V} \mapsto \begin{cases} \frac{1}{5}, & \text{if } x_F = 2, x_B = 0, \text{ and } x_D = 1 \\ 0, & \text{otherwise} \end{cases} \]

\[(x_v)_{v \in V} \mapsto \begin{cases} \frac{1}{5}, & \text{if } x_F = 2, x_B = 0, \text{ and } x_D = 1 \\ 0, & \text{otherwise} \end{cases} \]

\[(x_v)_{v \in V} \mapsto \begin{cases} \frac{1}{5}, & \text{if } x_F = 2, x_B = 0, \text{ and } x_D = 1 \\ 0, & \text{otherwise} \end{cases} \]

\[(x_v)_{v \in V} \mapsto \begin{cases} \frac{1}{5}, & \text{if } x_F = 2, x_B = 0, \text{ and } x_D = 1 \\ 0, & \text{otherwise} \end{cases} \]
Maximum likelihood estimates

If D is incomplete data, in general we are looking for
(i) distributions of completions \bar{D} and
(ii) vertex potentials $(p_v)_{v \in V}$,
that are
(i) compatible, i.e.,
$$\bar{d} = \operatorname{infer}_{(p_v)_{v \in V}}(d)$$
for all $\bar{d} \in \bar{D}$ and s.t.
(ii) the probability, that the completed data \bar{D} has been generated from the bayesian network specified by $(p_v)_{v \in V}$, is maximal:
$$p((p_v)_{v \in V}, \bar{D}) := \prod_{d \in D} \prod_{v \in V} \prod_{x \in \operatorname{dom}(\operatorname{fam}(v))} (p_v(x))^{d(\operatorname{fam}(v))(x)}$$
(with the usual constraints that $\operatorname{Im} p_v \subseteq [0, 1]$ and $\sum_{y \in \operatorname{dom}(\operatorname{pa}(v))} P_v(x|y) = 1$ for all $v \in V$ and $x \in \operatorname{dom}(v)$).

Unfortunately this is
• a non-linear,
• high-dimensional,
• for bayesian networks in general even non-convex optimization problem without closed form solution.

Any non-linear optimization algorithm (gradient descent, Newton-Raphson, BFGS, etc.) could be used to search local maxima of this probability function.
Let the following bayesian network structure and training data given.

<table>
<thead>
<tr>
<th>case</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>.</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>.</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

\[
\text{A} \rightarrow \text{B}
\]

Optimization Problem (1/3)

<table>
<thead>
<tr>
<th>case</th>
<th>A</th>
<th>B</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>(\alpha_4)</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>(1 - \alpha_4)</td>
</tr>
<tr>
<td>5,6</td>
<td>1</td>
<td>0</td>
<td>(2 \alpha_5)</td>
</tr>
<tr>
<td>5,6</td>
<td>0</td>
<td>0</td>
<td>(2 (1 - \alpha_5))</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>(\beta_{10})</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>(1 - \beta_{10})</td>
</tr>
</tbody>
</table>

\[
\theta = p(A = 1) \\
\eta_1 = p(B = 1 | A = 1) \\
\eta_2 = p(B = 1 | A = 0)
\]

\[
p(D) = \theta^{4+\alpha_4+2 \alpha_5} (1 - \theta)^3 (1 - \theta^{\alpha_4}) (1 - \theta^{\alpha_5}) \\
\eta_1^{1+\alpha_4+\beta_{10}} (1 - \eta_1)^{2+2 \alpha_5} (1 - \beta_{10}) \\
\eta_2^{2+\alpha_5} (1 - \eta_2)^{1+2 (1-\alpha_5)}
\]
From parameters

\[\theta = p(A = 1) \]
\[\eta_1 = p(B = 1 | A = 1) \]
\[\eta_2 = p(B = 1 | A = 0) \]

we can compute distributions of completions:

\[\alpha_4 = p(A = 1 | B = 1) = \frac{p(B = 1 | A = 1) p(A = 1)}{\sum_{a \in A} p(B = 1 | A = a) p(A = a)} = \frac{\theta \eta_1}{\theta \eta_1 + (1 - \theta) \eta_2} \]

\[\alpha_5 = p(A = 1 | B = 0) = \frac{p(B = 0 | A = 1) p(A = 1)}{\sum_{a \in A} p(B = 0 | A = a) p(A = a)} = \frac{\theta (1 - \eta_1)}{\theta (1 - \eta_1) + (1 - \theta) (1 - \eta_2)} \]

\[\beta_{10} = p(B = 1 | A = 1) = \eta_1 \]

