Semantic Networks and Description Logics Description Logics – Terminology and Notation

Knowledge Representation and Reasoning

Jan 14, 2005

Description Logics - Terminology and Notation

Introduction

Concept and Roles

TBox and ABox

Reasoning Services

Outlook

Motivation

- Main problem with semantic networks and frames
- → The lack of formal semantics!
 - Disadvantage of simple inheritance networks
- Concepts are atomic and do not have any structure
- Brachman's **structural inheritance networks** (1977)

Structural Inheritance Networks

- Concepts are <u>defined/described</u> using a small set of well-defined operators
- Distinction between conceptual and object-related knowledge
- Computation of subconcept relation and of instance relation
- Strict inheritance (of the entire structure of a concept)

Systems and Applications

Systems:

- KL-ONE: First implementation of the ideas (1978)
- ... then NIKL, KL-TWO, KRYPTON, KANDOR, CLASSIC, BACK, KRIS, YAK, CRACK ...
- ... currently FaCT, DLP, RACER 1998

► Applications:

- First, natural language understanding systems
- ...then configuration systems,
- ...information systems,
- ... currently, it is one tool for the semantic web
- → DAML+OIL, now OWL

Description Logics

- ► Previously also KL-ONE-alike languages, frame-based languages, terminological logics, concept languages
- Description Logics (DL) allow us
 - to describe concepts using complex descriptions,
 - to introduce the terminology of an application and to structure it (TBox),
 - to introduce objects (ABox) and relate them to the introduced terminology,
 - and to reason about the terminology and the objects.

Informal Example

Male is: the opposite of female

A human is a kind of: living entity

A woman is: a human and a female A man is: a human and a male

A mother is: a woman with at least one child that is a human A father is: a man with at least one child that is a human

A parent is: a mother or a father

A grandmother is: a woman, with at least one child that is a parent

A mother-wod is: a mother with only male children

Elizabeth is a woman Elizabeth has the child Charles Charles is a Man Diana is a Mother-wod

Diana has the Child William

Possible Questions:

Is a grandmother a parent?

Is Diana a parent? Is William a man?

Is Elizabeth a mother-wod?

Atomic Concepts and Roles

Concept names:

- ► E.g., Grandmother, Male, ... (in the following usually *capitalized*)
- We will use **symbols** such as A, A_1, \ldots
- ▶ **Semantics**: Monadic predicates $A(\cdot)$ or set-theoretically a subset of the universe $A^{\mathcal{I}} \subset \mathcal{D}$.

► Role names:

- In our example, e.g., child. Often we will use names such as has-child or something similar (in the following usually lowercase).
- ▶ Role names are *disjoint* from concept names
- **Symbolically**: t, t_1, \ldots
- ▶ **Semantics**: Dyadic predicates $t(\cdot, \cdot)$ or set-theoretically $t^{\mathcal{I}} \subseteq \mathcal{D} \times \mathcal{D}$.

Concept and Role Description

- Out of concept and role names, complex descriptions can be created
- ▶ In our example, e.g. "a Human and Female."
- ► **Symbolically**: *C* for concept descriptions and *r* for role descriptions
- Which particular constructs are available depends on the chosen description logic
- ▶ Predicate logic semantics: A concept descriptions C corresponds to a formula C(x) with the free variable x. Similarly with r: It corresponds to formula r(x,y) with free variables x,y.
- ► Set semantics:

$$C^{\mathcal{I}} = \{d \mid C(d) \text{ "is true in" } \mathcal{I}\}$$

 $r^{\mathcal{I}} = \{(d,e) \mid r(d,e) \text{ "is true in" } \mathcal{I}\}$

Boolean Operators

- ➤ **Syntax**: let *C* and *D* be concept descriptions, then the following are also concept descriptions:
 - ▶ $C \sqcap D$ (Concept conjunction)
 - ▶ $C \sqcup D$ (Concept disjunction)
 - ▶ ¬C (Concept negation)
- **► Examples**:
 - ▶ Human∏Female
 - ▶ Father ∐ Mother
 - ▶ ¬Female
- ▶ Predicate logic semantics: $C(x) \land D(x)$, $C(x) \lor D(x)$, $\neg C(x)$
- ▶ Set semantics: $C^{\mathcal{I}} \cap D^{\mathcal{I}}$, $C^{\mathcal{I}} \cup D^{\mathcal{I}}$, $\mathcal{D} C^{\mathcal{I}}$

