An Introduction to Game Theory

Part V:
Extensive Games with Perfect Information

Bernhard Nebel
Motivation

• So far, all games consisted of just one simultaneous move by all players
• Often, there is a whole sequence of moves and player can react to the moves of the other players
• Examples:
 – board games
 – card games
 – negotiations
 – interaction in a market
Example: Entry Game

- An *incumbent* faces the possibility of *entry* by a *challenger*. The *challenger* may enter (*in*) or not enter (*out*). If it enters, the *incumbent* may either *give in* or *fight*.

- The payoffs are
 - challenger: 1, incumbent: 2 if challenger does not enter
 - challenger: 2, incumbent: 1 if challenger enters and incumbent gives in
 - challenger: 0, incumbent: 0 if challenger enters and incumbent fights

(similar to chicken – but here we have a sequence of moves!)
Formalization: Histories

- The possible developments of a game can be described by a *game tree* or a mechanism to construct a game tree.
- Equivalently, we can use the set of paths starting at the root: all potential *histories* of moves
 - potentially infinitely many (infinite branching)
 - potentially infinitely long
An extensive games with perfect information consists of

- a non-empty, finite set of players $N = \{1, \ldots, n\}$
- a set H (histories) of sequences such that
 - $\langle \rangle \in H$
 - H is prefix-closed
 - if for an infinite sequence $\langle a_i \rangle_{i \in \mathbb{N}}$ every prefix of this sequence is in H, then the infinite sequence is also in H
 - sequences that are not a proper prefix of another strategy are called terminal histories and are denoted by Z. The elements in the sequences are called actions.
- a player function $P: H \setminus Z \to N$,
- for each player i a payoff function $u_i: Z \to \mathbb{R}$

- A game is finite if H is finite
- A game as a finite horizon, if there exists a finite upper bound for the length of histories
Entry Game – Formally

• players N = {1,2} (1: challenger, 2: incumbent)
• histories H = {⟨⟩, ⟨out⟩, ⟨in⟩, ⟨in, fight⟩, ⟨in, give_in⟩}
• terminal histories: Z = {⟨out⟩, in, fight⟩, ⟨in, give_in⟩}
• player function:
 – P(⟨⟩) = 1
 – P(⟨in⟩) = 2
• payoff function
 – u₁(⟨out⟩)=1, u₂(⟨out⟩)=2
 – u₁(⟨in, fight⟩)=0, u₂(⟨in, fight⟩)=0
 – u₁(⟨in,give_in⟩)=2, u₂(⟨in,give_in⟩)=1
Strategies

- The number of possible actions after history h is denoted by $A(h)$.
- A strategy for player i is a function s_i that maps each history h with $P(h) = i$ to an element of $A(h)$.
- Notation: Write strategy as a sequence of actions as they are to be chosen at each point when visiting the nodes in the game tree in breadth-first manner.

- Possible strategies for player 1:
 - AE, AF, BE, BF
- for player 2:
 - C, D
- Note: Also decisions for histories that cannot happen given earlier decisions!
Outcomes

- The outcome $O(s)$ of a strategy profile s is the terminal history that results from applying the strategies successively to the histories starting with the empty one.
- What is the outcome for the following strategy profiles?
 - $O(AF,C) =$
 - $O(AF,D) =$
 - $O(BF,C) =$
Nash Equilibria in Extensive Games with Perfect Information

• A strategy profile s^* is a Nash Equilibrium in an extensive game with perfect information if for all players i and all strategies s_i of player i:

$$u_i(O(s^*_{-i}, s^*_i)) \geq u_i(O(s^*_{-i}, s_i))$$

• Equivalently, we could define the strategic form of an extensive game and then use the existing notion of Nash equilibrium for strategic games.
The Entry Game - again

- Nash equilibria?
 - In, Give in
 - Out, Fight
- But why should the challenger take the “threat” seriously that the incumbent starts a fight?
- Once the challenger has played “in”, there is no point for the incumbent to reply with “fight”. So “fight” can be regarded as an empty threat

\[
\begin{array}{c|cc}
& \text{Give in} & \text{Fight} \\
\hline
\text{In} & 2,1 & 0,0 \\
\text{Out} & 1,2 & 1,2 \\
\end{array}
\]

- Apparently, the Nash equilibrium out, fight is not a real “steady state” – we have ignored the sequential nature of the game
Sub-games

