Motivation

Example TBox & ABox

> What do we want to know?
> We want to check whether the knowledge base is reasonable:
 > Is each defined concept in a TBox satisfiable?
 > Is a given TBox satisfiable?
 > Is a given ABox satisfiable?

> What can we conclude from the represented knowledge?
 > Is concept X subsumed by concept Y?
 > Is an object a instance of a concept X?

These problems can be reduced to logical satisfiability or implication – using the logical semantics.

 Motivation: Reasoning Services

We take a different route: We will try to simplify these problems and then we specify direct inference methods.
Satisfiability of Concept Descriptions in a TBox

Motivation: Given a TBox T and a concept description C, does C make sense, i.e., is C satisifiable?

Test:
- Does there exist a model I of T such that $C^I \neq \emptyset$?
- Is the formula $\exists x : C(x)$ together with the formulas resulting from the translation of T satisifiable?

Example: Mother-without-daughter $\sqcap \forall$has-child.Female is unsatisifiable.

Satisfiability of Concept Descriptions (without a TBox)

Motivation: Given a concept description C in “isolation”, i.e., in an empty TBox, does C make sense, i.e., is C satisifiable?

Test:
- Does there exist an interpretation I such that $C^I \neq \emptyset$?
- Is the formula $\exists x : C(x)$ satisifiable?

Example: Woman $\sqcap (\leq 0 \text{ has-child}) \sqcap (\geq 1 \text{ has-child})$ is unsatisifiable.

Eliminating the TBox

Reduction: Getting Rid of the TBox

- We can reduce satisifiability in a TBox to simple satisifiability.
- **Idea:**
 - Since TBoxes are cycle-free, one can understand a concept definition as a kind of “macro”.
 - For a given TBox T and a given concept description C, all defined concept symbols appearing in C can be expanded until C contains only undefined concept symbols.
 - An expanded concept description is then satisifiable iff C is satisifiable in T.
- **Problem:** What do we do with partial definitions (using \sqsubseteq)?

Normalized Terminologies

- A terminology is called **normalized** when it does not contain definitions using \sqsubseteq.
- In order to normalize a terminology, replace $A \sqsubseteq C$ by $A^* \sqcap C$,
 where A^* is a fresh concept symbol (not appearing elsewhere in T).
- If T is a terminology, the normalized terminology is denoted by \hat{T}.
Normalizing is Reasonable

Theorem (Normalization Invariance)
If I is a model of the terminology T, then there exists a model I' of \hat{T} (and vice versa) such that for all concept symbols A appearing in T we have:

$$A^I = A^{I'}.$$

Proof.

\Rightarrow: Let I be a model of T. This model should be extended to I' so that the freshly introduced concept symbols also get extensions. Assume $(A \sqsubseteq C) \in T$, i.e., we have $(A \equiv A' \sqcap C) \in \hat{T}$. Then set $A'^{I'} = A^\hat{T}$. I' obviously satisfies \hat{T} and has the same interpretation for all symbols in T. \Leftarrow Given a model I' of \hat{T}, its restriction to symbols of T is the interpretation we looked for.

TBox Unfolding

- We say that a normalized TBox is unfolded by one step when all defined concept symbols on the right sides are replaced by their defining terms.
- Example: $\text{Mother} \equiv \text{Woman} \cap \ldots$ is unfolded to $\text{Mother} \equiv (\text{Human} \cap \text{Female}) \cap \ldots$
- We write $U(T)$ to denote a one-step unfolding and $U^n(T)$ to denote an n-step unfolding.
- We say T is unfolded if $U(T) = T$.
- We say that $U^n(T)$ is the unfolding of T if $U^n(T) = U^{n+1}(T)$. If such an unfolding exists, it is denoted by \hat{T}.

Properties of Unfoldings (1): Existence

Theorem (Existence of unfolded terminology)
For each normalized terminology T, there exists its unfolding \hat{T}.

Proof idea.
The main reason is that terminologies have to be cycle-free. The proof can be done by induction of the definition depth of concepts.

Properties of Unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)
I is a model of a normalized terminology T iff it is a model of \hat{T}.

Proof Sketch.

\Rightarrow: Let I be a model of T. Then it is also a model of $U(T)$, since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of \hat{T}.

\Leftarrow: Let I be a model for $U(T)$. Clearly, this is also a model of T (with the same argument as above). This means that any model \hat{T} is also a model of T.

Generating Models

- All concept and role names not appearing on the left hand side in a terminology T are called primitive components.
- Interpretations restricted to primitive components are called initial interpretations.

Theorem (Model extension)
For each initial interpretation J of a normalized TBox, there exists a unique interpretation I extending J and satisfying T.

Proof idea.
Use T and compute an interpretation for all defined symbols.

Corollary (Model existence for TBoxes)
Each TBox has at least one model.

Unfolding of Concept Descriptions

- Similar to the unfolding of TBoxes, we can define unfolding of concept descriptions.
- We write \hat{C} for the unfolded version of C.

