Allen's Interval Calculus - Outline

Qualitative Representation and Reasoning Allen's Interval Calculus

Knowledge Representation and Reasoning

Dec 8, 2004

(Knowledge Representation and Reasoning)

Qualitative Reasoning

Dec 8, 2004 1 / 40

Allen's Interval Calculus Motivation

Qualitative Temporal Representation and Reasoning

Often we do not want to talk about precise times:

- NLP we do not have precise time points
- Planning we do not want to commit to time points too early
- Scenario descriptions we do not have the exact times or do not want to state them

What are the primitives in our representation system?

- Time points: actions and events are instantaneous, or we consider their beginning and ending
- ► Time intervals: actions and events have duration
- Reducibility? Expressiveness? Computational costs for reasoning?

Allen's Interval Calculus

Motivation Intervals and Relations Between Them Processing an Example Composition Table Outlook

Reasoning in Allen's Interval Calculus

A Maximal Tractable Sub-Algebra

Literature

(Knowledge Representation and Reasoning)

Qualitative Reasoning

Dec 8, 2004 2 / 40

Allen's Interval Calculus Motivation

Motivation: Example

Consider a planning scenario for multimedia generation:

- P1: Display Picture1
- P2: Say "Put the plug in."
- P3: Say "The device should be shut off."
- P4: Point to Plug-in-Picture1.

Temporal relations between events:

P2	should happen during	P1
----	----------------------	----

- should happen during P1
- P2 should happen before or directly precede P3
- P4 should happen during or end together with P2
- → P4 happens before or directly precedes P3"
- → We could add the statement "P4 does not overlap with P3" without creating an inconsistency.

P3

Allen's Interval Calculus

- Allen's interval calculus: time intervals and binary relations over them
- Time intervals: X = (X[−], X⁺), where X[−] and X⁺ are interpreted over the reals and X[−] < X⁺ (~ naïve approach)
- Relations between concrete intervals, e.g.:

```
(1.0,2.0) strictly before (3.0,5.5)
(1.0,3.0) meets (3.0,5.5)
(1.0,4.0) overlaps (3.0,5.5)
```

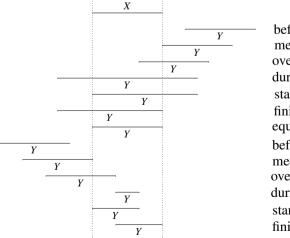
- • •
- → Which relations are conceivable?

(Knowledge Representation and Reasoning)	Qualitative Reason

ve Reasoning

Allen's Interval Calculus Intervals and Relations Between Them

The 13 Base Relations Graphically



before
meets
overlaps
during
starts
finishes
equals
before ⁻¹
meets ⁻¹
overlaps ⁻¹
during ⁻¹
starts ⁻¹
finishes ⁻¹

Dec 8, 2004

5/40

The Base Relations

How many ways are there to order the four points of two intervals?

Relation	Symbol	Name
$\{(X,Y) : X^- < X^+ < Y^- < Y^+\}$	\prec	before
$\{(X,Y) : X^- < X^+ = Y^- < Y^+\}$	m	meets
$\{(X,Y) : X^- < Y^- < X^+ < Y^+\}$	о	overlaps
$\{(X,Y) : X^- = Y^- < X^+ < Y^+\}$	s	starts
$\{(X,Y) : Y^- < X^- < X^+ = Y^+\}$	f	finishes
$\{(X,Y) : Y^- < X^- < X^+ < Y^+\}$	d	during
$\{(X,Y) : Y^- = X^- < X^+ = Y^+\}$	≡	equal

and the **converse** relations (obtained by exchanging *X* and *Y*)

 $\rightsquigarrow\,$ These relations are JEPD.

