
Qualitative Representation and Reasoning
Allen’s Interval Calculus

Knowledge Representation and Reasoning

Dec 8, 2004

(Knowledge Representation and Reasoning) Qualitative Reasoning Dec 8, 2004 1 / 40

Allen’s Interval Calculus

Allen’s Interval Calculus – Outline

Allen’s Interval Calculus
Motivation
Intervals and Relations Between Them
Processing an Example
Composition Table
Outlook

Reasoning in Allen’s Interval Calculus

A Maximal Tractable Sub-Algebra

Literature

(Knowledge Representation and Reasoning) Qualitative Reasoning Dec 8, 2004 2 / 40

Allen’s Interval Calculus Motivation

Qualitative Temporal Representation and Reasoning

Often we do not want to talk about precise times:
I NLP – we do not have precise time points
I Planning – we do not want to commit to time points too early
I Scenario descriptions – we do not have the exact times or do not

want to state them

What are the primitives in our representation system?
I Time points: actions and events are instantaneous, or we consider

their beginning and ending
I Time intervals: actions and events have duration
I Reducibility? Expressiveness? Computational costs for

reasoning?
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Allen’s Interval Calculus Motivation

Motivation: Example
Consider a planning scenario for multimedia generation:

P1: Display Picture1
P2: Say “Put the plug in.”
P3: Say “The device should be shut off.”
P4: Point to Plug-in-Picture1.

Temporal relations between events:

P2 should happen during P1
P3 should happen during P1
P2 should happen before or directly precede P3
P4 should happen during or end together with P2

 P4 happens before or directly precedes P3”
 We could add the statement “P4 does not overlap with P3” without

creating an inconsistency.
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Allen’s Interval Calculus Intervals and Relations Between Them

Allen’s Interval Calculus

I Allen’s interval calculus: time intervals and binary relations over
them

I Time intervals: X = (X−, X+), where X− and X+ are interpreted
over the reals and X− < X+ ( naïve approach)

I Relations between concrete intervals, e. g.:

(1.0,2.0) strictly before (3.0,5.5)
(1.0,3.0) meets (3.0,5.5)
(1.0,4.0) overlaps (3.0,5.5)
. . .

 Which relations are conceivable?
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Allen’s Interval Calculus Intervals and Relations Between Them

The Base Relations

How many ways are there to order the four points of two intervals?

Relation Symbol Name

{(X,Y ) : X− < X+ < Y − < Y +} ≺ before
{(X,Y ) : X− < X+ = Y − < Y +} m meets
{(X,Y ) : X− < Y − < X+ < Y +} o overlaps
{(X,Y ) : X− = Y − < X+ < Y +} s starts
{(X,Y ) : Y − < X− < X+ = Y +} f finishes
{(X,Y ) : Y − < X− < X+ < Y +} d during
{(X,Y ) : Y − = X− < X+ = Y +} ≡ equal

and the converse relations (obtained by exchanging X and Y )

 These relations are JEPD.

(Knowledge Representation and Reasoning) Qualitative Reasoning Dec 8, 2004 6 / 40

Allen’s Interval Calculus Intervals and Relations Between Them

The 13 Base Relations Graphically
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Allen’s Interval Calculus Intervals and Relations Between Them

Disjunctive Descriptions

I Assumption: We don’t have precise information about the relation
between X and Y , e. g.:

X o Y or X m Y

I . . . modelled by sets of base relations (meaning the union of the
relations):

X {o, m}Y

 213 imprecise relations (incl. ∅ and B)

Example of an indefinite qualitative description:
{

X {o, m} Y, Y {m}Z,X {o, m}Z

}
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Allen’s Interval Calculus Processing an Example

Our Example . . . Formal

P1: Display Picture1 P2: Say “Put the plug in.”
P3: Say “The device should be shut off.” P4: Point to Plug-in-Picture1.
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Compose the constraints: P4 {d, f}P2 and P2 {d}P1: P4 {d}P1.
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Allen’s Interval Calculus Outlook

Outlook

I Using the composition table and the rules about operations on
relations, we can deduce new relations between time intervals.

I What would be a systematic approach?
I How costly is that?
I Is that complete?
I If not, could it be complete on a subset of the relation system?
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Reasoning in Allen’s Interval Calculus Constraint propagation algorithms (enforcing path consistency)

Constraint Propagation – The Naive Algorithm
Enforcing path-consistency using the straight-forward method:
Let Table [i, j] be an array of size |n| × |n| (n: number of intervals), in
which we have recorded the constraints between the intervals.

