Decidability & Undecidability

Decidability

L^2_2 is the fragment of first-order predicate logic using only two different variable names (*note*: variable names can be reused!). L^2_2 is the same including equality.

Theorem

L^2_2 is decidable.

Corollary

Subsumption and satisfiability of concept descriptions is decidable in description logics using only the following concept and role forming operators: $C \cap D$, $C \cup D$, $\neg C$, $\forall r.C$, $\exists r.C$, $r \sqsubseteq s$, $r \sqcap s$, $r \sqcup s$, $\neg r$, r^{-1}.

Potential problems: Role composition and cardinality restrictions for role fillers. Cardinality restrictions, however, are not a real problem.

Undecidability

- $r \circ s$, $r \sqcap s$, $\neg r$, 1 [Schild 88]
- not relevant; Tarski had shown that already! – for relation algebras
- $r \circ s$, $r = s$, $C \cap D$, $\forall r.C$ [Schmidt-Schauß 89]
- This is in fact a fragment of the early description logic **KL-ONE**, where people had hoped to come up with a complete subsumption algorithm
Decidable, Polynomial-Time Cases

- \mathcal{FL}^\neg has obviously a polynomial subsumption problem (in the empty TBox) – the SUB algorithm needs only quadratic time.
- Donini et al. [IJCAI 91] have shown that in the following languages subsumption can be decided using only polynomial time (and they are maximal wrt. this property):

$$C \to A | \neg A | C \sqcap C' | \forall r.C | (\geq n \ r) | (\leq n \ r), \ r \to t | r^{-1}$$

and

$$C \to A | C \sqcap C' | \exists r, \ r \to t | r^{-1} | r \sqcap r' | r \circ r'$$

Open:

$$C \to A | C \sqcap C' | \forall r.C | (\geq n \ r) | (\leq n \ r), \ r \to t | r \circ r'. $$

How Hard is \mathcal{ALC}^\neg Subsumption?

Proposition

\mathcal{ALC}^\neg subsumption and unsatisfiability are co-NP-hard.

Proof.

Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT. A propositional formula φ over the atoms a_i is mapped to $\pi(\varphi)$:

$$a_i \mapsto a_i$$

$$\psi \land \psi' \mapsto \pi(\psi) \cap \pi(\psi')$$

$$\psi \lor \psi' \mapsto \pi(\psi) \cup \pi(\psi')$$

$$\neg \psi \mapsto \neg \pi(\psi)$$

Obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (use structural induction). If φ has a model, construct a model for $\pi(\varphi)$ with just one element t standing for the truth of the atoms and the formula. Conversely, if $\pi(\varphi)$ satisfiable, pick one element $d \in \pi(\varphi)^2$ and set the truth value of atom a_i according to the fact that $d \in \pi(a_i)^2$.

How Hard Does It Get?

- Is \mathcal{ALC}^\neg unsatisfiability and subsumption also complete for co-NP?
- Unlikely – since models of a single concept description can already become exponentially large!
- We will show PSPACE-completeness, whereby hardness is proved using a complexity result for (un)satisfiability in the modal logic \mathcal{K}
- Satisfiability and unsatisfiability in \mathcal{K} is PSPACE-complete

Reduction from \mathcal{K}-Satisfiability

Lemma (Lower bound for \mathcal{ALC}^\neg)

\mathcal{ALC}^\neg subsumption, unsatisfiability and satisfiability are all PSPACE-hard.

Proof.

Extend the reduction given in the last proof by the following two rules – assuming that b is a fixed role name:

$$\Box \psi \mapsto \forall b. \pi(\psi)$$

$$\Diamond \psi \mapsto \exists b. \pi(\psi)$$

Again, obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (again using structural induction). If φ has a Kripke model, interpret each world w as an object in the universe of discourse that is an instances of the primitive concept $\pi(a_i)$ iff a_i is true in w. For the converse direction use the interpretation the other way around.
Computational Complexity of \mathcal{ALC} Subsumption

Lemma (Upper Bound for \mathcal{ALC})

\mathcal{ALC} subsumption, unsatisfiability and satisfiability are all in PSPACE.

Proof.
This follows from the tableau algorithm for \mathcal{ALC}. Although there may be exponentially many closed constraint systems, we can visit them step by step generating only one at a time. When closing a system, we have to consider only one role at a time – resulting in an only polynomial space requirement, i.e., satisfiability can be decided in PSPACE.

Theorem (Complexity of \mathcal{ALC})

\mathcal{ALC} subsumption, unsatisfiability and satisfiability are all PSPACE-complete.