(Knowledge Representation and Reasoning)

```
Qualitative Reasoning
```

Dec 8, 2004 6 / 40

Allen's Interval Calculus Intervals and Relations Between Them

Disjunctive Descriptions

Assumption: We don't have precise information about the relation between X and Y, e.g.:

 $X \circ Y$ or $X \operatorname{m} Y$

... modelled by sets of base relations (meaning the union of the relations):

 $X\left\{ {\rm o},{\rm m} \right\} Y$

 $\rightsquigarrow 2^{13}$ imprecise relations (incl. \emptyset and B)

Example of an indefinite qualitative description:

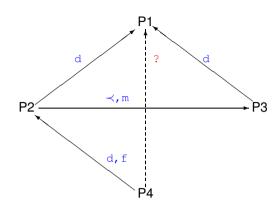
$$\left\{X\left\{\mathsf{o},\mathsf{m}\right\}Y, Y\left\{\mathsf{m}\right\}Z, X\left\{\mathsf{o},\mathsf{m}\right\}Z\right\}$$

Qualitative Reasoning

Allen's Interval Calculus Processing an Example

Our Example ... Formal

P1: *Display* Picture1 P2: *Say* "Put the plug in." P3: *Say* "The device should be shut off." P4: *Point to* Plug-in-Picture1.



Compose the constraints: $P4 \{d, f\} P2$ and $P2 \{d\} P1$: $P4 \{d\} P1$.

(Knowledge Representation and Reasoning)

Qualitative Reasoning

Allen's Interval Calculus Outlook

Outlook

- Using the composition table and the rules about operations on relations, we can deduce new relations between time intervals.
- What would be a systematic approach?
- How costly is that?
- ► Is that complete?
- If not, could it be complete on a subset of the relation system?

	\prec	\succ	d	d^{-1}	o	\circ^{-1}	m	m^{-1}	s	s^{-1}	f	f^{-1}
\uparrow	Y	в	≺ o md s	Y	Y	o ↑ nd s	Y	√ o md s	Y	Y	o √ m d s	Υ
\prec	в	¥	$\begin{array}{c} \succ o^{-1} \\ m^{-1} d \\ f \end{array}$	Y	$\begin{array}{c} \succ o^{-1} \\ m^{-1} d \\ f \end{array}$	Y	$\begin{array}{c} \succ o^{-1} \\ m^{-1} d \\ f \end{array}$	Y	$\begin{array}{c} \succ o^{-1} \\ m^{-1} d \\ f \end{array}$	¥	Y	Y
d	¥	$\scriptstyle \star$	d	в	o ⊥nd s	$\begin{array}{c} \succ o^{-1} \\ m^{-1} d \\ f \end{array}$	Y	٨	d	$\succ o^{-1}$ $m^{-1} d$ f	d	o ⊥ nd s
d^{-1}	$\stackrel{\prec o}{\operatorname{md}^{-1}}_{\operatorname{f}^{-1}}$	$ \sum_{\substack{m = 1 \\ m^{-1}d^{-1}}} \sum_{s=1}^{m^{-1}} $	$\mathbf{B}-\ \prec\succ$ mm ⁻¹	d^{-1}	d^{-1} f^{-1}	d^{-1} d^{-1} s^{-1}	d^{-1} f^{-1}	o ⁻¹ d ⁻¹ s ⁻¹	d^{-1} f^{-1}	d^{-1}	o ⁻¹ d ⁻¹ s ⁻¹	d^{-1}
o	Y	$ \sum_{\substack{m = 1 \\ m^{-1} d^{-1}}} \sum_{s=1}^{\infty} $	o d s	$\begin{array}{c} \prec \text{ o} \\ \text{m d}^{-1} \\ \text{f}^{-1} \end{array}$	Υов	$\mathbf{B}-\ \prec\succ$ $\mathtt{m}\mathtt{m}^{-1}$	Y	o^{-1} d^{-1} s^{-1}	o	d ⁻¹ f ⁻¹ o	d s o	в о 人
\circ^{-1}	$\stackrel{\prec o}{\substack{\mathrm{m, d}^{-1}\\\mathrm{f}^{-1}}}$	Y	o ⁻¹ d f	≻,o ⁻¹ m ⁻¹ d ⁻¹ s ⁻¹	$\mathbf{B}-\ \prec\succ\ \mathbf{m}\mathbf{m}^{-1}$	≻ o ⁻¹ m ⁻¹	d^{-1} f^{-1}	Y	o ⁻¹ d f	o ⁻¹ ≻ m ⁻¹	\circ^{-1}	${f o}^{-1} {f d}^{-1} {f s}^{-1}$
m	Y	$ \sum_{\substack{m=1\\ m^{-1}d^{-1}\\ s^{-1}}} \sum_{s=1}^{m^{-1}d^{-1}} \sum_{s=1}^{$	o d s	Y	Y	o d s	Y	$\stackrel{f}{f^{-1}}$	m	m	d s o	Υ
m^{-1}	$\begin{array}{c} \prec \text{ o} \\ \text{m d}^{-1} \\ \text{f}^{-1} \end{array}$	×	o ⁻¹ d f	¥	o ⁻¹ d f	Y	s_1 ≡	Y	d f o ⁻¹	×	m^{-1}	m^{-1}
s	Y	×	d	$\begin{array}{c} \prec \circ \\ \mathrm{md}^{-1} \\ \mathrm{f}^{-1} \end{array}$	үов	o ⁻¹ d f	Y	m^{-1}	s	s_−1 ≡	d	Ύво
s^{-1}	$\begin{array}{c} \prec \text{ o} \\ \text{m d}^{-1} \\ \text{f}^{-1} \end{array}$	×	o ⁻¹ .d f	d^{-1}	d^{-1} f^{-1}	o ⁻¹	d^{-1} f^{-1}	m^{-1}	s_s^1 ≡	s ⁻¹	\circ^{-1}	d^{-1}
f	\prec	≻	d	$\succ o^{-1}$ m ⁻¹ d ⁻¹	o d	≻ o ⁻¹	m	Y	d	≻ o ⁻¹	f	${\rm f}_{{\rm f}^{-1}}$