EnforcePathConsistency1(C):
Input: a (binary) CSP C = 〈V,D,C〉
Output: an equivalent, but path consistent CSP C ′

repeat
for each pair (i, j), 1 ≤ i, j ≤ n

for each k with 1 ≤ k ≤ n
Table [i, j] := Table [i, j] ∩ (Table [i, k] ◦ Table [k, j])

endfor
endfor

until no entry in Table is changed

 terminates;
 needs O(n5) intersections and compositions.
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Reasoning in Allen’s Interval Calculus Constraint propagation algorithms (enforcing path consistency)

An O(n3) Algorithm

EnforcePathConsistency2(C):
Input: a (binary) CSP C = 〈V,D,C〉
Output: an equivalent, but path consistent CSP C ′

Paths(i, j) = {(i, j, k) : 1 ≤ k ≤ n} ∪ {(k, i, j) : 1 ≤ k ≤ n}
Queue :=

⋃

i,j Paths(i, j)

While Q 6= ∅
select and delete (i, k, j) from Q
T := Table [i, j] ∩ (Table [i, k] ◦ Table [k, j])

if T 6= Table [i, j]
Table [i, j] := T
Table [j, i] := T−1

Queue := Queue ∪ Paths(i, j)
endif

endwhile
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Reasoning in Allen’s Interval Calculus Example for Incompleteness

Example for Incompleteness
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Reasoning in Allen’s Interval Calculus NP-Hardness Example

NP-Hardness

Theorem (Kautz & Vilain)
CSAT is NP-hard for Allen’s interval calculus.

Proof.
Reduction from 3-colorability (original proof using 3Sat).
Let G = (V,E), V = {v1, . . . , vn} be an instance of 3-colorability.
Then we use the intervals {v1, . . . , vn, 1, 2, 3} with the following
constraints:

1 {m} 2
2 {m} 3
vi {m,≡, m−1} 2 ∀vi ∈ V
vi {m, m−1,≺,�} vj ∀(vi, vj) ∈ E

This constraint system is satisfiable iff G can be colored with 3
colors.
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Reasoning in Allen’s Interval Calculus The Continuous Endpoint Class

Looking for Special Cases

I Idea: Let us look for polynomial special cases. In particular, let us
look for sets of relations (subsets of the entire set of relations) that
have an easy CSAT problem.

I Note: Interval formulae X R Y can be expressed as clauses over
atoms of the form a op b, where:

I a and b are endpoints X−, X+, Y − and Y + and
I op ∈ {<, >, =,≤,≥}.

I Example: All base relations can be expressed as unit clauses.

Lemma
Let π(Θ) be the translation of Θ to clause form. Θ is satisfiable over
intervals iff π(Θ) is satisfiable over the rational numbers.
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Reasoning in Allen’s Interval Calculus The Continuous Endpoint Class

The Continuous Endpoint Class

Continuous Endpoint Class C: This is a subset of A such that there
exists a clause form for each relation containing only unit clauses
where ¬(a = b) is forbidden.
Example: All basic relations and {d, o, s}, because

π(X {d, o, s} Y ) = {X− < X+, Y − < Y +,
X− < Y +, X+ > Y −,
X+ < Y +}

� -

� -� ....� ...

Y

X
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Reasoning in Allen’s Interval Calculus Completeness for the CEP Class

Why Do We Have Completeness?
The set C is closed under intersection, composition, and converse (it is
a sub-algebra wrt. these three operations on relations). This can be
shown by using a computer program.

Lemma
Each 3-consistent interval CSP over C is globally consistent.

Theorem (van Beek)
Path consistency solves CMIN(C) and decides CSAT(C).

Proof.
Follows from the above lemma and the fact that a strongly n-consistent
CSP is minimal.

Corollary
A path consistent interval CSP consisting of base relations only is
satisfiable.
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Reasoning in Allen’s Interval Calculus Completeness for the CEP Class

Helly’s Theorem

Definition
A set M ⊆ R

n is convex iff for all pairs of points a, b ∈ M , all points on
the line connecting a and b belong to M .

Theorem (Helly)
Let F be a family of at least n + 1 convex sets in R

n. If all sub-families
of F with n + 1 sets have a non-empty intersection, then

⋂

F 6= ∅.
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Reasoning in Allen’s Interval Calculus Completeness for the CEP Class

Strong n-Consistency (1)

Proof.
We prove the claim by induction over k with k ≤ n.
Base case: k = 1, 2, 3

√

Induction assumption: Assume strong k − 1-consistency (and
non-emptiness of all relations)
Induction step: From the assumption, it follows that there is an
instantiation of k − 1 variables Xi to pairs (si, ei) satisfying the
constraints Rij between the k − 1 variables.
We have to show that we can extend the instantiation to any kth
variable.
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Reasoning in Allen’s Interval Calculus Completeness for the CEP Class

Strong n-Consistency (2): Instantiating the kth
Variable

Proof (Part 2).
The instantiation of the k − 1 variables Xi to (si, ei) restricts the
instantiation of Xk.
Note: Since Rij ∈ C by assumption, these restrictions can be
expressed by inequalities of the form:

si < X+
k

∧ ej ≥ X−

k
∧ . . .

