Table of contents

Minimal Model Reasoning

Motivation

Definition

Example

Embedding in DL

Nonmonotonic Logic Programs

Motivation

Answer Sets

Complexity

Stratification

Applications

Literature

(Albert-Ludwigs-Universität Freiburg)

Minimal Model Reasoning Definition

Entailment with respect to Minimal Models

Definition

Let A be a set of atomic propositions. Let Φ be a set of propositional formulae on A, and $B \subseteq A$ a set of abnormalities.

Then $\Phi \models_B \psi$ (ψ *B*-minimally follows from Φ) if $\mathcal{I} \models \psi$ for all interpretations \mathcal{I} such that $\mathcal{I} \models \Phi$ and there is no \mathcal{I}' such that $\mathcal{I}' \models \Phi$ and $\{b \in B | \mathcal{I}' \models b\} \subset \{b \in B | \mathcal{I} \models b\}.$

Minimal Model Reasoning

- Conflicts between defaults in Default Logic lead to multiple extensions.
- Each extension corresponds to a maximal set of non-violated defaults.
- Reasoning with defaults can also be achieved by a simpler mechanism: predicate or propositional logic + minimize the number of cases where a default (expressed as a conventional formula) is violated \implies minimal models.
- Notion of minimality: cardinality vs. set-inclusion.

(Albert-Ludwigs-Universität Freiburg)

Nonmonotonic Reasoning

November 12, 2004

Minimal Model Reasoning

Minimal models: example

$$\Phi = \left\{ \begin{array}{ll} \text{student} \land \neg \text{ABstudent} \rightarrow \neg \text{earnsmoney}, & \text{student}, \\ \text{adult} \land \neg \text{ABadult} \rightarrow \text{earnsmoney}, & \text{student} \rightarrow \text{adult} \end{array} \right.$$

Φ has the following models.

```
\mathcal{I}_1 \models \mathsf{student} \land \mathsf{adult} \land \mathsf{earnsmoney} \land \mathsf{ABstudent} \land \mathsf{ABadult}
```

$$\mathcal{I}_2 \models \mathsf{student} \land \mathsf{adult} \land \neg \mathsf{earnsmoney} \land \mathsf{ABstudent} \land \mathsf{ABadult}$$

$$\mathcal{I}_3 \models \mathsf{student} \land \mathsf{adult} \land \mathsf{earnsmoney} \land \mathsf{ABstudent} \land \neg \mathsf{ABadult}$$

$$\mathcal{I}_4 \models \mathsf{student} \land \mathsf{adult} \land \neg \mathsf{earnsmoney} \land \neg \mathsf{ABstudent} \land \mathsf{ABadult}$$

(Albert-Ludwigs-Universität Freiburg)

Nonmonotonic Reasoning

November 12, 2004 3 / 17

1 / 17

(Albert-Ludwigs-Universität Freiburg)

Nonmonotonic Reasoning

November 12, 2004

Relation to Default Logic

We can embed propositional minimal model reasoning in the propositional Default Logic.

Theorem

Let A be a set of atomic propositions. Let Φ be a set of propositional formulae on A, and $B \subseteq A$.

Then $\Phi \models_B \psi$ if and only if ψ follows from $\langle D, W \rangle$ skeptically, where

$$D = \left\{ \left. \frac{: \neg b}{\neg b} \right| b \in B \right\} \text{ and } W = \Phi.$$

(Albert-Ludwigs-Universität Freiburg)

Nonmonotonic Reasoning

November 12, 2004

(Albert-Ludwigs-Universität Freiburg)

Nonmonotonic Reasoning

November 12, 2004

Nonmonotonic Logic Programs Motivation

Nonmonotonic Logic Programs: Background

Nonmonotonic Logic Programs Motivation

- ► Answer set semantics: a formalization of negation-as-failure in logic programming (Prolog)
- ▶ Other formalizations: well-founded semantics, perfect-model semantics, inflationary semantics, ...
- ► Can be viewed as a simpler variant of default logic.
- ▶ A better alternative to *the propositional logic* in some applications.