• Let $G=(N,H,P,(u_i))$ be an extensive game with perfect information. For any non-terminal history h, the sub-game $G(h)$ following history h is the following game: $G’=(N,H’,P’,(u_i’))$ such that:
 – $H’$ is the set of histories such that for all $h’$: $(h,h’) \in H$
 – $P’(h’) = P((h,h’))$
 – $u_i’(h’) = u_i((h,h’))$

How many sub-games are there?
Applying Strategies to Sub-games

- If we have a strategy profile s^* for the game G and h is a history in G, then s^*_h is the strategy profile after history h, i.e., it is a strategy profile for $G(h)$ derived from s^* by considering only the histories following h.
- For example, let $((\text{out}), (\text{fight}))$ be a strategy profile for the entry game. Then $((\text{}), (\text{fight}))$ is the strategy profile for the sub-game after player 1 played “in”.
Sub-game Perfect Equilibria

• A sub-game perfect equilibrium (SPE) of an extensive game with perfect information is a strategy profile s^* such that for all histories h, the strategies in s^*_h are optimal for all players.

• Note: $((\text{out}), (\text{fight}))$ is not a SPE!

• Note: A SPE could also be defined as a strategy profile that induces a NE in every sub-game
Example: Distribution Game

- Two objects of the same kind shall be distributed to two players. Player 1 suggest a distribution, player 2 can accept (+) or reject (-). If she accepts, the objects are distributed as suggested by player 1. Otherwise nobody gets anything.

- NEs?

- SPEs?

- ((2,0),+xx) are NEs
- ((2,0),--x) are NEs
- ((1,1),-+x) are NEs
- ((0,1),--+) is a NE

Only
- ((2,0),+++) is a SPE
- ((1,1),-++) is a SPE
Existence of SPEs

• **Infinite games** may not have a SPE
 – Consider the 1-player game with actions \([0,1)\) and payoff \(u_1(a) = a\).

• If a game **does not have a finite horizon**, then it may not possess an SPE:
 – Consider the 1-player game with infinite histories such that the infinite histories get a payoff of 0 and all finite prefixes extended by a termination action get a payoff that is proportional to their length.
Finite Games Always Have a SPE

- Length of a sub-game = length of longest history
- Use **backward induction**
 - Find the optimal play for all sub-games of length 1
 - Then find the optimal play for all sub-games of length 2 (by using the above results)
 -
 - until length n = length of game
 - game has an SPE
- SPE is not necessarily unique – agent may be indifferent about some outcomes
- All SPEs can be found this way!
Strategies and Plans of Action

- Strategies contain decisions for **unreachable** situations!
- Why should player 1 worry about the choice after A,C if he will play B?
- Can be thought of as
 - what player 2 believes about player 1
 - what will happen if by mistake player 1 chooses A
 - Player 1 actually would play
The Distribution Game - again

• Now it is easy to find all SPEs
• Compute optimal actions for player 2
• Based on the results, consider actions of player 1
Another Example: The Chain Store Game

• If we play the entry game for k periods and add up the payoff from each period, what will be the SPEs?

• By backward induction, the only SPE is the one, where in every period (in, give_in) is selected

• However, for the incumbent, it could be better to play sometimes fight in order to “build up a reputation” of being aggressive.
Yet Another Example: The Centipede Game

- The players move alternately
- Each prefers to stop in his move over the other player stopping in the next move
- However, if it is not stopped in these two periods, this is even better
- What is the SPE?
Relationship to Minimax

• Similarities to \textit{Minimax}
 – solving the game by searching the game tree bottom-up, choosing the optimal move at each node and propagating values upwards

• Differences
 – More than two players are possible in the backward-induction case
 – Not just one number, but an entire payoff profile

• So, is \textit{Minimax} just a special case?
Possible Extensions

• One could add random moves to extensive games. Then there is a special player which chooses its actions randomly
 – SPEs still exist and can be found by backward induction. However, now the expected utility has to be optimized

• One could add simultaneous moves, that the players can sometimes make moves in parallel
 – SPEs might not exist anymore (simple argument!)

• One could add “imperfect information”: The players are not always informed about the moves other players have made.
Conclusions

• Extensive games model games in which more than one simultaneous move is allowed
• The notion of Nash equilibrium has to be refined in order to exclude implausible equilibria – those with empty threats
• Sub-game perfect equilibria capture this notion
• In finite games, SPEs always exist
• All SPEs can be found by using backward induction
• Backward induction can be seen as a generalization of the Minimax algorithm
• A number of plausible extensions are possible: simultaneous moves, random moves, imperfect information