Such inequalities define convex subsets in R
2.

 Consider sets of 3 inequalities (= 3 convex sets).
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Reasoning in Allen’s Interval Calculus Completeness for the CEP Class

Strong n-Consistency (3): Using Helly’s Theorem

Proof (Part 3).
Case 1: All 3 inequalities mention only X−

k (or mention only X+
k ). Then

it suffices to consider only 2 of these inequalities (the strongest).
Because of 3-consistency, there exists at least 1 common point
satisfying these 3 inequalities.
Case 2: The inequalities mention X−

k and X+
k , but it does not contain

the inequality X−

k < X+
k . Then there are at most 2 inequalities with the

same variable and we have the same situation as in Case 1.
Case 3: The set contains the inequality X−

k < X+
k . In this case, only

three intervals (incl. Xk) can be involved and by the same argument as
above there exists a common point.

 With Helly’s Theorem, it follows that there exists a consistent
instantiation for all subsets of variables.

 Strong k-consistency for all k ≤ n.
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Reasoning in Allen’s Interval Calculus Completeness for the CEP Class

Outlook

I CMIN(C) can be computed in O(n3) time (for n being the number
of intervals) using the path consistency algorithm.

I C is a set of relations occurring “naturally” when observations are
uncertain.

I C contains 83 relations (incl. the impossible and the universal
relations).

I Are there larger sets such that path consistency computes
minimal CSPs? Probably not

I Are there larger sets of relations that permit polynomial
satisfiability testing? Yes
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A Maximal Tractable Sub-Algebra The Endpoint Subclass

The EP-Subclass
End-Point Subclass: P ⊆ A is the subclass that permits a clause form
containing only unit clauses (a 6= b is allowed).
Example: all basic relations and {d, o} since

π(X {d, o} Y ) = {X− < X+, Y − < Y +,
X− < Y +, X+ > Y −, X− 6= Y −,
X+ < Y +}

� -

� -X ....� ...

Y

X

Theorem (Vilain & Kautz 86, Ladkin & Maddux 88)
The path-consistency method decides CSAT(P).
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A Maximal Tractable Sub-Algebra The ORD-Horn Subclass

The ORD-Horn Subclass
ORD-Horn Subclass: H ⊆ A is the subclass that permits a clause form
containing only Horn clauses , where only the following literals are
allowed:

a ≤ b, a = b, a 6= b

¬a ≤ b is not allowed!
Example: all R ∈ P and {o, s, f−1}:

π(X{o, s, f−1}Y ) =
{

X− ≤ X+,X− 6= X+,
Y − ≤ Y +, Y − 6= Y +,
X− ≤ Y −,
X− ≤ Y +,X− 6= Y +,
Y − ≤ X+,X+ 6= Y −,
X+ ≤ Y +,

X− 6= Y − ∨ X+ 6= Y +
}

.
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A Maximal Tractable Sub-Algebra The ORD-Horn Subclass

Partial Orders: The ORD Theory

Let ORD be the following theory:

∀x, y, z : x ≤ y ∧ y ≤ z → x ≤ z (transitivity)
∀x : x ≤ x (reflexivity)
∀x, y : x ≤ y ∧ y ≤ x → x = y (anti-symmetry)
∀x, y : x = y → x ≤ y (weakening of =)
∀x, y : x = y → y ≤ x (weakening of =).

I ORD describes partially ordered sets, ≤ being the ordering
relation.

I ORD is a Horn theory
I What is missing wrt to dense and linear orders?
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A Maximal Tractable Sub-Algebra The ORD-Horn Subclass

Satisfiability over Partial Orders

Proposition
Let Θ be a CSP over H. Θ is satisfiable over interval interpretations iff
π(Θ) ∪ ORD is satisfiable over arbitrary interpretations.

Proof.
⇒: Since the reals form a partially ordered set (i. e., satisfy ORD), this
direction is trivial.
⇐: Each extension of a partial order to a linear order satisfies all
formulae of the form a ≤ b, a = b, and a 6= b which have been satisfied
over the original partial order.
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A Maximal Tractable Sub-Algebra The ORD-Horn Subclass

Complexity of CSAT(H)
Let ORDπ(Θ) be the propositional theory resulting from instantiating all
axioms with the endpoints occurring in π(Θ).