Role Restrictions

Motivation:

- Often we want to describe something by restricting the possible "fillers" of a role, e.g. Mother-wod.
- Sometimes we want to say that there is at least a filler of a particular type, e.g. Grandmother
- Idea: Use quantifiers that range over the role-fillers
 - Mother □ ∀has-child.Man
 - ▶ Woman∏ ∃has-child.Parent
- ► Predicate logic semantics:

$$(\exists r.C)(x) = \exists y : (r(x,y) \land C(y))$$

$$(\forall r.C)(x) = \forall y : (r(x,y) \to C(y))$$

Set semantics:

$$(\exists r.C)^{\mathcal{I}} = \{d | \exists e : (d, e) \in r^{\mathcal{I}} \land e \in C^{\mathcal{I}}\}\$$
$$(\forall r.C)^{\mathcal{I}} = \{d | \forall e : (d, e) \in r^{\mathcal{I}} \rightarrow e \in C^{\mathcal{I}}\}\$$

Cardinality Restriction

- ▶ Motivation:
 - Often we want to describe something by restricting the number of possible "fillers" of a role, e.g., a Mother with at least 3 children or at most 2 children.
- ▶ Idea: We restrict the cardinality of the role filler sets:
 - ▶ Mother \sqcap (≥ 3 has-child)
 - ▶ Mother \sqcap (≤ 2 has-child)
- Predicate logic semantics:

$$(\geq n \ r)(x) = \exists y_1 \dots y_n : (r(x, y_1) \wedge \dots \wedge r(x, y_n) \wedge y_1 \neq y_2 \wedge \dots \wedge y_{n-1} \neq y_n)$$
$$(\leq n \ r)(x) = \neg(\geq n + 1 \ r)(x)$$

Set semantics:

$$(\geq n r)^{\mathcal{I}} = \{d \mid |\{e|r^{\mathcal{I}}(d, e)\}| \geq n\}$$
$$(\leq n r)^{\mathcal{I}} = \mathcal{D} - (\geq n + 1 r)^{\mathcal{I}}$$

Inverse Roles

- Motivation:
 - How can we describe the concept "children of rich parents"?
- ► Idea: Define the "inverse" role for a given role (the converse relation)
 - ▶ has-child⁻¹
- ► **Application**: ∃has-child⁻¹.Rich
- ► Predicate logic semantics

$$r^{-1}(x,y) = r(y,x)$$

► Set semantics:

$$(r^{-1})^{\mathcal{I}} = \{(d, e) \mid (e, d) \in r^{\mathcal{I}}\}$$

Role Composition

▶ Motivation:

- How can we define the role has-grandchild given the role has-child?
- Idea: Compose roles (as one can compose binary relations)
 - ▶ has-child o has-child
- ► Predicate logic semantics:

$$(r \circ s)(x,y) = \exists z : (r(x,z) \land s(z,y))$$

Set semantics:

$$(r \circ s)^{\mathcal{I}} = \{(d, e) \mid \exists f : (d, f) \in r^{\mathcal{I}} \land (f, e) \in s^{\mathcal{I}}\}$$

Role Value Maps

- Motivation:
 - How do we express the concept "women, who know all the friends of their children"
- Idea: Relate role filler sets to each other
 - ▶ Woman □ (has-child ∘ has-friend ⊆ knows)
- Predicate logic semantics:

$$(r \sqsubseteq s)(x) = \forall y : (r(x,y) \rightarrow s(x,y))$$

▶ Set semantics: Let $r^{\mathcal{I}}(d) = \{e \mid r^{\mathcal{I}}(d, e)\}.$

$$(r \sqsubseteq s)^{\mathcal{I}} = \{d | r^{\mathcal{I}}(d) \subseteq s^{\mathcal{I}}(d)\}$$

Note: Role value maps lead to undecidability of satisfiability of concept descriptions!

Terminology Box

- ▶ In order to *introduce* new terms, we use two kinds of terminological axioms:
 - $A \doteq C$
 - $ightharpoonup A \sqsubseteq C$

where A is a *concept name* and C is a *concept description*.