Reasoning in Allen's Interval Calculus

Reasoning in Allen's Interval Calculus

Allen's Interval Calculus

Reasoning in Allen's Interval Calculus

Constraint propagation algorithms (enforcing path consistency) Example for Incompleteness NP-Hardness Example The Continuous Endpoint Class Completeness for the CEP Class

A Maximal Tractable Sub-Algebra

Literature

Dec 8, 2004

9/40

Constraint Propagation – The Naive Algorithm

Enforcing path-consistency using the straight-forward method: Let *Table* [*i*, *j*] be an array of size $|n| \times |n|$ (*n*: number of intervals), in which we have recorded the constraints between the intervals.

EnforcePathConsistency1 (C):

Input: a (binary) CSP $C = \langle V, D, C \rangle$ *Output:* an equivalent, but path consistent CSP C'

repeat

for each pair (i, j), 1 < i, j < nfor each k with $1 \le k \le n$ Table [i, j] := Table $[i, j] \cap$ (Table $[i, k] \circ$ Table [k, j]) endfor endfor

until no entry in Table is changed

→ terminates:

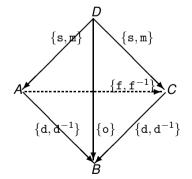
 \rightarrow needs $O(n^5)$ intersections and compositions.

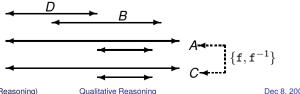
(Knowledge Representation and Reasoning)

Qualitative Reasoning

Reasoning in Allen's Interval Calculus Example for Incompleteness

Example for Incompleteness





An $O(n^3)$ Algorithm

EnforcePathConsistencv2(C): *Input:* a (binary) CSP $C = \langle V, D, C \rangle$ *Output:* an equivalent, but path consistent CSP C' $Paths(i, j) = \{(i, j, k) : 1 \le k \le n\} \cup \{(k, i, j) : 1 \le k \le n\}$ Queue := $\bigcup_{i \in j} Paths(i, j)$ While $Q \neq \emptyset$ select and delete (i, k, j) from Q $T := \text{Table}[i, j] \cap (\text{Table}[i, k] \circ \text{Table}[k, j])$ if $T \neq$ Table [i, j] Table [i, j] := TTable $[i, i] := T^{-1}$ $Queue := Queue \cup Paths(i, j)$ endif endwhile (Knowledge Representation and Reasoning) Qualitative Reasoning Dec 8, 2004

Reasoning in Allen's Interval Calculus NP-Hardness Example

NP-Hardness

Theorem (Kautz & Vilain) CSAT is NP-hard for Allen's interval calculus.