Substituting \(\alpha_4, \alpha_5 \) and \(\beta_{10} \) in \(p(D) \), finally yields:

\[p(D) = \theta^{4 + \frac{\theta \eta_1}{\eta_1 + (1 - \theta) \eta_2} + 2 \frac{\theta (1 - \eta_1)}{\theta (1 - \eta_1) + (1 - \theta) (1 - \eta_2)}} \]
\[\cdot (1 - \theta)^{6 - \frac{\theta \eta_1}{\eta_1 + (1 - \theta) \eta_2} - 2 \frac{\theta (1 - \eta_1)}{\theta (1 - \eta_1) + (1 - \theta) (1 - \eta_2)}} \]
\[\cdot \eta_1^{1 + \frac{\theta \eta_1}{\eta_1 + (1 - \theta) \eta_2} + \eta_1} \]
\[\cdot (1 - \eta_1)^{3 + 2 \frac{\theta (1 - \eta_1)}{\theta (1 - \eta_1) + (1 - \theta) (1 - \eta_2)}} \]
\[\cdot \eta_2^{3 - \frac{\theta \eta_1}{\eta_1 + (1 - \theta) \eta_2}} \]
\[\cdot (1 - \eta_2)^{3 - 2 \frac{\theta (1 - \eta_1)}{\theta (1 - \eta_1) + (1 - \theta) (1 - \eta_2)}} \]
EM algorithm

For bayesian networks a widely used technique to search local maxima of the probability function p is

Expectation-Maximization (EM, in essence a gradient descent).

At the beginning, $(p_v)_{v \in V}$ are initialized, e.g., by complete, by available case analysis, or at random.

Then one computes alternating

expectation or E-step:

$$\bar{d} := \text{infer}_{(p_v)_{v \in V}}(d), \quad \forall d \in D$$

(forcing the compatibility constraint) and

maximization or M-step:

$$(p_v)_{v \in V}$ with maximal $p((p_v)_{v \in V}, \bar{D})$$

keeping \bar{D} fixed.

The E-step is implemented using an inference algorithm, e.g., clustering [Lau95]. The variables with observed values are used as evidence, the variables with missing values form the target domain.

The M-step is implemented using lemma 2:

$$p_v(x|y) := \frac{\sum_{q \in D} q^{\text{fam}(v)}(x, y)}{\sum_{q \in D} q^{\text{pa}(v)}(y)}$$

See [BKS97] and [FK03] for further optimizations aiming at faster convergence.
Example

Let the following Bayesian network structure and training data given.

\[
\begin{array}{c|cc}
\text{case} & A & B \\
1 & 0 & 0 \\
2 & 0 & 1 \\
3 & 0 & 1 \\
4 & . & 1 \\
5 & . & 0 \\
6 & . & 0 \\
7 & 1 & 0 \\
8 & 1 & 0 \\
9 & 1 & 1 \\
10 & 1 & .
\end{array}
\]

Using complete case analysis we estimate (1st M-step)

\[p(A) = (0.5, 0.5)\]

and

\[p(B|A) = \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0.333 & 0.667 \\ 1 & 0.667 & 0.333 \end{bmatrix}\]

Then we estimate the distributions of completions (1st E-step)

\[
\begin{array}{c|cc|cc}
\text{case} & B & p(A=0) & p(A=1) \\
4 & 1 & 0.667 & 0.333 \\
5,6 & 0 & 0.333 & 0.667 \\
\end{array}
\]

\[
\begin{array}{c|cc|cc}
\text{case} & A & p(B=0) & p(B=1) \\
10 & 1 & 0.667 & 0.333 \\
\end{array}
\]

From that we estimate (2nd M-step)

\[p(A) = (0.433, 0.567)\]

and

\[p(B|A) = \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0.385 & 0.706 \\ 1 & 0.615 & 0.294 \end{bmatrix}\]