- ➤ A terminology or TBox is a finite set of such axioms with the following additional restrictions:
 - ▶ no multiple definitions of the same symbol such as $A \doteq C$, $A \sqsubseteq D$
 - ▶ no cyclic definitions (even not indirectly), such as $A \doteq \forall r.B$, $B \doteq \exists s.A$

TBoxes: Semantics

- TBoxes restrict the set of possible interpretations.
- ► Predicate logic semantics
 - ▶ $A \doteq C$ corresponds to $\forall x : (A(x) \leftrightarrow C(x))$
 - ▶ $A \sqsubseteq C$ corresponds to $\forall x : (A(x) \to C(x))$
- ▶ Set semantics:
 - $A \doteq C$ corresponds to $A^{\mathcal{I}} = C^{\mathcal{I}}$
 - $A \sqsubseteq C$ corresponds to $A^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
- ► Non-empty interpretations which satisfy all terminological axioms are called **models** of the TBox.

Assertional Box

- ▶ In order to state something about objects in the world, we use two forms of assertions:
 - a: C (a,b): r
 - where a and b are **individual names** (e.g., ELIZABETH, PHILIP), C is a concept description, and r is a role description.
- An ABox is a finite set of assertions.

ABoxes: Semantics

- Individual names are interpreted as elements of the universe under the unique-name-assumption, i.e., different names refer to different objects.
- Assertions express that an object is an instance of a concept or that two objects are related by a role.
- Predicate logic semantics:
 - a: C corresponds to C(a)
 - (a,b): r corresponds to r(a,b)
- ▶ Set semantics:
 - $a^{\mathcal{I}} \in D$
 - a: C corresponds to $a^{\mathcal{I}} \in C^{\mathcal{I}}$
 - (a,b): r corresponds to $(a^{\mathcal{I}},b^{\mathcal{I}}) \in r^{\mathcal{I}}$
- Models of an ABox and of ABox+TBox can be defined analogously to models of a TBox.

Example TBox

```
Male ≐ ¬Female
                      Human 

□ Living_entity
                      Woman ≐ Human □ Female
                         Man ≐ Human □ Male
                     Mother ≐ Woman □∃has-child.Human
                     Father \doteq Man \Pi \existshas-child.Human
                     Grandmother \doteq Woman \square \existshas-child.Parent
  Mother-without-daughter \doteq Mother \sqcap \forallhas-child.Male
Mother-with-many-children \doteq Mother \sqcap (\geq 3 has-child)
```

20 / 26

Example ABox

CHARLES: Man DIANA: Woman

EDWARD: Man ELIZABETH: Woman

ANDREW: Man

DIANA: Mother-without-daughter (ELIZABETH, CHARLES): has-child

(ELIZABETH, EDWARD): has-child (ELIZABETH, ANDREW): has-child (DIANA, WILLIAM): has-child

(CHARLES, WILLIAM): has-child

Some Reasoning Services

- ▶ Does a description C make sense at all, i.e., is it satisfiable?
- \rightarrow A concept description C is satisfiable iff there exists an interpretation $\mathcal I$ such that $C^{\mathcal I} \neq \emptyset$.
- Is one concept a specialization of another one, is it subsumed?
- \sim C is **subsumed by** D, in symbols $C \sqsubseteq D$ iff we have for all interpretations $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$.
 - ▶ Is a an **instance** of a concept C?
- \rightarrow a is an instance of C iff for all interpretations, we have $a^{\mathcal{I}} \in C^{\mathcal{I}}$.
- → Note: These questions can be posed with or without a TBox that restricts the possible interpretations.

Outlook

- Can we reduce the reasoning services to perhaps just one problem?
- What could be reasoning algorithms?
- What about complexity and decidability?
- What has all that to do with modal logics?
- ► How can one build **efficient systems**?

Literature

- Baader, F., D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, The Description Logic Handbook: Theory, Implementation, Applications, Cambridge University Press, Cambridge, UK, 2003.
- Ronald J. Brachman and James G. Schmolze. An overview of the KL-ONE knowledge representation system. *Cognitive Science*, 9(2):171–216, April 1985.
- Franz Baader, Hans-Jürgen Bürckert, Jochen Heinsohn, Bernhard Hollunder, Jürgen Müller, Bernhard Nebel, Werner Nutt, and Hans-Jürgen Profitlich. Terminological Knowledge Representation: A proposal for a terminological logic. Published in Proc. *International Workshop on Terminological Logics*, 1991, DFKI Document D-91-13.
- Bernhard Nebel. *Reasoning and Revision in Hybrid Representation Systems*, volume 422 of *Lecture Notes in Artificial Intelligence*. Springer-Verlag, Berlin, Heidelberg, New York, 1990.