Relation to Default Logic: Proof

Proof sketch.

 $\psi \notin E$.

 \Rightarrow Assume there is extension E of $\langle D, W \rangle$ such that $\psi \notin E$. Hence there is an interpretation \mathcal{I} such that $\mathcal{I} \models E$ and $\mathcal{I} \models \neg \psi$. By the fact that there is no extension F such that $E \subset F$. \mathcal{I} is a B-minimal model of Φ . Hence ψ does not B-minimally follow from Φ . \Leftarrow Assume ψ does not B-minimally follow from Φ . Hence there is an B-minimal model \mathcal{I} of Φ such that $\mathcal{I} \not\models \psi$. Define $E = \mathsf{Th}(\Phi \cup \{ \neg b | b \in B, \mathcal{I} \models \neg b \})$. Now $\mathcal{I} \models E$ and because $\mathcal{I} \not\models \psi$.

We can show that E is an extension of $\langle D, W \rangle$.

Because there is extension E such that $\psi \notin E$, ψ does not skeptically follow from $\langle D, W \rangle$.

Nonmonotonic Logic Programs

- ightharpoonup Rules $c \leftarrow b_1, \ldots, b_m$, not d_1, \ldots , not d_k where $\{c, b_1, \dots, b_m, d_1, \dots, d_k\} \subseteq A$ for a set $A = \{a_1, \dots, a_n\}$ of propositions.
- ▶ Meaning similar to default logic: If
 - 1. we have derived b_1, \ldots, b_m and
 - 2. cannot derive any of d_1, \ldots, d_k ,

then derive c.

- ► Rules without right-hand side: c ←
- ▶ Rules without left-hand side: $\leftarrow b_1, \ldots, b_m$, not d_1, \ldots , not d_k

(Albert-Ludwigs-Universität Freiburg)

Answer Sets – Formal Definition

▶ Reduct P^{Δ} of a program P with respect to a set of atoms $\Delta \subseteq A$:

$$\{c \leftarrow b_1, \dots, b_m \mid (c \leftarrow b_1, \dots, b_m, \mathsf{not}\ d_1, \dots, \mathsf{not}\ d_k) \in P, \{d_1, \dots, d_k\} \cap \Delta = \emptyset\}$$

- ▶ Closure $dcl(P) \subseteq A$ of a set P of rules without **not** is defined by iterative application of the rules in the obvious way.
- lacktriangle A set of propositions $\Delta \subset A$ is an answer set of P iff $\Delta = \operatorname{dcl}(P^{\Delta})$.

Examples

```
ightharpoonup P_1 = \{a \leftarrow, b \leftarrow a, c \leftarrow b\}

ightharpoonup P_2 = \{a \leftarrow b, b \leftarrow a\}

ightharpoonup P_3 = \{p \leftarrow \mathsf{not}\ p\}

ightharpoonup P_{A} = \{ p \leftarrow \mathsf{not} \ q, \quad q \leftarrow \mathsf{not} \ p \}
```

 $ightharpoonup P_5 = \{p \leftarrow \mathsf{not}\ q, \quad q \leftarrow \mathsf{not}\ p, \quad \leftarrow p\}$

(Albert-Ludwigs-Universität Freiburg)

Nonmonotonic Reasoning

November 12, 2004

(Albert-Ludwigs-Universität Freiburg)

Nonmonotonic Reasoning

November 12, 2004

10 / 17

Nonmonotonic Logic Programs Complexity

Complexity: existence of answer sets is NP-complete

- 1. Membership in NP: Guess $\Delta \subseteq A$ (nondet, polytime), compute P^{Δ} , compute its closure, compare to Δ (everything det. polytime).
- 2. NP-hardness: Reduction from 3SAT: an answer set exists iff clauses are satisfiable:

$$p \leftarrow \mathsf{not} \; \hat{p}$$
$$\hat{p} \leftarrow \mathsf{not} \; p$$

for every proposition p occurring in the clauses, and

$$\leftarrow$$
 not l'_1 , not l'_2 , not l'_3

for every clause $l_1 \vee l_2 \vee l_3$, where $l'_i = p$ if $l_i = p$ and $l'_i = \hat{p}$ if $l_i = \neg p$.