Proof.

Reduction from 3-colorability (original proof using 3Sat).

Let $G = (V, E), V = \{v_1, \ldots, v_n\}$ be an instance of 3-colorability. Then we use the intervals $\{v_1, \ldots, v_n, 1, 2, 3\}$ with the following constraints:)

$$\begin{array}{cccc} 1 & \{\mathfrak{m}\} & 2 \\ 2 & \{\mathfrak{m}\} & 3 \\ v_i & \{\mathfrak{m}, \equiv, \mathfrak{m}^{-1}\} & 2 & \forall v_i \in V \\ v_i & \{\mathfrak{m}, \mathfrak{m}^{-1}, \prec, \succ\} & v_j & \forall (v_i, v_j) \in E \end{array}$$

This constraint system is satisfiable iff G can be colored with 3 colors.

(Knowledge Representation and Reasoning)

Dec 8, 2004

15/40

Dec 8, 2004

13/40

14/40

Looking for Special Cases

- Idea: Let us look for polynomial special cases. In particular, let us look for sets of relations (subsets of the entire set of relations) that have an easy CSAT problem.
- Note: Interval formulae X R Y can be expressed as clauses over atoms of the form a op b, where:
 - $a \text{ and } b \text{ are endpoints } X^-, X^+, Y^- \text{ and } Y^+ \text{ and }$
 - $\blacktriangleright \ op \in \{<,>,=,\leq,\geq\}.$
- **Example:** All base relations can be expressed as unit clauses.

Lemma

Let $\pi(\Theta)$ be the translation of Θ to clause form. Θ is satisfiable over intervals iff $\pi(\Theta)$ is satisfiable over the rational numbers.

Why Do We Have Completeness?

The set C is closed under intersection, composition, and converse (it is a *sub-algebra* wrt. these three operations on relations). This can be shown by using a computer program.

Lemma

Each 3-consistent interval CSP over C is globally consistent.

Theorem (van Beek)

Path consistency solves CMIN(C) and decides CSAT(C).

Proof.

Follows from the above lemma and the fact that a strongly n-consistent CSP is minimal.

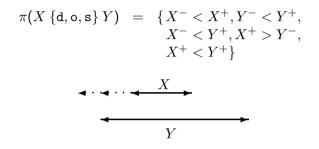
Corollary

A path consistent interval CSP consisting of base relations only is satisfiable.

The Continuous Endpoint Class

Continuous Endpoint Class C: This is a subset of A such that there exists a clause form for each relation containing only unit clauses where $\neg(a = b)$ is forbidden.

Example: All basic relations and {d, o, s}, because



(Knowledge Representation and Reasoning)

Qualitative Reasoning

Dec 8, 2004 18 / 40

Reasoning in Allen's Interval Calculus Completeness for the CEP Class

Helly's Theorem

Definition

A set $M \subseteq \mathbf{R}^n$ is *convex* iff for all pairs of points $a, b \in M$, all points on the line connecting a and b belong to M.

Theorem (Helly)

Let *F* be a family of at least n + 1 convex sets in \mathbb{R}^n . If all sub-families of *F* with n + 1 sets have a non-empty intersection, then $\bigcap F \neq \emptyset$.

Strong *n*-Consistency (1)

Proof.

We prove the claim by induction over k with $k \leq n$.

Base case: $k = 1, 2, 3 \quad \checkmark$

Induction assumption: Assume strong k - 1-consistency (and non-emptiness of all relations)

Induction step: From the assumption, it follows that there is an instantiation of k - 1 variables X_i to pairs (s_i, e_i) satisfying the constraints R_{ij} between the k - 1 variables.

We have to show that we can extend the instantiation to any kth variable.

Strong n-Consistency (2): Instantiating the kth Variable

Proof (Part 2).

The instantiation of the k - 1 variables X_i to (s_i, e_i) restricts the instantiation of X_k .

Note: Since $R_{ij} \in C$ by assumption, these restrictions can be expressed by inequalities of the form:

 $s_i < X_k^+ \land e_j \ge X_k^- \land \dots$

Qualitative Reasoning

Such inequalities define convex subsets in \mathbf{R}^2 .

