Semantic Networks and Description Logics

Description Logics – Terminology and Notation

Knowledge Representation and Reasoning

Jan 14, 2005
Description Logics – Terminology and Notation

Introduction

Concept and Roles

TBox and ABox

Reasoning Services

Outlook
Motivation

- Main problem with semantic networks and frames
 - The lack of formal semantics!
- Disadvantage of simple inheritance networks
 - Concepts are atomic and do not have any structure
- Brachman’s structural inheritance networks (1977)
Structural Inheritance Networks

- Concepts are *defined/described* using a small set of well-defined operators
- Distinction between *conceptual* and *object-related* knowledge
- Computation of *subconcept relation* and of *instance relation*
- *Strict inheritance* (of the entire structure of a concept)
Systems and Applications

- **Systems:**
 - KL-ONE: First implementation of the ideas (1978)
 - ... then NIKL, KL-TWO, KRYPTON, KANDOR, CLASSIC, BACK, KRIS, YAK, CRACK ...
 - ... currently FaCT, DLP, RACER 1998

- **Applications:**
 - First, natural language understanding systems
 - ... then configuration systems,
 - ... information systems,
 - ... currently, it is one tool for the *semantic web*

 DAML+OIL, now OWL
Description Logics

- Previously also *KL-ONE-alike languages*, *frame-based languages*, *terminological logics*, *concept languages*

- **Description Logics (DL)** allow us
 - to describe concepts using *complex descriptions*,
 - to introduce the terminology of an application and to structure it (*TBox*),
 - to introduce objects (*ABox*) and relate them to the introduced terminology,
 - and to *reason* about the terminology and the objects.
Informal Example

Male is: the opposite of female
A human is a kind of: living entity
A woman is: a human and a female
A man is: a human and a male
A mother is: a woman with at least one child that is a human
A father is: a man with at least one child that is a human
A parent is: a mother or a father
A grandmother is: a woman, with at least one child that is a parent
A mother-wod is: a mother with only male children

Elizabeth is a woman
Elizabeth has the child Charles
Charles is a Man
Diana is a Mother-wod
Diana has the Child William

Possible Questions:
Is a grandmother a parent?
Is Diana a parent?
Is William a man?
Is Elizabeth a mother-wod?
Atomic Concepts and Roles

- **Concept names:**
 - E.g., Grandmother, Male, ... (in the following usually *capitalized*)
 - We will use **symbols** such as $A, A_1, ...$
 - **Semantics:** Monadic predicates $A(\cdot)$ or set-theoretically a subset of the universe $A^I \subseteq D$.

- **Role names:**
 - In our example, e.g., child. Often we will use names such as `has-child` or something similar (in the following usually *lowercase*).
 - Role names are **disjoint** from concept names
 - **Symbolically:** $t, t_1, ...$
 - **Semantics:** Dyadic predicates $t(\cdot, \cdot)$ or set-theoretically $t^I \subseteq D \times D$.
Concept and Role Description

- Out of concept and role names, complex descriptions can be created.
- In our example, e.g. “a Human and Female.”
- Symbolically: C for concept descriptions and r for role descriptions.
- Which particular constructs are available depends on the chosen description logic.
- Predicate logic semantics: A concept descriptions C corresponds to a formula $C(x)$ with the free variable x. Similarly with r: It corresponds to formula $r(x, y)$ with free variables x, y.
- Set semantics:

$$C^\mathcal{I} = \{d \mid C(d) \text{ “is true in” } \mathcal{I}\}$$

$$r^\mathcal{I} = \{(d, e) \mid r(d, e) \text{ “is true in” } \mathcal{I}\}$$
Boolean Operators

- **Syntax**: let C and D be concept descriptions, then the following are also concept descriptions:
 - $C \sqcap D$ (Concept conjunction)
 - $C \sqcup D$ (Concept disjunction)
 - $\neg C$ (Concept negation)

- **Examples**:
 - Human \sqcap Female
 - Father \sqcup Mother
 - \neg Female

- **Predicate logic semantics**: $C(x) \land D(x)$, $C(x) \lor D(x)$, $\neg C(x)$

- **Set semantics**: $C^I \cap D^I$, $C^I \cup D^I$, $D - C^I$
Role Restrictions

- **Motivation:**
 - Often we want to describe something by *restricting* the possible “fillers” of a role, e.g. Mother–wod.
 - Sometimes we want to say that there is at least a filler of a particular type, e.g. Grandmother.