Then we estimate the distributions of completions (2nd E-step)

\[
\begin{array}{c|cc|cc}
\text{case} & B & p(A=0) & p(A=1) \\
4 & 1 & 0.615 & 0.385 \\
5,6 & 0 & 0.294 & 0.706 \\
\end{array}
\]

\[
\begin{array}{c|cc|cc}
\text{case} & A & p(B=0) & p(B=1) \\
10 & 1 & 0.706 & 0.294 \\
\end{array}
\]

From that we estimate (3rd M-step)

\[p(A) = (0.420, 0.580)\]

and

\[p(B|A) = \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0.378 & 0.710 \\ 1 & 0.622 & 0.290 \end{bmatrix}\]

etc.

Figure 12: Convergence of the EM algorithm (black p(A=1), red p(B=1|A=0), green p(B=1|A=1)).
1. Incomplete Data

2. Incomplete Data for Parameter Learning (EM algorithm)

3. An Example

Definition 1. Let \mathcal{V} be a set of variables and let $C \in \mathcal{V}$ be a variable called **target variable**.

The Bayesian network structure on \mathcal{V} defined by the set of edges

$$E := \{(C, X) \mid X \in \mathcal{V}, X \neq C\}$$

is called **naive Bayesian network with target** C.

Naive Bayesian networks typically are used as classifiers for C and thus called **naive Bayesian classifier**.
Naive Bayesian Network

A naive bayesian network encodes both,

- **strong dependency assumptions:**
 there are no two variables that are independent, i.e.,
 \[\neg I(X, Y) \ \forall X, Y \]

- **strong independency assumptions:**
 each pair of variables is conditionally independent given a very small set of variables:
 \[I(X, Y | C) \ \forall X, Y \neq C \]

\[
\begin{align*}
C & \to \ X_1, \ X_2, \ X_3, \ldots, \ X_n \\
\end{align*}
\]

Learning a Naive Bayesian Network means to estimate

\[p(C) \quad \text{and} \quad p(X_i | C) \]

Inferencing in a Naive Bayesian Network means to compute

\[p(C | X_1 = x_1, \ldots, X_n = x_n) \]

which is due to Bayes formula:

\[
\begin{align*}
p(C | X_1 = x_1, \ldots, X_n = x_n) &= \frac{p(X_1 = x_1, \ldots, X_n = x_n | C) p(C)}{p(X_1 = x_1, \ldots, X_n = x_n)} \\
&= \frac{\prod_i p(X_i = x_i | C) p(C)}{p(X_1 = x_1, \ldots, X_n = x_n)} \\
&= \left(\prod_i p(X_i = x_i | C) p(C) \right)^C
\end{align*}
\]

Be careful,

\[p(X_1 = x_1, \ldots, X_n = x_n) \neq \prod_i p(X_i = x_i) \]

in general and we do not have access to this probability easily.
UCI Mushroom Data

The UCI mushroom data contains 23 attributes of 8124 different mushrooms.

