Motivation for Studying Modal Logics

Modal Logics

Motivation

@ Notions like believing and knowing require a more
general semantics than e.g. propositional logic has.

@ Some KR formalisms can be understood as (fragments
of) a propositional modal logic.

@ Application 1: spatial representation formalism RCCS8.
@ Application 2: description logics
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Modal Logics

Often, we want to state something where we have an

“embedded proposition”: fctvatop
@ John believes that it is Sunday.
@ | know that 210 = 1024.

Reasoning with embedded propositions:
@ John believes that if it is Sunday then shops are closed.

@ John believes that it is Sunday.

@ This implies (assuming belief is closed under modus
ponens):
@ John believes that shops are closed.

~+ How to formalize this?
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Modal Logics

Propositional logic + operators [J & ¢ (Box & Diamond):

¢ — ... classical propositional formula
| DQO, Box Syntax
| Oy’ Diamond

O and ¢ have the same operator precedence as —.
Some possible readings of Cly:

@ Necessarily ¢ (alethic)
@ Always ¢ (temporal)
@ ¢ should be true (deontic)
@ Agent A believes ¢ (doxastic)
@ Agent A knows ¢ (epistemic)
~ different semantics for different intended readings
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Truth Functional Semantics?

Modal Logics

@ Could it be possible to define the meaning of Oy truth
functionally, i.e. by referring to the truth value of ¢ only?  JEIERES
@ An attempt to interpret necessity truth-functionally:

o If pis false, then Oy should be false.
o If pistrue, then...

@ ...y should be true ~ O is the identity function
@ ...y should be false ~» Oy is identical to falsity
@ Note: There are only 4 different unary Boolean
functions {T, F} — {T, F}.
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Semantics: The ldea

Modal Logics

In classical propositional logic, formulae are interpreted over
single interpretations and are evaluated to true or false.

In modal logics one considers sets of interpretations:
possible worlds (physically possible, conceivable, ...).

Main idea:

@ Consider a world (interpretation) w and a set of worlds
W which are possible with respect to w.

Possible Worlds

@ A classical formula (with no modal operators) ¢ is true
with respect to (w, W) iff ¢ is true in w.

@ Oy is true wrt (w, W) iff ¢ is true in all worlds in .

@ Qg is true wrt (w, W) iff ¢ is true in one world in W.

@ Meanings of J and ¢ are interrelated by ¢ = -[O—.
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current possllé)le s
world worlas
w w

Possible Worlds

Examples:

@ a A —bis true relative to (w, W).

@ [a is not true relative to (w, ).

@ [O(a Vv b) is true relative to (w, W).
Question: How to evaluate modal formulae in w € W?
~ For each world, we specify a set of possible worlds.
~ frames
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Frames, Interpretations, and Worlds

Modal Logics

A frame is a pair 7 = (W, R), where W is a non-empty set

(of worlds) and R € W x W (the accessibility relation).

For (w,v) € R we write also wRv.

We say that v is an R-successor of w and that v is
reachable (or R-reachable) from w.

A (X)-interpretation (or model) based on the frame

F = {(W,R)isatriple Z = (W, R, ), where = is a function

from worlds to truth assignments:

W — (£ —{T,F})
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7 = (W, R, ) under the following conditions:

Z,w Ea
Z,wET
T,wlE L
Z,w E —p
ZowEeAy
ZwEeVy
I,wEe—y
LwEee—y
Z,w = O
Z,w E Op

iff

m(w)(a) =T

Kripke Semantics

Z,wlE ¢

Z,wEpand Z,w = ¢
Z,wEporZ,wkE1y
ifZ,wkEpthenZ,w = ¢
Z,wEgpifandonly if Z,w = ¢
Z,u k= pforall us.t wRu

Z,u k= pfor at least one u s.t. wRu
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Satisfiability and Validity

Modal Logics

A formula ¢ is satisfiable in an interpretation Z (or in a frame
F, orin a class of frames C) if there exists a world in Z (or
an interpretation Z based on F, or an interpretation Z based
on a frame contained in the class C, respectively) such that
Z,w k= . —
A formula ¢ is true in an interpretation Z (symbolically

T |= ) if pis true in all worlds of Z.

A formula ¢ is valid in a frame F or F-valid (symbolically

F = @) if @ is true in all interpretations based on F.

A formula ¢ is valid in a class of frames C or C-valid
(symbolically C = ¢) if F = ¢ for all F € C.