Nonmonotonic Logic Programs Complexity

Programs for Reasoning with Answer Sets

- smodels (Niemelä & Simons), dlv (Eiter et al.), ...
- Schematic input:

```
p(X) := not q(X). anc(X,Y) := par(X,Y).
q(X) := not p(X). anc(X,Y) := par(X,Z), anc(Z,Y).
                   par(a,b). par(a,c). par(b,d).
r(a).
r(b).
                   female(a).
r(c).
                   male(X) :- not(female(X)).
                   forefather(X,Y) :-
                              anc(X,Y), male(X).
```

- ▶ The *ancestor* relation is the transitive closure of the *parent* relation.
- ► Transitive closure cannot be (concisely) represented in propositional/predicate logic.

$$par(X,Y) \rightarrow anc(X,Y)$$

 $par(X,Z) \land anc(Z,Y) \rightarrow anc(X,Y)$

The above formulae only guarantee that anc is a superset of the transitive closure of par.

▶ For transitive closure one needs the minimality condition in some form: nonmonotonic logics, fixpoint logics, ...

(Albert-Ludwigs-Universität Freiburg)

Nonmonotonic Reasoning

November 12, 2004

Nonmonotonic Logic Programs

Stratification

Stratification

Theorem

A stratified program *P* has exactly one answer set. The unique answer set can be computed in polynomial time.

Example

Our earlier examples with more than one or no answer sets:

$$P_3 = \{ p \leftarrow \mathsf{not} \ p \}$$

$$P_4 = \{ p \leftarrow \mathsf{not} \ q, \quad q \leftarrow \mathsf{not} \ p \}$$

Stratification

The reason for multiple answer sets is the fact that a may depend on band simultaneously b may depend on a.

The lack of this kind of circular dependencies makes reasoning easier.

Definition

A logic program P is stratified if P can be partitioned to $P = P_1 \cup \cdots \cup P_n$ so that for all $i \in \{1, \dots, n\}$ and $(c \leftarrow b_1, \ldots, b_m, \text{not } d_1, \ldots, \text{not } d_k) \in P_i$

- 1. there is no not c in P_i and
- 2. there are no occurrences of c anywhere in $P_1 \cup \cdots \cup P_{i-1}$.

(Albert-Ludwigs-Universität Freiburg)

Nonmonotonic Reasoning

November 12, 2004

Nonmonotonic Logic Programs Applications

Applications of Logic Programs

- 1. Simple forms of default reasoning (inheritance networks)
- 2. A solution to the frame problem: instead of using frame axioms, use defaults

$$a_{t+1} \leftarrow a_t, \mathsf{not} \ \neg a_{t+1}$$

By default, truth-values of facts stay the same.

- 3. deductive databases (Datalog[¬])
- 4. et cetera: Everything that can be done with propositional logic can also be done with propositional nonmotononic logic programs.

(Albert-Ludwigs-Universität Freiburg)

Nonmonotonic Reasoning

November 12, 2004

(Albert-Ludwigs-Universität Freiburg)

Nonmonotonic Reasoning

November 12, 2004

Literature

- M. Gelfond and V. Lifschitz, The stable model semantics for logic programming, Proceedings of the Fifth International Conference on Logic Programming, The MIT Press, 1988.
- I. Niemelä and P. Simons. Smodels an implementation of the stable model and well-founded semantics for normal logic programs, Proceedings of the 4th International Conference on Logic Programming and Non-monotonic Reasoning, 1997.
- T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative problem solving using the dlv system. In J Minker, editor, Logic Based AI, Kluwer Academic Publishers, 2000.

(Albert-Ludwigs-Universität Freiburg)

Nonmonotonic Reasoning

November 12, 2004 17 / 17