Theorem (Satisfiability of unfolded concepts)
An concept description C is satisfiable in a terminology T iff \hat{C} satisfiable in an empty terminology.

Proof.
"\Rightarrow": trivial.
"\Leftarrow": Use the interpretation for all the symbols in \hat{C} to generate an initial interpretation of T. Then extend it to a full model I of T. This satisfies T as well as \hat{C}. Since $\hat{C}^I = C^I$, it satisfies also C.

Subsumption in a TBox

- Motivation: Given a terminology T and two concept descriptions C and D, is C subsumed by (or a sub-concept of) D in T ($C \sqsubseteq_T D$)?
- Test:
 - Is C interpreted as a subset of D for all models I of T ($C^I \subseteq D^I$)?
 - Is the formula $\forall x : (C(x) \rightarrow D(x))$ a logical consequence of the translation of T to predicate logic?
- Example: Grandmother \sqsubseteq_T Mother

Subsumption (Without a TBox)

- Motivation: Given two concept descriptions C and D, is C subsumed by D regardless of a TBox (or in an empty TBox), written $C \sqsubseteq D$?
- Test:
 - Is C interpreted as a subset of D for all interpretations I ($C^I \subseteq D^I$)?
 - Is the formula $\forall x : (C(x) \rightarrow D(x))$ logically valid?
- Example: Human \cap Female \subseteq Human
Reductions

- Subsumption in a TBox can be reduced to subsumption in the empty TBox
 - Normalize and unfold TBox and concept descriptions.
- Subsumption in the empty TBox can be reduced to unsatisfiability
 - $C \sqsubseteq D$ iff $C \cap \neg D$ is unsatisfiable
- Unsatisfiability can be reduced to subsumption
 - C is unsatisfiable iff $\exists C \sqsubseteq (C \cap \neg C)$

Classification

- Motivation: Compute all subsumption relationships (and represent them using only a minimal number of relationships) in order to
 - check the modeling – does the terminology make sense?
 - use the precomputed relations later when subsumption queries have to be answered
 - reduce to subsumption
 - it is a generalized sorting problem!

ABox Satisfiability

- Motivation: An ABox should model the real world, i.e., it should have a model.
- Test: Check for a model
- Example:
 $$X : (\forall r. \neg C)$$
 $$Y : C$$
 $$Z : r$$
 is not satisfiable.

ABox Satisfiability in a TBox

- Motivation: Is a given ABox \mathcal{A} compatible with the terminology introduced in \mathcal{T}?
- Test: Is $\mathcal{T} \cup \mathcal{A}$ satisfiable?
- Example: If we extend our example with
 $$\text{MARGRET}: \text{Woman}$$
 $$(\text{DIANA,MARGRET}): \text{has-child},$$
 then the ABox becomes unsatisfiable in the given TBox.
- Reduction:
 - to satisfiability of an ABox
 - Normalize terminology, then unfold all concept and role descriptions in the ABox
Instance Relations

- **Motivation:** Which additional ABox formulas of the form $a : C$ follow logically from a given ABox and TBox?
- **Test:**
 - Is $a \in C \alpha$ true in all models of $T \cup A$?
 - Does the formula $C(a)$ logically follow from the translation of A and T to predicate logic?
- **Reductions:**
 - Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox.
 - Use normalization and unfolding
 - Instance relations in an ABox can be reduced to ABox unsatisfiability:
 \[a : C \text{ holds in } A \iff A \cup \{a : \neg C\} \text{ is unsatisfiable} \]

Examples

- **ELIZABETH:** Mother-with-many-children?
 \[\sim \text{ yes} \]
- **WILLIAM:** Female?
 \[\sim \text{ yes} \]
- **ELIZABETH:** Mother-without-daughter?
 \[\sim \text{ no (no CWA)} \]
- **ELIZABETH:** Grandmother?
 \[\sim \text{ no (only male, but not necessarily human)} \]

Realization

- **Idea:** For a given object a, determine the most specialized concept symbols such that a is an instance of these concepts
- **Motivation:**
 - Similar to classification
 - Is the minimal representation of the instance relations (in the set of concept symbols)
 - Will give us faster answers for instance queries!
- **Reduction:** Can be reduced to (a sequence of) instance relation tests.

Retrieval

- **Motivation:** Sometimes, we want to get the set of instances of a concept (as in database queries)
- **Example:** Asking for all instances of the concept Male, we will get the answer CHARLES, ANDREW, EDWARD, WILLIAM.
- **Reduction:** Compute the set of instances by testing the instance relation for each object
- **Implementation:** Realization can be used to speed this up
Reasoning Services – Summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
- Satisfiability of an ABox
 - in a given TBox or in an empty TBox
- Instance relations in an ABox
 - in a given TBox or in an empty TBox
- Realization
- Retrieval

Outlook

- How to determine subsumption between two concept description (in the empty TBox)?
- How to determine instance relations/ABox satisfiability?
- How to implement the mentioned reductions efficiently?
- Does normalization and unfolding introduce another source of computational complexity?