K is the class of all frames — named after Saul Kripke, who
invented this semantics.
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Q ov-y

Q (e V ) Basic rotons
@ Do, if ¢ is a classical tautology

Q O(p—)— (Op—0y) (axiom schema K)
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Assumption: Z,w = O(¢— 1), i.e., in all worlds u with wRu, if ¢ is
true then also ¢ is. (Otherwise K is true in any case.)

If Oy is false in w, then (e — ) is true and K is true in w.

If Ogp is true in w, then both O(p— ) and Oy are true in w.
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Modal Logics
K is K-valid. (K=0O(¢—v)— (Op—0vy))
Let Z be an interpretation and let w be a world in Z. CEETD

Assumption: Z,w = O(¢— 1), i.e., in all worlds u with wRu, if ¢ is
true then also ¢ is. (Otherwise K is true in any case.)
If Oy is false in w, then (e — ) is true and K is true in w.

If Ogp is true in w, then both O(p— ) and Oy are true in w.

Hence both ¢ — ) and ¢ are true in every world u accessible from
w. Hence 1 is true in any such «, and therefore w |= Oi. Since 7
and w were arbitrary, the argument goes through for any 7, w, i.e.,
K is K-valid. L]

v




Non-validity: Example

Modal Logics

Proposition
OT is not K-valid.




Non-validity: Example

Modal Logics
Proposition
OT is not K-valid.

A counterexample is the following interpretation:

T = {{w},0,{wr— (a—T)}).

N\,




Non-validity: Example

Modal Logics

Proposition
OT is not K-valid.

Proof.
A counterexample is the following interpretation:

T = {{w},0,{wr— (a—T)}).

We have Z,w [~ QT because there is no u such that wRu.
O

V.
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Modal Logics

Proposition
Oy — ¢ is not K-valid.

A counterexample is the following interpretation:

= ({w},, {w — (a F)}).

We have Z,w = Oa but Z, w |~ a. O
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Modal Logics

Proposition ‘
(e — OO is not K-valid.

Proof.
A counterexample is the following interpretation:

T = ({u,v,w}, {(w,0), (v, w)}, )

with
7(u) {a—T}
™(v) {a—T}
n(w) = {aw F}
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Non-validity: Another Example

Modal Logics

Proposition ‘
(e — OO is not K-valid.

Proof.
A counterexample is the following interpretation:

T = ({u,v,w}, {(w,0), (v, w)}, )

with
m(u) = {a—T}
m(v) = {a—T}
n(w) = {aw F}

This means Z, u = Oa, but Z, » = O0a. L]

.
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Op—¢ (knowledge axiom)

Op—0O0Op  (positive introspection)

Cp—U0Op  (or -y —[O-Cy: negative introspection)
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T:
4.

5
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Accessibility and Axiom Schemata

Modal Logics

Let us consider the following axiom schemata:

Op—¢ (knowledge axiom)

Op—0O0Op  (positive introspection)

Cp—U0Op  (or -y —[O-Cy: negative introspection)
p—U0p

T:
4.

5
B:
D

Op— O (or Op — —O—: disbelief in the negation)

...and the following classes of frames, for which the
accessibility relation is restricted as follows:

T:

O wa

reflexive (wRw for each world w)
transitive (wRu and uRv implies wRv)
euclidian (wRu and wRv implies uRv)
symmetric (wRu implies uRw)

serial (for each w there exists v with wRv)
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D-valid, respectively).
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For T and T:Let F be a frame from class T. Let 7 be an
interpretation based on F and let w be an arbitrary world in Z.
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and Axiom Schemata (1)

Modal Logics

Axiom schema T (4,5, B, D) is T- valid (4-, 5-, B-, or
D-valid, respectively).

Proof.
For T and T:Let F be a frame from class T. Let 7 be an s
interpretation based on F and let w be an arbitrary world in Z. If
O is not true in a world w, then axiom 7' is true in w.
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Connection between Accessibility Relations

and Axiom Schemata (1)

Modal Logics

Axiom schema T (4,5, B, D) is T- valid (4-, 5-, B-, or
D-valid, respectively).

Proof.

For T"and T:Let F be a frame from class T. Let Z be an
interpretation based on F and let w be an arbitrary world in Z. If
O is not true in a world w, then axiom 7' is true in w. If Oy is true
in w, then ¢ is true in all accessible worlds.Since the accessibility
relation is reflexive, w is among the accessible worlds, i.e., ¢ is
true in w.

| \
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Connection between Accessibility Relations

and Axiom Schemata (1)

Modal Logics

Axiom schema T (4,5, B, D) is T- valid (4-, 5-, B-, or
D-valid, respectively).