 \rightsquigarrow Consider sets of 3 inequalities (= 3 convex sets).

(Knowledge Representation and Reasoning)

Qualitative Reasoning

Dec 8, 2004 21 / 40

Reasoning in Allen's Interval Calculus Completeness for the CEP Class

Strong *n*-Consistency (3): Using Helly's Theorem

Proof (Part 3).

Case 1: All 3 inequalities mention only X_k^- (or mention only X_k^+). Then it suffices to consider only 2 of these inequalities (the strongest). Because of 3-consistency, there exists at least 1 common point satisfying these 3 inequalities.

Case 2: The inequalities mention X_k^- and X_k^+ , but it does not contain the inequality $X_k^- < X_k^+$. Then there are at most 2 inequalities with the same variable and we have the same situation as in Case 1.

Case 3: The set contains the inequality $X_k^- < X_k^+$. In this case, only three intervals (incl. X_k) can be involved and by the same argument as above there exists a common point.

- → With Helly's Theorem, it follows that there exists a consistent instantiation for all subsets of variables.
- \rightsquigarrow Strong *k*-consistency for all $k \leq n$.

Dec 8, 2004

22/40

Reasoning in Allen's Interval Calculus Completeness for the CEP Class

Outlook

(Knowledge Representation and Reasoning)

- CMIN(C) can be computed in O(n³) time (for n being the number of intervals) using the path consistency algorithm.
- C is a set of relations occurring "naturally" when observations are uncertain.
- C contains 83 relations (incl. the impossible and the universal relations).
- Are there larger sets such that path consistency computes minimal CSPs? Probably not
- Are there larger sets of relations that permit polynomial satisfiability testing? Yes

A Maximal Tractable Sub-Algebra

Allen's Interval Calculus

Reasoning in Allen's Interval Calculus

A Maximal Tractable Sub-Algebra The Endpoint Subclass The ORD-Horn Subclass Maximality Solving Arbitrary Allen CSPs

Literature

(Knowledge Representation and Reasoning)

Qualitative Reasoning

A Maximal Tractable Sub-Algebra The ORD-Horn Subclass

The ORD-Horn Subclass

ORD-Horn Subclass: $\mathcal{H} \subseteq \mathcal{A}$ is the subclass that permits a clause form containing only Horn clauses , where only the following literals are allowed:

$$a \le b, a = b, a \ne b$$

 $\neg a \leq b$ is not allowed!

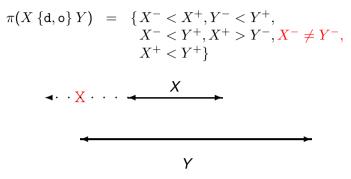
Example: all $R \in \mathcal{P}$ and $\{o, s, f^{-1}\}$:

$$\pi(X\{\mathbf{o}, \mathbf{s}, \mathbf{f}^{-1}\}Y) = \begin{cases} X^{-} \leq X^{+}, X^{-} \neq X^{+}, \\ Y^{-} \leq Y^{+}, Y^{-} \neq Y^{+}, \\ X^{-} \leq Y^{-}, \\ X^{-} \leq Y^{+}, X^{-} \neq Y^{+}, \\ Y^{-} \leq X^{+}, X^{+} \neq Y^{-}, \\ X^{+} \leq Y^{+}, \\ X^{-} \neq Y^{-} \lor X^{+} \neq Y^{+} \end{cases}.$$

The EP-Subclass

End-Point Subclass: $\mathcal{P} \subseteq \mathcal{A}$ is the subclass that permits a clause form containing only unit clauses ($a \neq b$ is allowed).

Example: all basic relations and $\{d, o\}$ since



Theorem (Vilain & Kautz 86, Ladkin & Maddux 88)

The path-consistency method decides $CSAT(\mathcal{P})$.