Expressive Power vs. Complexity

Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., \mathcal{FL}^- vs. \mathcal{ALC}.

Does it make sense to use a language such as \mathcal{ALC} or even extensions (corresponding to PDL) with higher complexity?

There are three approaches to this problem:
1. Use only small description logics with complete inference algorithms
2. Use expressive description logics, but employ incomplete inference algorithms
3. Use expressive description logics with complete inference algorithms

For a long time, only options 1 and 2 were studied. Meanwhile, most researcher concentrate on option 3!

Further Consequences of the Reducibility of K to \mathcal{ALC}

- In the reduction we used only one role symbol. Are there modal logics that would require more than one such role symbol?
- The multi-modal logic $K_{(n)}$ has n different Box operators \square_i (for n different agents)
- \mathcal{ALC} is a notational variant of $K_{(n)}$ [Schild, IJCAI-91]
- Are there perhaps other modal logics that correspond to other descriptions logics?
- propositional dynamic logic (PDL), e.g., transitive closure, composition, role inverse, . . .
- DL can be thought as fragments of first-order predicate logic. However, they are much more similar to modal logics
- Algorithms and complexity results can be borrowed. Works also the other way around

Is Subsumption in the Empty TBox Enough?

- We have shown that we can reduce concept subsumption in a given TBox to concept subsumption in the empty TBox.
- However, it is not obvious that this can be done in polynomial time
- In particular, in the following example unfolding leads to an exponential blowup:

$$
C_1 = \forall r. C_0 \sqcap \forall s. C_0 \\
C_2 = \forall r. C_1 \sqcap \forall s. C_1 \\
\vdots \\
C_n = \forall r. C_{n-1} \sqcap \forall s. C_{n-1}
$$

- Unfolding C_n leads to a concept description with a size $\Omega(2^n)$
- Is it possible to avoid this blowup?
- Can we avoid exponential preprocessing?
The Complexity of Subsumption in TBoxes

TBox Subsumption for Small Languages

- **Question**: Can we decide in polynomial time *TBox subsumption* for a description logic such as \mathcal{FL}^-, for which concept subsumption in the empty TBox can be decided in polynomial time?

- Let us consider \mathcal{FL}_0: $C \sqcap D, \forall r.C$ with *terminological axioms*.

\Rightarrow Subsumption without a TBox can be done easily, using a structural subsumption algorithm.

\Rightarrow Unfolding + structural subsumption gives us an exponential algorithm.

Complexity of TBox Subsumption

Theorem (Complexity of TBox subsumption)

TBox subsumption for \mathcal{FL}_0 is NP-hard.

Proof sketch.

We use the *NDFA-equivalence problem*, which is NP-complete for cycle-free automata and PSPACE-complete for general NDFAs. We transform a cycle-free NDFA to a \mathcal{FL}_0-terminology with the mapping $A \mapsto T_A$ as follows:

- Automaton A \mapsto terminology T_A
- State q \mapsto concept name q
- Terminal state q_f \mapsto concept name q_f
- Input symbol r \mapsto role name r

r-transition from q to q' \mapsto $q = \ldots \sqcap \forall r : q' \sqcap \ldots$.

In general, we have: $L(q) \subseteq L(q')$ if $q \sqsubseteq_T q'$, from which the *correctness of the reduction* and the *complexity result* follows.

What Does This Complexity Result Mean?

- Note that for expressive languages such as \mathcal{ALC}, we do not notice any difference!
- The TBox subsumption complexity result for less expressive languages does not play a large role in practice

Pathological situations do not happen very often

- In fact, if the definition depth is logarithmic in the size of the TBox, the whole problem vanishes.
- However, in order to protect oneself against such problems, one often uses lazy unfolding

- Similarly, also for the \mathcal{ALC} concept descriptions, one notices that they are usually very well behaved.
Outlook

- Description logics have a long history (Tarski's relation algebras and Brachman's KL-ONE)
- Early on, either small languages with provably easy reasoning problems (e.g., the system CLASSIC) or large languages with incomplete inference algorithms (e.g., the system Loom) were used.
- Meanwhile, one uses complete algorithms on very large descriptions logics (e.g., SHIQ), e.g. in the systems FaCT and RACER
 - RACER can handle KBs with up to 160,000 concepts (example from unified medical language system) in reasonable time (less than one day computing time)
- Description logics are used as the semantic backbone for OWL (a Web-language extending RDF)

Literature