Proposition
ORD ∪ π(Θ) is satisfiable iff ORDπ(Θ) ∪ π(Θ) is so.

Proof idea: Herbrand expansion!

Theorem
CSAT(H) can be decided in polynomial time.

Proof.
CSAT(H) instances can be translated into a propositional Horn theory
with blowup O(n3) according to the previous Prop., and such a theory
is decidable in polynomial time.

C ⊂ P ⊂ H with |C| = 83, |P| = 188, |H| = 868
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A Maximal Tractable Sub-Algebra The ORD-Horn Subclass

Path-Consistency and the OH-Class

Lemma
Let Θ be a path-consistent set over H. Then

(X{}Y ) /∈ Θ iff Θ is satisfiable

Proof Idea.
One can show that ORDπ(Θ) ∪ π(Θ) is closed wrt positive unit
resolution. Since this inference rule is refutation complete for Horn
theories, the claim follows.

Lemma
H is closed under intersection, composition, and conversion.

Theorem
The path-consistency method decides CSAT(H).

 Maximality of H?
 Do we have to check all 8192 - 868 extensions?
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A Maximal Tractable Sub-Algebra The ORD-Horn Subclass

Complexity of Sub-Algebras

Let Ŝ be the closure of S ⊆ A under converse, intersection, and
composition (i.e., the carrier of the least sub-algebra generated by S)

Theorem
CSAT(Ŝ) can be polynomially transformed to CSAT(S).

Proof Idea.
All relations in Ŝ − S can be modeled by a fixed number of
compositions, intersections, and conversions of relations in S,
introducing perhaps some fresh variables.

 Polynomiality of S extends to Ŝ.
 NP-hardness of Ŝ is inherited by all generating sets S.
 Note: H = Ĥ.
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A Maximal Tractable Sub-Algebra Maximality

Minimal Extensions of the H-Subclass

A computer-aided case analysis leads to the following result:

Lemma
There are only two minimal sub-algebras that strictly contain H: X1,X2

N1 = {d, d−1, o−1, s−1, f} ∈ X1

N2 = {d−1, o, o−1, s−1, f−1} ∈ X2

The clause form of these relations contain “proper” disjunctions!

Theorem
CSAT(H∪ {Ni}) is NP-complete.

Question: Are there other maximal tractable subclasses?
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A Maximal Tractable Sub-Algebra Maximality

“Interesting” Subclasses

Interesting subclasses of A should contain all basic relations.
A computer-aided case analysis reveals: For S ⊇ {{B} : B ∈ B} it
holds that

1. Ŝ ⊆ H, or
2. N1 or N2 is in Ŝ.

In case 2, one can show: CSAT(S) is NP-complete.
 H is the only maximal tractable subclass that is interesting.

Meanwhile, there is a complete classification of all sub-algebras
containing at least one basic relation [IJCAI 2001] . . . but the question
for sub-algebras not containing a basic relation is open.
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A Maximal Tractable Sub-Algebra Maximality

Relevance?

Theoretical:
We now know the boundary between polynomial and
NP-hard reasoning problems along the dimension
expressiveness. ⊕

Practical: All known applications either need only P or they need
more than H! 	
Backtracking methods might profit from the result
because the branching factor is lower. ?

 How difficult is CSAT(A) in practice?
 What are the relevant branching factors?
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A Maximal Tractable Sub-Algebra Solving Arbitrary Allen CSPs

Solving General Allen CSPs

I Backtracking algorithm using path-consistency as a
forward-checking method

I Relies on tractable fragments of Allen’s calculus: split relations
into relations of a tractable fragment, and backtrack over these.

I Refinements and evaluation of different heuristics
 Which tractable fragment should one use?
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A Maximal Tractable Sub-Algebra Solving Arbitrary Allen CSPs

Branching Factors

I If the labels are split into base relations, then on average a label is
split into

6.5 relations

I If the labels are split into pointizable relations (P), then on average
a label is split into

2.955 relations

I If the labels are split into ORD-Horn relations (H), then on
average a label is split into

2.533 relations

 A difference of 0.422
 This makes a difference for “hard” instances.
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A Maximal Tractable Sub-Algebra Solving Arbitrary Allen CSPs

Summary

I Allen’s interval calculus is often adequate for describing relative
orders of events that have duration.

I The satisfiability problem for CSPs using the relations is
NP-complete.

I For the continuous endpoint class, minimal CSPs can be
computed using the path-consistency method.

I For the larger ORD-Horn class, CSAT is still decided by the
path-consistency method.

I Can be used in practice for backtracking algorithms.
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