- **Idea:** Use quantifiers that range over the role-fillers
 - Mother \forall has-child.Man
 - Woman \exists has-child.Parent

- **Predicate logic semantics:**

 \[
 (\exists r.C)(x) = \exists y : (r(x, y) \land C(y)) \\
 (\forall r.C)(x) = \forall y : (r(x, y) \rightarrow C(y))
 \]

- **Set semantics:**

 \[
 (\exists r.C)^I = \{d | \exists e : (d, e) \in r^I \land e \in C^I\} \\
 (\forall r.C)^I = \{d | \forall e : (d, e) \in r^I \rightarrow e \in C^I\}
 \]
Cardinality Restriction

▶ **Motivation:**
 ▶ Often we want to describe something by restricting the number of possible “fillers” of a role, e.g., a Mother with at least 3 children or at most 2 children.

▶ **Idea**: We restrict the cardinality of the role filler sets:
 ▶ Mother $\sqcap (\geq 3 \text{ has-child})$
 ▶ Mother $\sqcap (\leq 2 \text{ has-child})$

▶ **Predicate logic semantics**:

$$(\geq n \ r)(x) = \exists y_1 \ldots y_n : (r(x, y_1) \land \ldots \land r(x, y_n) \land \neg y_1 \neq y_2 \land \ldots \land y_{n-1} \neq y_n)$$

$$(\leq n \ r)(x) = \neg (\geq n + 1 \ r)(x)$$

▶ **Set semantics**:

$$(\geq n \ r)^\mathcal{I} = \{d \mid |\{e \mid r^\mathcal{I}(d, e)\}| \geq n\}$$

$$(\leq n \ r)^\mathcal{I} = \mathcal{D} - (\geq n + 1 \ r)^\mathcal{I}$$
Inverse Roles

- **Motivation:**
 - How can we describe the concept “children of rich parents”?

- **Idea:** Define the “inverse” role for a given role (the converse relation)
 - has-child⁻¹

- **Application:** ∃ has-child⁻¹. Rich

- **Predicate logic semantics:**
 $$r^{-1}(x, y) = r(y, x)$$

- **Set semantics:**
 $$(r^{-1})^T = \{(d, e) \mid (e, d) \in r^T\}$$
Role Composition

- **Motivation:**
 - How can we define the role `has-grandchild` given the role `has-child`?

- **Idea:** Compose roles (as one can compose binary relations)
 - `has-child ∘ has-child`

- **Predicate logic semantics:**
 \[
 (r ∘ s)(x, y) = \exists z : (r(x, z) ∧ s(z, y))
 \]

- **Set semantics:**
 \[
 (r ∘ s)^I = \{(d, e) | \exists f : (d, f) ∈ r^I ∧ (f, e) ∈ s^I\}
 \]
Role Value Maps

- **Motivation:**
 - How do we express the concept “women, who know all the friends of their children”

- **Idea:** Relate role filler sets to each other
 - Woman ∩ (has-child ◦ has-friend ⊆ knows)

- **Predicate logic semantics:**
 \[
 (r \subseteq s)(x) = \forall y : (r(x,y) \rightarrow s(x,y))
 \]

- **Set semantics:** Let \(r^\mathcal{I}(d) = \{ e \mid r^\mathcal{I}(d, e) \} \).
 \[
 (r \subseteq s)^\mathcal{I} = \{ d \mid r^\mathcal{I}(d) \subseteq s^\mathcal{I}(d) \}
 \]

- **Note:** Role value maps lead to undecidability of satisfiability of concept descriptions!
In order to introduce new terms, we use two kinds of terminological axioms:

- \(A \equiv C \)
- \(A \subseteq C \)

where \(A \) is a concept name and \(C \) is a concept description.