<table>
<thead>
<tr>
<th>edible</th>
<th>cap-shape</th>
<th>cap-surface</th>
<th>cap-color</th>
<th>bruises</th>
<th>gill-attachment</th>
<th>gill-spacing</th>
<th>gill-size</th>
<th>stalk-shape</th>
<th>stalk-root</th>
<th>stalk-surface-above-rings</th>
<th>stalk-surface-below-rings</th>
<th>stalk-color-above-rings</th>
<th>stalk-color-below-rings</th>
<th>veil-type</th>
<th>veil-color</th>
<th>ring-number</th>
<th>ring-type</th>
<th>spore-print-color</th>
<th>population</th>
<th>habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>p</td>
<td>x</td>
<td>s</td>
<td>n</td>
<td>t</td>
<td>p</td>
<td>f</td>
<td>c</td>
<td>e</td>
<td>e</td>
<td>s</td>
<td>w</td>
<td>w</td>
<td>p</td>
<td>o</td>
<td>p</td>
<td>k</td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>e</td>
<td>x</td>
<td>s</td>
<td>y</td>
<td>t</td>
<td>a</td>
<td>f</td>
<td>c</td>
<td>b</td>
<td>k</td>
<td>e</td>
<td>c</td>
<td>s</td>
<td>w</td>
<td>p</td>
<td>w</td>
<td>p</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>e</td>
<td>b</td>
<td>s</td>
<td>w</td>
<td>t</td>
<td>l</td>
<td>f</td>
<td>c</td>
<td>b</td>
<td>n</td>
<td>e</td>
<td>c</td>
<td>s</td>
<td>w</td>
<td>p</td>
<td>w</td>
<td>o</td>
<td>p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>p</td>
<td>x</td>
<td>y</td>
<td>w</td>
<td>t</td>
<td>p</td>
<td>f</td>
<td>c</td>
<td>n</td>
<td>e</td>
<td>e</td>
<td>s</td>
<td>s</td>
<td>w</td>
<td>p</td>
<td>w</td>
<td>o</td>
<td>p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>e</td>
<td>x</td>
<td>s</td>
<td>g</td>
<td>f</td>
<td>n</td>
<td>f</td>
<td>w</td>
<td>b</td>
<td>k</td>
<td>t</td>
<td>e</td>
<td>s</td>
<td>w</td>
<td>p</td>
<td>w</td>
<td>o</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>e</td>
<td>x</td>
<td>y</td>
<td>y</td>
<td>t</td>
<td>a</td>
<td>f</td>
<td>c</td>
<td>b</td>
<td>n</td>
<td>e</td>
<td>c</td>
<td>s</td>
<td>w</td>
<td>p</td>
<td>w</td>
<td>o</td>
<td>p</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

edible: e = edible, p = poisonous

cap-shape: b=bell, c=conical, x=convex, f=flat, k=knobbed, s=sunken
e tc

Mushroom has missing values:

- in variable $X_{11} = stalk-root$, starting at case 3985.
Learning Task

We want to learn target $C = \text{edible}$ based on all the other attributes, $X_1, \ldots, X_{22} = \text{cap-shape}, \ldots, \text{habitat}$. We split the dataset randomly in

7124 training cases plus 1000 test cases

class distribution:

<table>
<thead>
<tr>
<th>actual = e</th>
<th>529</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>471</td>
</tr>
</tbody>
</table>

Accuracy of constant classifier (always predicts majority class e):

$$\text{acc} = 0.529$$

Complete Case Analysis

Learning only from the 4942 complete cases (out of 7124), we are quite successful on the 702 complete test cases:

confusion matrix:

<table>
<thead>
<tr>
<th>predicted =</th>
<th>e</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>actual = e</td>
<td>433</td>
<td>3</td>
</tr>
<tr>
<td>p</td>
<td>0</td>
<td>266</td>
</tr>
</tbody>
</table>

$$\text{acc} = 0.9957$$
Complete Case Analysis

But the classifier deteriorates dramatically, once evaluated on all 1000 cases, thereof 298 containing missing values:

confusion matrix:

<table>
<thead>
<tr>
<th>predicted = e</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>actual = e</td>
<td>516 13</td>
</tr>
<tr>
<td></td>
<td>p 201 270</td>
</tr>
</tbody>
</table>

\[\text{acc} = 0.786 \]

Diagnostics:

6937 p k y n f f f c n b t s s p w p w o e w v d

\[p(X_9 = b | C) = 0 \]
as \(X_9 = b \) occurs only with \(X_{11} = . \)

For the whole dataset:

<table>
<thead>
<tr>
<th>(X_9 =)</th>
<th>b</th>
<th>e</th>
<th>g</th>
<th>h</th>
<th>k</th>
<th>n</th>
<th>o</th>
<th>p</th>
<th>r</th>
<th>u</th>
<th>w</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_{11} =) false</td>
<td>0</td>
<td>0</td>
<td>656</td>
<td>720</td>
<td>408</td>
<td>984</td>
<td>0</td>
<td>1384</td>
<td>24</td>
<td>480</td>
<td>966</td>
<td>22</td>
</tr>
<tr>
<td>= true</td>
<td>1728</td>
<td>96</td>
<td>96</td>
<td>12</td>
<td>0</td>
<td>64</td>
<td>64</td>
<td>108</td>
<td>0</td>
<td>12</td>
<td>236</td>
<td>64</td>
</tr>
</tbody>
</table>
Available Case Analysis

If we use available case analysis, this problem is fixed.