Proof.

For T and T:Let F be a frame from class T. Let 7 be an
interpretation based on F and let w be an arbitrary world in Z. If
O is not true in a world w, then axiom 7' is true in w. If Oy is true
in w, then ¢ is true in all accessible worlds.Since the accessibility
relation is reflexive, w is among the accessible worlds, i.e., ¢ is
true in w. This means that also in this case T is true w.

| \

Relational properties
vs. axioms




Connection between Accessibility Relations

and Axiom Schemata (1)

Axiom schema T (4,5, B, D) is T- valid (4-, 5-, B-, or
D-valid, respectively).

| \

Proof.

For T"and T:Let F be a frame from class T. Let Z be an
interpretation based on F and let w be an arbitrary world in Z. If
O is not true in a world w, then axiom 7' is true in w. If Oy is true
in w, then ¢ is true in all accessible worlds.Since the accessibility
relation is reflexive, w is among the accessible worlds, i.e., ¢ is
true in w. This means that also in this case T' is true w. This
means, 7 is true in all worlds in all interpretations based on
T-frames. L]

Modal Logics

Relational properties
vs. axioms
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If T (4,5, B, D) is valid in a frame F, then F is a T-Frame
(4-, 5-, B-, or D-frame, respectively).
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Connection between Accessibility Relations

and Axiom Schemata (2)

Modal Logics

If T (4,5, B, D) is valid in a frame F, then F is a T-Frame
(4-, 5-, B-, or D-frame, respectively).

Proof. [ ——

For T and T: Assume that F is not a T-frame. We will construct
an interpretation based on F that falsifies 7'

Because F is not a T-frame, there is a world w such that not
wRw.

Construct an interpretation Z such that w [~ p and v = p for all v
such that wRwv.

Now w = Op and w = p, and hence w (= Op— p. []

v
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K - (e — 1) — (He—0v)

T reflexivity | Op—¢

4 transitivity | Op—0O0¢

5 euclidicity | O — 00y Difterent
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Different Modal Logics

Modal Logics

Name | Property | Axiom schema

K - (e — 1) — (He—0v)

T reflexivity | Op—¢

4 transitivity | Op—0O0¢

5 euclidicity | O — 00y Difterent
B Symmetry p— |:|<>(p logics
D seriality Op— Qe

Some basic modal logics:

K
KT4 = 54
KT5 S5



Different Modal Logics

IOgiCS | <> = == K|T|4 |5 SIMP] vodal Logics
alethic necessarily possibly Y|Y|?]?2]7?

epistemic | known possible Y Y|Y|Y|Y

doxastic | believed possible Y/ N|{Y|Y|N

deontic obligatory permitted |Y [N |N|? |?

temporal | always in future sometimes | Y | Y | Y | N | N | Y[Eae

logics
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Proof Methods

Modal Logics

@ How can we show that a formula is C-valid?

@ In order to show that a formula is not C-valid, one can

construct a counterexample (= an interpretation that

falsifies it.) Analytic

Tableaux

@ When trying out all ways of generating a

counterexample without success, this counts as a proof

of validity.
@ method of (analytic/semantic) tableaux
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A tableau is a tree with nodes marked as follows:
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Tableau Method

Modal Logics

A tableau is a tree with nodes marked as follows:

° wi= o,

@ w [~ ¢, and

° whv. i
A branch that contains nodes marked with w = ¢ and
w = ¢ is closed. All other branches are open. If all

branches are closed, the tableau is closed.
A tableau is constructed by using the tableau rules.
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Tableau Rules for the Propositional Logic

Modal Logics

w =@V wf;vw w E
wEelwEY w0 wie
%):—)s:ogw w oA Y w = oy
w = whEplwEd wke
wE =1

w o | w1y



Tableau Rules for the Propositional Logic

Modal Logics

wkEeVey — w =
wEG|wED wee Wy
wfﬁgw wE e w =
w = wielwEy  wiEe
w o=
w = p—1) —
whE e [wkEy Wi

w P
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Modal Logics

‘wEOp  ifwRvis on the LRD"O f
v  branch already waél; or new v

Tableau Rules
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wRv  for new v
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Additional Tableau Rules for the Modal Logic K

Modal Logics

wEOp  if wRyis on the % or new
~vEo  branch alread Y
F y v
LROSO f “w = Qp  if wRv is on the
whvy or new v v ¢  branch already

vEY
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Properties of K Tableaux

Modal Logics

Proposition

If a K-tableau is closed, the truth condition at the root
cannot be satisfied.