Summary: Concept Descriptions

Abstract	Concrete	Interpretation
A	A	$A^{\mathcal{I}}$
$C\sqcap D$	$(and \ C \ D)$	$C^{\mathcal{I}} \cap D^{\mathcal{I}}$
$C \sqcup D$	(or C D)	$C^{\mathcal{I}} \cup D^{\mathcal{I}}$
$\neg C$	(not C)	$D - C^{\mathcal{I}}$
$\forall r.C$	(all $r C$)	$\{d \in \mathcal{D} \mid r^{\mathcal{I}}(d) \subseteq C^{\mathcal{I}}\}\$
$\exists r$	(some r)	$\{d \in \mathcal{D} \mid r^{\mathcal{I}}(d) \neq \emptyset\}$
$\geq n r$	(atleast $n r$)	$\{d \in \mathcal{D} \mid r^{\mathcal{I}}(d) \ge n\}$
$\leq n r$	(atmost n r)	$\{d \in \mathcal{D} \mid r^{\mathcal{I}}(d) \leq n\}$
$\exists r.C$	(some $r C$)	$\{d \in \mathcal{D} \mid r^{\mathcal{I}}(d) \cap C^{\mathcal{I}} \neq \emptyset\}$
$\geq n r.C$	(atleast $n \ r \ C$)	$\{d \in \mathcal{D} \mid r^{\mathcal{I}}(d) \cap C^{\mathcal{I}} \geq n\}$
$\leq n \ r.C$	(atmost $n \ r \ C$)	$\{d \in \mathcal{D} \mid r^{\mathcal{I}}(d) \cap C^{\mathcal{I}} \leq n\}$
$r\stackrel{\cdot}{=} s$	(eq r s)	$\{d \in \mathcal{D} \mid r^{\mathcal{I}}(d) = s^{\mathcal{I}}(d)\}\$
$r \neq s$	$(\text{neq } r \ s)$	$\{d \in \mathcal{D} \mid r^{\mathcal{I}}(d) \neq s^{\mathcal{I}}(d)\}\$
$r \sqsubseteq s$	(subset $r s$)	$\{d \in \mathcal{D} \mid r^{\mathcal{I}}(d) \subseteq s^{\mathcal{I}}(d)\}\$
$g \stackrel{.}{=} h$	(eq g h)	$\{d \in \mathcal{D} \mid g^{\mathcal{I}}(d) = h^{\mathcal{I}}(d) \neq \emptyset\}$
$g \neq h$	$(\text{neq } g \ h)$	$\{d \in \mathcal{D} \mid \emptyset \neq g^{\mathcal{I}}(d) \neq h^{\mathcal{I}}(d) \neq \emptyset\}$
$\{i_1,i_2,\ldots,i_n\}$	(oneof $i_1 \dots i_n$)	$\{i_1^{\mathcal{I}}, i_2^{\mathcal{I}}, \dots, i_n^{\mathcal{I}}\}$

Summary: Role Descriptions

Abstract	Concrete	Interpretation
t	t	$t^{\mathcal{I}}$
f	f	$f^{\mathcal{I}}$, (functional role)
$r \sqcap s$	(and $r s$)	$r^{\mathcal{I}} \cap s^{\mathcal{I}}$
$r \sqcup s$	(or r s)	$r^{\mathcal{I}} \cup s^{\mathcal{I}}$
$\neg r$	(not r)	$\mathcal{D} \times \mathcal{D} - r^{\mathcal{I}}$
r^{-1}	(inverse r)	$\{(d, d') \mid (d', d) \in r^{\mathcal{I}}\}$
$r _C$	$(\operatorname{restr} r C)$	$\{(d, d') \in r^{\mathcal{I}} \mid d' \in C^{\mathcal{I}}\}$
r^+	(trans r)	$(r^{\mathcal{I}})^+$
$r \circ s$	(compose $r \ s$)	$r^{\mathcal{I}} \circ s^{\mathcal{I}}$
1	self	$\{(d,d)\mid d\in\mathcal{D}\}$