(Knowledge Representation and Reasoning)

```
Qualitative Reasoning
```

Dec 8, 2004 26 / 40

A Maximal Tractable Sub-Algebra The ORD-Horn Subclass

Partial Orders: The ORD Theory

Let *ORD* be the following theory:

$\forall x, y, z$:	$x \leq y \ \land \ y \leq z$	\rightarrow	$x \leq z$	(transitivity)
$\forall x$:	$x \leq x$			(reflexivity)
$\forall x, y$:	$x \leq y \ \land \ y \leq x$	\rightarrow	x = y	(anti-symmetry)
$\forall x, y$:	x = y	\rightarrow	$x \leq y$	(weakening of =)
$\forall x, y$:	x = y	\rightarrow	$y \leq x$	(weakening of $=$).

- ► ORD describes partially ordered sets, ≤ being the ordering relation.
- ► *ORD* is a Horn theory
- ► What is missing wrt to *dense* and *linear* orders?

Dec 8, 2004

25/40

Satisfiability over Partial Orders

Proposition

Let Θ be a CSP over \mathcal{H} . Θ is satisfiable over interval interpretations iff $\pi(\Theta) \cup ORD$ is satisfiable over arbitrary interpretations.

Proof.

 \Rightarrow : Since the reals form a partially ordered set (i.e., satisfy *ORD*), this direction is trivial.

 \Leftarrow : Each extension of a partial order to a linear order satisfies all formulae of the form $a \le b$, a = b, and $a \ne b$ which have been satisfied over the original partial order.

Qualitative Reasoning

A Maximal Tractable Sub-Algebra The ORD-Horn Subclass

Path-Consistency and the OH-Class

Lemma

Let Θ be a path-consistent set over \mathcal{H} . Then

 $(X{}Y) \notin \Theta$ iff Θ is satisfiable

Proof Idea.

One can show that $ORD_{\pi(\Theta)} \cup \pi(\Theta)$ is closed wrt positive unit resolution. Since this inference rule is refutation complete for Horn theories, the claim follows.

Lemma

 ${\mathcal H}$ is closed under intersection, composition, and conversion.

Theorem

The path-consistency method decides $CSAT(\mathcal{H})$.

 \rightsquigarrow Maximality of \mathcal{H} ?

→ Do we have to check all 8192 - 868 extensions? (Knowledge Representation and Reasoning) Qualitative Reasoning 29 / 40

Dec 8, 2004

$\text{Complexity of } \text{CSAT}(\mathcal{H})$

Let $ORD_{\pi(\Theta)}$ be the propositional theory resulting from instantiating all axioms with the endpoints occurring in $\pi(\Theta)$.

Proposition

 $ORD \cup \pi(\Theta)$ is satisfiable iff $ORD_{\pi(\Theta)} \cup \pi(\Theta)$ is so.

Proof idea: Herbrand expansion!

Theorem

 $CSAT(\mathcal{H})$ can be decided in polynomial time.

Proof.

 $CSAT(\mathcal{H})$ instances can be translated into a propositional Horn theory with blowup $O(n^3)$ according to the previous Prop., and such a theory is decidable in polynomial time.

 $\mathcal{C} \subset \mathcal{P} \subset \mathcal{H}$ with $|\mathcal{C}| = 83, |\mathcal{P}| = 188, |\mathcal{H}| = 868$

(Knowledge Representation and Reasoning)

Qualitative Reasoning

Dec 8, 2004 30 / 40

A Maximal Tractable Sub-Algebra The ORD-Horn Subclass

Complexity of Sub-Algebras

Let \hat{S} be the closure of $S \subseteq A$ under converse, intersection, and composition (i.e., the carrier of the least sub-algebra generated by S)

Theorem $CSAT(\hat{S})$ can be polynomially transformed to CSAT(S).

Proof Idea.

All relations in $\hat{S} - S$ can be modeled by a fixed number of compositions, intersections, and conversions of relations in S, introducing perhaps some fresh variables.

- \rightsquigarrow Polynomiality of *S* extends to \hat{S} .
- \rightsquigarrow NP-hardness of \hat{S} is inherited by all generating sets S.
- \rightsquigarrow Note: $\mathcal{H} = \hat{\mathcal{H}}$.