<table>
<thead>
<tr>
<th>predicted</th>
<th>e</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>actual</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>p</td>
</tr>
</tbody>
</table>

acc = 0.994

EM for predictor variables in Naive Bayesian Networks always converges to the available case estimates (easy exercise; compute the update formula).

Variable Importance / Mutual Information

Definition 2. mutual information of two random variables X and Y:

$$\text{MI}(X, Y) := \sum_{x \in \text{dom } X, y \in \text{dom } Y} p(X = x, Y = y) \log \frac{p(X = x, Y = y)}{p(X = x) p(Y = y)}$$

<table>
<thead>
<tr>
<th>X</th>
<th>$\text{MI}(X, C)$</th>
<th>X</th>
<th>$\text{MI}(X, C)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>0.04824</td>
<td>X12</td>
<td>0.28484</td>
</tr>
<tr>
<td>X2</td>
<td>0.02901</td>
<td>X13</td>
<td>0.27076</td>
</tr>
<tr>
<td>X3</td>
<td>0.03799</td>
<td>X14</td>
<td>0.24917</td>
</tr>
<tr>
<td>X4</td>
<td>0.19339</td>
<td>X15</td>
<td>0.24022</td>
</tr>
<tr>
<td>X5</td>
<td>0.90573</td>
<td>X16</td>
<td>0.00000</td>
</tr>
<tr>
<td>X6</td>
<td>0.01401</td>
<td>X17</td>
<td>0.02358</td>
</tr>
<tr>
<td>X7</td>
<td>0.10173</td>
<td>X18</td>
<td>0.03863</td>
</tr>
<tr>
<td>X8</td>
<td>0.23289</td>
<td>X19</td>
<td>0.31982</td>
</tr>
<tr>
<td>X9</td>
<td>0.41907</td>
<td>X20</td>
<td>0.48174</td>
</tr>
<tr>
<td>X10</td>
<td>0.00765</td>
<td>X21</td>
<td>0.20188</td>
</tr>
<tr>
<td>X11</td>
<td>0.09716</td>
<td>X22</td>
<td>0.15877</td>
</tr>
<tr>
<td>X12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X22</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If we use the 4 variables with highest mutual information only,

- $X_5 = \text{odor}$
- $X_{20} = \text{spore-print-color}$
- $X_9 = \text{gill-color}$
- $X_{19} = \text{ring-type}$

we still get very good results.

Confusion matrix:

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>actual = e</td>
<td>529</td>
<td>0</td>
</tr>
<tr>
<td>p</td>
<td>6</td>
<td>465</td>
</tr>
</tbody>
</table>

$\text{acc} = 0.994$
Fresh random split.

<table>
<thead>
<tr>
<th></th>
<th>Predicted</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>X5, X9, X19, and X20:</td>
<td>e p</td>
<td>e 541 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p 1 454</td>
</tr>
<tr>
<td>Accuracy</td>
<td>.995</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Predicted</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1, X2, X3, and X4:</td>
<td>e p</td>
<td>e 419 126</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p 101 354</td>
</tr>
<tr>
<td>Accuracy</td>
<td>.773</td>
<td></td>
</tr>
</tbody>
</table>

Naive Bayesian Network / Cluster Analysis

Naive Bayesian Networks also could be used for cluster analysis.

The unknown cluster membership is modelled by a hidden variable \(C \) called **latent class**.

EM algorithm is used to "learn" fuzzy cluster memberships.

Naive Bayesian Networks used this way are a specific instance of so called **model-based clustering**.
Each cluster contains "similar cases", i.e., cases that contain cooccuring patterns of values.
Summary

- To learn parameters from data with missing values, sometimes simple heuristics as complete or available case analysis can be used.

- Alternatively, one can define a joint likelihood for distributions of completions and parameters.

- In general, this gives rise to a nonlinear optimization problem. But for given distributions of completions, maximum likelihood estimates can be computed analytically.

- To solve the ML optimization problem, one can employ the expectation maximization (EM) algorithm:
 - parameters \rightarrow completions (expectation; inference)
 - completions \rightarrow parameters (maximization; parameter learning)

References