A terminology or TBox is a finite set of such axioms with the following additional restrictions:

- no multiple definitions of the same symbol such as \(A \equiv C, A \subseteq D \)
- no cyclic definitions (even not indirectly), such as \(A \equiv \forall r.B, B \equiv \exists s.A \)
TBoxes: Semantics

- TBoxes restrict the set of possible interpretations.
- **Predicate logic semantics:**
 - $A \models C$ corresponds to $\forall x : (A(x) \leftrightarrow C(x))$
 - $A \sqsubseteq C$ corresponds to $\forall x : (A(x) \rightarrow C(x))$
- **Set semantics:**
 - $A \models C$ corresponds to $A^T = C^T$
 - $A \sqsubseteq C$ corresponds to $A^T \subseteq C^T$
- Non-empty interpretations which satisfy all terminological axioms are called **models** of the TBox.
In order to state something about objects in the world, we use two forms of assertions:

- \(a : C \)
- \((a, b) : r \)

where \(a \) and \(b \) are individual names (e.g., ELIZABETH, PHILIP), \(C \) is a concept description, and \(r \) is a role description.

An ABox is a finite set of assertions.
ABoxes: Semantics

- **Individual names** are interpreted as elements of the universe under the **unique-name-assumption**, i.e., different names refer to different objects.

- **Assertions** express that an object is an instance of a concept or that two objects are related by a role.

- **Predicate logic semantics**:
 - $a : C$ corresponds to $C(a)$
 - $(a, b) : r$ corresponds to $r(a, b)$

- **Set semantics**:
 - $a^I \in D$
 - $a : C$ corresponds to $a^I \in C^I$
 - $(a, b) : r$ corresponds to $(a^I, b^I) \in r^I$

- **Models** of an ABox and of ABox+TBox can be defined analogously to models of a TBox.
Example TBox

\[
\begin{align*}
\text{Male} & \equiv \neg \text{Female} \\
\text{Human} & \sqsubseteq \text{Living_entity} \\
\text{Woman} & \equiv \text{Human} \sqcap \text{Female} \\
\text{Man} & \equiv \text{Human} \sqcap \text{Male} \\
\text{Mother} & \equiv \text{Woman} \sqcap \exists \text{has_child.Human} \\
\text{Father} & \equiv \text{Man} \sqcap \exists \text{has_child.Human} \\
\text{Parent} & \equiv \text{Father} \sqcup \text{Mother} \\
\text{Grandmother} & \equiv \text{Woman} \sqcap \exists \text{has_child.Parent} \\
\text{Mother_without_daughter} & \equiv \text{Mother} \sqcap \forall \text{has_child.Male} \\
\text{Mother_with_many_children} & \equiv \text{Mother} \sqcap (\geq 3 \text{has_child})
\end{align*}
\]
Example ABox

CHARLES: Man
EDWARD: Man
ANDREW: Man
DIANA: Mother-without-daughter

(DIANA, WILLIAM): has-child
(CHARLES, WILLIAM): has-child
Some Reasoning Services

- Does a description C make sense at all, i.e., is it satisfiable?
 - A concept description C is satisfiable iff there exists an interpretation \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$.

- Is one concept a specialization of another one, is it subsumed?
 - C is subsumed by D, in symbols $C \sqsubseteq D$ iff we have for all interpretations $C^\mathcal{I} \subseteq D^\mathcal{I}$.

- Is a an instance of a concept C?
 - a is an instance of C iff for all interpretations, we have $a^\mathcal{I} \in C^\mathcal{I}$.

Note: These questions can be posed with or without a TBox that restricts the possible interpretations.
Can we **reduce** the reasoning services to perhaps just one problem?

What could be **reasoning algorithms**?

What about **complexity** and **decidability**?

What has all that to do with **modal logics**?

How can one build **efficient systems**?