Minimal Extensions of the \mathcal{H} -Subclass

A computer-aided case analysis leads to the following result:

Lemma

There are only two minimal sub-algebras that strictly contain $\mathcal{H}: \mathcal{X}_1, \mathcal{X}_2$

 $N_1 = \{ d, d^{-1}, o^{-1}, s^{-1}, f \} \in \mathcal{X}_1$ $N_2 = \{ d^{-1}, o, o^{-1}, s^{-1}, f^{-1} \} \in \mathcal{X}_2$

The clause form of these relations contain "proper" disjunctions!

Theorem $CSAT(\mathcal{H} \cup \{N_i\})$ is NP-complete.

Question: Are there other maximal tractable subclasses?

(Knowledge Representat	tion and Reasoning)	Qualitative Reasoning	Dec 8, 2004	33 / 40	(Knowledge Representation and Reasoning)	Qualitative Reasoning	Dec 8, 2004	34 / 40
Relevance	A Maximal Tractable	Sub-Algebra Maximality			A Maximal Tracta Solving General All	0 0)	Ps	
Theoretical: Practical:	We now know NP-hard rease <i>expressivenes</i> All known app more than \mathcal{H} ! Backtracking r because the b	the boundary between oning problems along the ss. lications either need on methods might profit from pranching factor is lower cult is CSAT(A) in praction the relevant branching for	e dimension ly $\mathcal P$ or they need m the result ce?	⊕ ⊖ ?	 forward-checking me Relies on tractable fr into relations of a tra 	agments of Allen's calculu ctable fragment, and back aluation of different heurist	is: split relations track over these	

"Interesting" Subclasses

Interesting subclasses of A should contain all basic relations.

A computer-aided case analysis reveals: For $S \supseteq \{\{B\} \, : \, B \in {\bf B}\}$ it holds that

- 1. $\hat{S} \subseteq \mathcal{H}$, or
- 2. N_1 or N_2 is in \hat{S} .

In case 2, one can show: CSAT(S) is NP-complete.

 $\rightsquigarrow \ \mathcal{H}$ is the only maximal tractable subclass that is interesting.

Meanwhile, there is a complete classification of all sub-algebras containing at least one basic relation [IJCAI 2001] ... but the question for sub-algebras not containing a basic relation is open.

(Knowledge Representation and Reasoning) Qualitative Reasoning

Branching Factors

If the labels are split into base relations, then on average a label is split into

6.5 relations

► If the labels are split into pointizable relations (P), then on average a label is split into

2.955 relations

If the labels are split into ORD-Horn relations (H), then on average a label is split into

2.533 relations

- \rightarrow A difference of 0.422
- \rightsquigarrow This makes a difference for "hard" instances.

Summary

- Allen's interval calculus is often adequate for describing relative orders of events that have duration.
- The satisfiability problem for CSPs using the relations is NP-complete.
- For the continuous endpoint class, minimal CSPs can be computed using the path-consistency method.
- For the larger ORD-Horn class, CSAT is still decided by the path-consistency method.
- Can be used in practice for backtracking algorithms.

(Knowledge Representation and Reasoning)	Qualitative Reasoning	Dec 8, 2004	37 / 40	(Knowle	dge Representation and Reasoning)	Qualitative Reasoning	Dec 8, 2004	38 / 40
	Literature					Literature		
Literature I				Lit	erature II			
J. F. Allen. Maintaining knowledge ab Communications of the AC Also in Readings in Know	<i>CM</i> , 26(11):832–843, Novembe	er 1983.						
P. van Beek and R. Coher Exact and approximate rea Computational Intelligence	asoning about temporal relation	ns.			A. Krokhin, P. Jeavons and A complete classification of non-trivial basic relation.	d P. Jonsson. of complexity in Allen's alge	bra in the presence of a	a
B. Nebel and HJ. Bürcke Reasoning about tempora interval algebra,	rt. I relations: A maximal tractable	subclass of Allen's				on AI (IJCAI-01), 83-88, Se	eattle, WA, 2001.	

Journal of the ACM, 42(1): 43-66, 1995.

B. Nebel.

Solving hard qualitative temporal reasoning problems: Evaluating the efficiency of using the ORD-horn class. *CONSTRAINTS*, 1(3): 175-190, 1997.