Theorem (Soundness)
If a K-tableau with root w [~ ¢ is closed, then ¢ is K-valid.

Theorem (Completeness)
If ¢ is K-valid, then there is a closed tableau with root

w = .

Proposition (Termination)

There are strategies for constructing K-tableaux that always
terminate after a finite number of steps, and result in a
closed tableau whenever one exists.

| A

A
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Tableau Rules for Other Modal Logics

Modal Logics

Proofs within more restricted classes of frames allow the
use of further tableau rules.

@ For reflexive (T) frames we may extend any branch with
wRw.
@ For transitive (4) frames we have the following
additional rule:
e If wRv and vRu are in a branch, wRu may be added to
the branch.
@ For serial (D) frames we have the following rule:

o Ifthereisw = ... orw [~ ... on abranch, then add
wRw for a new world v.

Tableau Rules

@ Similar rules for other properties...
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Testing Logical Consequence with Tableaux

Modal Logics

@ Let © be a set of formulas. When does a formula ¢
follow from ©: © =x ¢?

@ Test whether in all interpretations on X-frames in which
© is true, also ¢ is true.

@ Wouldn't there be a deduction theorem we could use?
@ Example: a = Oa holds, but a — Oa is not K-valid. .

@ There is no deduction theorem as in the propositional
logic, and logical consequence cannot be directly
reduced to validity!



Tableaus and Logical Implication

Modal Logics

For testing logical consequence, we can use the following
tableau rule:

@ If wis a world on a branch and ¢ € ©, then we can add
w = 1 to our branch.



Tableaus and Logical Implication

Modal Logics

For testing logical consequence, we can use the following
tableau rule:

@ If wis a world on a branch and ¢ € ©, then we can add

w = 1 to our branch.
@ Soundness is obvious. .
@ Completeness is non-trivial.



Connection between propositional modal logic

and FOL?

Modal Logics

@ There are similarities between the predicate logic and
propositional modal logics:
Q@ Ovs. v
Q Ovs. 3
© the possible worlds vs. the objects of the universe
@ In fact, we can show for many propositional modal Embedding in
. . . FOL
logics that they can be embedded in the predicate
logic. = Modal logics can be understood as a
sublanguage of FOL.
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Embedding Modal Logics in the Predicate

Logic (1)

Modal Logics

©Q 7(p,z) = p(x) for propositional variables p

Q 7(—¢,2) = ~7(¢,2)

Q (oVih,z)=1(d,2) V(1)

Q (¢ A v.z) = 7(d,2) A (), )
Q (o, z) = Vy(R(x,y)—7(,y)) for some new y FoL

Q 7(0¢,z) = Jy(R(z,y) A 7(¢,y)) for some new y
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Embedding Modal Logics in the Predicate

Logic (2)

¢ is K-valid if and only if V27 (¢, x) is valid in the predicate
logic.

| N

Theorem

¢ is T-valid if and only if in the predicate logic the logical
consequence {VxzR(x,z)} = Vz7(¢, z) holds.

\,
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Embedding Modal Logics in the Predicate

Logic (2)

¢ is K-valid if and only if V27 (¢, x) is valid in the predicate
logic.

Theorem

¢ is T-valid if and only if in the predicate logic the logical
consequence {VzR(z,x)} = Var(¢, z) holds.

| \

| \

Example
((Op) A O(p—q)) — Oq is K-valid because

Va((Va'(R(z, ) = p(z'))) A 32 (R(z, 2") A (p(2') = g(2'))))
— 32'(R(x, ") A q(z"))

is valid in the predicate logic.

A\

Modal Logics

Embedding in
FOL
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Outlook

Modal Logics

We only looked at some basic propositional modal logics.
There are also
@ modal first order logics (with quantification ¥ and 3 and
predicates)
@ multi-modal logics: more than one modality, e.qg.
knowledge/belief operators for several agents
@ temporal and dynamic logics (modalities that refer to Outook &
time or programs, respectively)
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Outlook

Modal Logics

Did we really do something new? Couldn’t we have done
everything in propositional modal logic in FOL already?
@ Yes — but now we know much more about the
(restricted) system and have decidable problems!

Outlook &
Literature
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