Summary: Concept Descriptions

<table>
<thead>
<tr>
<th>Abstract</th>
<th>Concrete</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>$A^\mathcal{I}$</td>
</tr>
<tr>
<td>$C \cap D$</td>
<td>(and $C \cap D$)</td>
<td>$C^\mathcal{I} \cap D^\mathcal{I}$</td>
</tr>
<tr>
<td>$C \sqcup D$</td>
<td>(or $C \sqcup D$)</td>
<td>$C^\mathcal{I} \cup D^\mathcal{I}$</td>
</tr>
<tr>
<td>$\neg C$</td>
<td>(not C)</td>
<td>$D - C^\mathcal{I}$</td>
</tr>
<tr>
<td>$\forall r. C$</td>
<td>(all $r \in C$)</td>
<td>${d \in D \mid r^\mathcal{I}(d) \subseteq C^\mathcal{I}}$</td>
</tr>
<tr>
<td>$\exists r$</td>
<td>(some r)</td>
<td>${d \in D \mid r^\mathcal{I}(d) \neq \emptyset}$</td>
</tr>
<tr>
<td>$\geq n r$</td>
<td>(atleast $n r$)</td>
<td>${d \in D \mid</td>
</tr>
<tr>
<td>$\leq n r$</td>
<td>(atmost $n r$)</td>
<td>${d \in D \mid</td>
</tr>
<tr>
<td>$\exists r. C$</td>
<td>(some $r \in C$)</td>
<td>${d \in D \mid r^\mathcal{I}(d) \cap C^\mathcal{I} \neq \emptyset}$</td>
</tr>
<tr>
<td>$\geq n r. C$</td>
<td>(atleast $n r \in C$)</td>
<td>${d \in D \mid</td>
</tr>
<tr>
<td>$\leq n r. C$</td>
<td>(atmost $n r \in C$)</td>
<td>${d \in D \mid</td>
</tr>
<tr>
<td>$r \overset{\text{eq}}{=} s$</td>
<td>(eq $r \overset{\text{eq}}{=} s$)</td>
<td>${d \in D \mid r^\mathcal{I}(d) \overset{\text{eq}}{=} s^\mathcal{I}(d)}$</td>
</tr>
<tr>
<td>$r \neq s$</td>
<td>(neq $r \neq s$)</td>
<td>${d \in D \mid r^\mathcal{I}(d) \neq s^\mathcal{I}(d)}$</td>
</tr>
<tr>
<td>$r \subseteq s$</td>
<td>(subset $r \subseteq s$)</td>
<td>${d \in D \mid r^\mathcal{I}(d) \subseteq s^\mathcal{I}(d)}$</td>
</tr>
<tr>
<td>$g \overset{\text{eq}}{=} h$</td>
<td>(eq $g \overset{\text{eq}}{=} h$)</td>
<td>${d \in D \mid g^\mathcal{I}(d) \overset{\text{eq}}{=} h^\mathcal{I}(d) \neq \emptyset}$</td>
</tr>
<tr>
<td>$g \neq h$</td>
<td>(neq $g \neq h$)</td>
<td>${d \in D \mid \emptyset \neq g^\mathcal{I}(d) \neq h^\mathcal{I}(d) \neq \emptyset}$</td>
</tr>
<tr>
<td>${i_1, i_2, \ldots, i_n}$</td>
<td>(one of i_1, i_2, \ldots, i_n)</td>
<td>${i^\mathcal{I}_1, i^\mathcal{I}_2, \ldots, i^\mathcal{I}_n}$</td>
</tr>
</tbody>
</table>
Summary: Role Descriptions

<table>
<thead>
<tr>
<th>Abstract</th>
<th>Concrete</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>(t)</td>
<td>(t^I)</td>
</tr>
<tr>
<td>(f)</td>
<td>(f)</td>
<td>(f^I), (functional role)</td>
</tr>
<tr>
<td>(r \sqcap s)</td>
<td>(r \sqcap s^I)</td>
<td>(r^I \cap s^I)</td>
</tr>
<tr>
<td>(r \sqcup s)</td>
<td>(r^I \cup s^I)</td>
<td></td>
</tr>
<tr>
<td>(\neg r)</td>
<td>(\mathcal{D} \times \mathcal{D} - r^I)</td>
<td></td>
</tr>
<tr>
<td>(r^{-1})</td>
<td>({(d, d') \mid (d', d) \in r^I})</td>
<td></td>
</tr>
<tr>
<td>(r</td>
<td>_C)</td>
<td>({(d, d') \in r^I \mid d' \in C^I})</td>
</tr>
<tr>
<td>(r^+)</td>
<td>((r^I)^+)</td>
<td></td>
</tr>
<tr>
<td>(r \circ s)</td>
<td>(r^I \circ s^I)</td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>({(d, d) \mid d \in \mathcal{D}})</td>
<td></td>
</tr>
<tr>
<td>(\text{self})</td>
<td>(1)</td>
<td></td>
</tr>
</tbody>
</table>